10. Description of Existing Wastewater Collection and Treatment System

The Region of Halton is responsible for all wastewater systems, including treatment plants and collection infrastructure. The existing Regional wastewater treatment system consists of four Lake Ontario based wastewater treatment plants servicing Oakville, Burlington and part of Milton and three stream based wastewater treatment plants that service Halton Hills (Georgetown and Acton) and part of Milton. The existing Regional wastewater collection system consists of over 1,700 km of wastewater gravity mains and forcemains and over 100 pumping stations.

This section summarizes the existing wastewater treatment and collection systems currently in service in the Region. Further background information relevant to each wastewater treatment plant and pumping station is provided in Appendix 1-2. Figure 21 shows a map of the existing Regional wastewater system.

10.1 South Halton Lake-Based System

10.1.1 Wastewater Treatment Plants

The lake-based wastewater system is comprised of four large drainage areas that discharge to Lake Ontario based treatment plants: Skyway, Mid-Halton, Oakville Southeast, and the Oakville Southwest Wastewater Treatment Plants. These plants service the urban area of the municipalities of Burlington, Oakville and parts of Milton.

Burlington Skyway WWTP

The Skyway Wastewater Treatment Plant (WWTP) provides wastewater treatment for the City of Burlington urban area and is comprised of a conventional activated sludge secondary treatment facility. Treated effluent is discharged to Hamilton Harbour. As such, the Skyway WWTP is subject to meeting stringent effluent requirements pursuant to the Hamilton Harbour Remedial Action Plan (RAP).

The requirement of higher level of treatment for the Skyway WWTP could reduce the capacity of existing processes, thereby requiring more tankage and site area to achieve the same level of treatment. Additional unit processes, such as tertiary treatment will also further reduce available site capacity.

A Schedule C Municipal Class EA was initiated to expand the plant from current rated capacity of 118 MLD to 140 MLD in 2008. The EA study was completed in 2009 and the implementation of design and construction is currently underway for the plant expansion. The expanded plant is anticipated to be in service in 2014.

Oakville Southwest WWTP

The Oakville Southwest WWTP currently provides wastewater treatment capacity to the urban area in south Oakville bounded by Burloak Drive to the west, Reynolds Street to the east, the QEW to the North and Lake Ontario to the south, in addition to a small area just west of Sixteen Mile Creek north of the QEW. The plant is a conventional activated sludge secondary treatment facility and discharges treated effluent to Lake Ontario through a diffused outfall that combines with treated effluent from the Mid-Halton WWTP.

The existing rated capacity of the Oakville Southwest WWTP is 45.4 MLD. The existing plant site is surrounded by residential land use; as such, there is limited opportunity for expansion of the plant outside of the existing boundaries. Based on conventional treatment processes, the existing site capacity is approximately 60 MLD.
The plant recently underwent major plant upgrades and reconstruction on site.

Oakville Southeast WWTP

The Oakville Southeast WWTP currently provides wastewater treatment to an area bounded by Reynolds Street on the west, Winston Churchill on the east, Upper Middle Road on the north and Lake Ontario on the south, and includes a small area north of Upper Middle Road at Joshua Creek. The service area includes residential as well as industrial, commercial, and institutional land uses. The plant is a secondary treatment plant and discharges treated effluent to Lake Ontario.

The existing rated capacity of the Oakville Southeast WWTP is 31.8 MLD. Currently the plant is not operating close to its capacity; however, most of the remaining capacity will be used by the approved development within the service area. There is limited available area for expansion within the existing site. Based on conventional treatment processes, the existing site capacity is approximately 60 MLD.

Mid-Halton WWTP

The Mid-Halton WWTP currently provides wastewater treatment for a portion of the urban area in the Town of Oakville, bounded by the QEW to the south, Bronte Road to the West, and Morrison Creek to the east. The plant will also service growth in North Oakville, greenfield areas in Milton and the Halton Hills 401 Corridor. The Mid-Halton WWTP can also provide wastewater treatment for Milton’s urban core when flows to the Milton WWTP exceed 18.5 MLD and need to be diverted. The plant is a conventional secondary treatment facility and discharges to Lake Ontario through a diffused outfall that combines with treated effluent from the Oakville Southwest WWTP.

The existing rated capacity of the Mid-Halton WWTP is 75 MLD. The site has an ultimate capacity of 400 MLD based on current secondary effluent criteria.

A Schedule C Municipal Class EA was initiated in 2008 to expand the plant from current rated capacity of 75 MLD to 125 MLD. The EA study was completed in 2010 and the implementation of design and construction is currently underway for the plant expansion. The expanded plant is anticipated to be in service in 2015.

Table 34 shows a summary of the Halton Region’s lake-based wastewater treatment plants and their existing treatment capacities.

<table>
<thead>
<tr>
<th>WWTP</th>
<th>Location</th>
<th>Existing Rated Capacity (MLD)</th>
<th>2010 Avg Daily Flows (MLD)</th>
<th>Water Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skyway WWTP</td>
<td>1125 Lakeshore Road, Burlington</td>
<td>118.0 ¹</td>
<td>106.9</td>
<td>Lake Ontario</td>
</tr>
<tr>
<td>Mid-Halton WWTP</td>
<td>2195 North Service Road, Oakville</td>
<td>75.0</td>
<td>45.3</td>
<td>Lake Ontario</td>
</tr>
<tr>
<td>Oakville Southeast WWTP</td>
<td>2477 Lakeshore Road East, Oakville</td>
<td>31.8</td>
<td>21.9</td>
<td>Lake Ontario</td>
</tr>
<tr>
<td>Oakville Southwest WWTP</td>
<td>1385 Lakeshore Road West, Oakville</td>
<td>45.4</td>
<td>27.5</td>
<td>Lake Ontario</td>
</tr>
</tbody>
</table>

Note: ¹ The Skyway WWTP existing treatment capacity is 118 MLD and is planned to be expanded to 140 MLD. The Schedule C Class EA Environmental Study Report supporting this expansion was completed by Halton in December 2009. This expansion will provide services for growth and intensification in the City of Burlington, with continued discharge to the Hamilton Harbour.
In general, wastewater flows are conveyed by gravity to areas of lower elevation downstream in the collection system. Where the continuation of the gravity system is not possible due to topography or natural features, wastewater pumping stations are introduced to intercept flows and pump them via pressurized forcemains to trunk sewers further downstream. The major trunk sewers eventually outlet to either a wastewater pumping station at a WWTP, or directly to a WWTP.

In most of Halton Region, the ground elevation gradually slopes down from north to south, which has led to the planning and construction of gravity collection systems that ultimately outlet to Lake Ontario. The lake-based wastewater collection system consists of approximately 190 km of sanitary sewers, and over 60 pumping stations. The wastewater pumping stations vary in size, with some servicing very localized areas to others servicing significant drainage areas, with firm capacities ranging from approximately 1.5 L/s to 950 L/s.

Wastewater service areas are categorized by the treatment plants that receive and treat wastewater flows. Existing wastewater treatment plant drainage areas are shown in Figure 22 and described below.

Burlington Skyway WWTP Drainage Area

Within the Skyway WWTP Drainage Area, there are 25 pumping stations; 19 of which are located near the shoreline of Lake Ontario that pump wastewater to various locations in the gravity collection system. The total drainage area for the Skyway WWTP is approximately 8,700 ha.

Wastewater flows are conveyed to the treatment plant via two main wastewater trunks – the East Trunk and the West Trunk:

- The East Trunk services an area that extends from Appleby Line and the Ontario Hydro rights-of-way to the Skyway WWTP. Within this area, there are eight pumping stations, which pump flow north into the East Trunk from lower lying areas in the south. Areas north of the East Trunk flow by gravity through eight sub-trunks and a number of local sewers into the East Trunk, including Appleby Line, Shoreacres Drive, Dyne Road, Drury Land, Brant Street and Maple Avenue.
- The West Trunk extends from Plains Road at the Royal Botanical Gardens and ends at the East Trunk, just upstream of the Skyway WWTP. The West Trunk drainage area includes 14 pumping stations. Pumping is required for areas to the south and west of the west trunk. The areas north of the West Trunk flow by gravity in four sub-trunks, along Francis Road, Flacon Boulevard, Shadeland Avenue and Glenwood Avenue, and several local mains into the West Trunk.

Oakville Southwest WWTP Drainage Area

The Oakville Southwest WWTP Drainage Area is bounded by Sheldon Creek to the west, Trafalgar Road to the east and as far north as Upper Middle Road, east of the Glen Abbey Golf Club. The QEW forms a major portion of the northern boundary of the WWTP drainage area.

Within the Oakville Southwest WWTP Drainage Area, there are 22 pumping stations, 14 of which are located near the shoreline of Lake Ontario to pump wastewater to various locations in the gravity collection system. The total drainage area is approximately 2,700 ha.

There are two major trunk sewers that deliver wastewater to the Oakville Southwest WWTP – Rebecca Street and Lakeshore Road:
• The Rebecca Street Trunk Sewer extends from Trafalgar Road and Summer Avenue to the treatment plant. Flow from areas south of the Rebecca Street Trunk Sewer is pumped via 10 pumping stations, while wastewater from the north flows by gravity through five sub-trunks and several local collection sewers. The five main sub-trunks are located on Warminister Drive, Fourth Line, Morden Road, Queen Mary Drive and Trafalgar Road. A wastewater storage tank on Rebecca Street at Felan Avenue serves to control flows during storm events.

• There are a number of overflows and bypass structures located at Fourth Line, Pumping Station No. 18, West River Pumping Station and Stirling Pumping Station which sever to reduce the potential for property damage and health impacts by allowing for wastewater collection system overflows during periods when peak design capacity is exceeded.

• The Lakeshore Road West Trunk Sewer is tributary to nine pumping stations which pump flows from the areas located south of the trunk. Northern areas flow by gravity through two sub-trunks, located on Solingate Drive and Third Line, and several local collection sewers, into the Lakeshore Road West Trunk.

Oakville Southeast WWTP Drainage Area

The Oakville Southeast WWTP Drainage Area is bounded by Allen Street to the west, Winston Churchill Boulevard to the east and as far north as Dundas Street. The Southeast WWTP drainage area is 2,800 ha.

Within the Oakville Southeast WWTP Drainage Area, there are 14 pumping stations, 10 of which are located near the shoreline of Lake Ontario.

The plant is fed by three main trunk sewers – Lakeshore Road East, Claremont Road, and Devon Road:

• The Lakeshore Road East Trunk Sewer is tributary to eight pumping stations, seven of which collect and pump flow from areas south of the Lakeshore Road East Trunk Sewer and one that pumps flow from a small area north of the trunk. There are four sub-trunks located on Brantford Avenue, Morrison Road, Treelawn Avenue, Maple Grove Road and All-Saints Crescent that convey flow by gravity into the Lakeshore Road East Trunk. The trunk extends from Chartwell Road to the Caulder Drive Pumping Station. The pumping station discharges directly to the Southeast WWTP through approximately 2 km of forcemain.

• The Claremont Road Trunk Sewer starts at the Winston Business Park and extends to the Southeast WWTP, servicing an area of approximately 600 ha, and has only one pumping station servicing a small tributary area.

• The Devon Road Trunk Sewer, with a tributary area estimated at 200 ha, extends from Devon Road and Maple Grove Road to the Southeast WWTP, and has one pumping station servicing a small area.

Mid-Halton WWTP Drainage Area

The Mid-Halton WWTP Drainage Area extends generally north of the QEW, east of Bronte Road, and west of the Glen Abbey Golf Course and as far north as Dundas Street in Oakville. The Mid-Halton WWTP drainage area covers a total area of approximately 11,000 ha. An area north of Upper Middle Road between Eighth Line and Sixteen Mile Creek is also directed to the Mid-Halton WWTP. The existing Oakville tributary area of the plant is about 910 ha.

Within the Mid-Halton WWTP Drainage Area, there are five main pumping stations (Mid-Block Arterial WWPS (Milton), Boyne WWPS (Milton), Upper Middle Rd WWPS (Oakville), North WWPS (Oakville) and Third Line WWPS (Oakville)).

Wastewater flow is conveyed to the Mid-Halton WWTP from the east via a trunk sewer along Upper Middle Rd, part of Dorval Dr and North Service Rd, discharging to the Third Line WWPS. The Third Line WWPS then pumps flow across Bronte Creek to the Mid-Halton WWTP. Flow is conveyed to the plant from the north/northwest via trunk sewers on Bronte Rd from south of Lower Base Line to Upper Middle Rd and along Third Line and Upper Middle Rd.
These sewers connect at Bronte Rd just south of Upper Middle Rd before crossing a golf course and discharging to the North WWPS. Flows from the North WWPS are then pumped to the Mid-Halton WWTP.

The Mid-Halton WWTP drainage area also includes parts Milton and the Halton Hills Hwy 401 Corridor. In the south area of Milton is a trunk sewer on Laurier Avenue that collects flow east and west of Commercial Street. The Laurier WWPS is located at the Southeast corner of Commercial Street and Laurier Avenue and pumps flow through a forcemain which runs south on Commercial Street to a gravity trunk sewer to Mid-Halton WWTP. In addition, the Halton Hills Hwy 401 Corridor along Steeles Ave as well as areas outside the Milton core, convey flows via the Miller Way trunk sewer, Tremaine Road WWPS and Mid-Block WWPS.

Table 35 summarizes the existing pumping stations in the lake-based wastewater drainage areas and their approximate firm capacities.

Table 35 Wastewater Pumping Stations in the South Halton Lake-Based System

<table>
<thead>
<tr>
<th>SPS #</th>
<th>Facility Name</th>
<th>Firm Capacity (L/s)</th>
<th>Drainage Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Water St WWPS</td>
<td>20.0</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>8</td>
<td>Cedarberry WWPS</td>
<td>7.5</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>9</td>
<td>Carrington Place WWPS</td>
<td>22.5</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>10</td>
<td>Chancery Lane WWPS</td>
<td>16.7</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>11</td>
<td>Ennisclare Dr WWPS</td>
<td>6.5</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>12</td>
<td>Ninth Line WWPS</td>
<td>439.0</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>13</td>
<td>Bel Air Estates WWPS</td>
<td>3.0</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>14</td>
<td>Argyle Dr WWPS</td>
<td>15.1</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>15</td>
<td>Raymar Place WWPS</td>
<td>6.0</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>16</td>
<td>First St WWPS</td>
<td>8.2</td>
<td>Oakville SE WWTP East Trunk DA</td>
</tr>
<tr>
<td>17</td>
<td>Gairloch Gardens WWPS</td>
<td>7.0</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>18</td>
<td>Navy St WWPS</td>
<td>66.1</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>20</td>
<td>Lakewood Dr WWPS</td>
<td>21.0</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>21</td>
<td>Walker St WWPS</td>
<td>43.8</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>23</td>
<td>Birch Hill Lane WWPS</td>
<td>38.6</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>24</td>
<td>Westdale Rd WWPS</td>
<td>30.0</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>25</td>
<td>West 18 WWPS</td>
<td>947.0</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>26</td>
<td>Timber Lane WWPS</td>
<td>2.4</td>
<td>Oakville SW WWTP West Trunk DA</td>
</tr>
<tr>
<td>27</td>
<td>Hixon St WWPS</td>
<td>10.0</td>
<td>Oakville SW WWTP West Trunk DA</td>
</tr>
<tr>
<td>28</td>
<td>Bronte Yacht Club WWPS</td>
<td>2.0</td>
<td>Oakville SW WWTP West Trunk DA</td>
</tr>
<tr>
<td>29</td>
<td>West River WWPS</td>
<td>66.9</td>
<td>Oakville SW WWTP West Trunk DA</td>
</tr>
<tr>
<td>30</td>
<td>Pinedale WWPS (#21)</td>
<td>260.5</td>
<td>Skyway WWTP East Trunk DA</td>
</tr>
<tr>
<td>31</td>
<td>Elizabeth Gardens WWPS (#8)</td>
<td>594.0</td>
<td>Skyway WWTP East Trunk DA</td>
</tr>
<tr>
<td>32</td>
<td>Lakeshore Rd WWPS (#6)</td>
<td>133.0</td>
<td>Skyway WWTP East Trunk DA</td>
</tr>
<tr>
<td>33</td>
<td>Junction St WWPS (#1)</td>
<td>104.0</td>
<td>Skyway WWTP East Trunk DA</td>
</tr>
<tr>
<td>34</td>
<td>Lakeshore Rd WWPS (#9)</td>
<td>255.0</td>
<td>Skyway WWTP East Trunk DA</td>
</tr>
<tr>
<td>35</td>
<td>Lakeshore Rd WWPS (#10)</td>
<td>75.0</td>
<td>Skyway WWTP East Trunk DA</td>
</tr>
<tr>
<td>37</td>
<td>Edgewater Cres WWPS (#12)</td>
<td>4.0</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>38</td>
<td>Spring Garden Rd WWPS (#20)</td>
<td>6.3</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>SPS #</td>
<td>Facility Name</td>
<td>Firm Capacity (L/s)</td>
<td>Drainage Area</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
<td>---------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>40</td>
<td>Oakland Park Court WWPS (#22)</td>
<td>12.0</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>41</td>
<td>Danforth Place WWPS (#3)</td>
<td>4.8</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>42</td>
<td>Chartwell Rd WWPS</td>
<td>6.4</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>43</td>
<td>Morrison Heights WWPS</td>
<td>5.0</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>44</td>
<td>Cumnock WWPS</td>
<td>7.4</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>45</td>
<td>Weaver WWPS</td>
<td>25.8</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>46</td>
<td>Riverside Dr WWPS</td>
<td>82.0</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>47</td>
<td>Shepherd Rd WWPS</td>
<td>14.9</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>48</td>
<td>Cardinal Dr WWPS (#13)</td>
<td>8.3</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>50</td>
<td>Sheldon Creek WWPS</td>
<td>32.0</td>
<td>Oakville SW WWTP West Trunk DA</td>
</tr>
<tr>
<td>52</td>
<td>Shorewood Place WWPS</td>
<td>8.0</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>54</td>
<td>LaSalle Park Road WWPS (#4)</td>
<td>100.0</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>56</td>
<td>Stirling Dr WWPS</td>
<td>18.7</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>55</td>
<td>Third Line WWPS</td>
<td>1,568.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>57</td>
<td>Northshore Blvd WWPS (#5)</td>
<td>38.7</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>64</td>
<td>Marine Dr WWPS</td>
<td>108.0</td>
<td>Oakville SW WWTP West Trunk DA</td>
</tr>
<tr>
<td>65</td>
<td>Coronation Park WWPS</td>
<td>12.0</td>
<td>Oakville SW WWTP West Trunk DA</td>
</tr>
<tr>
<td>66</td>
<td>Belvedere Dr WWPS</td>
<td>25.7</td>
<td>Oakville SW WWTP West Trunk DA</td>
</tr>
<tr>
<td>67</td>
<td>Appleby Place WWPS (#17)</td>
<td>4.8</td>
<td>Skyway WWTP East Trunk DA</td>
</tr>
<tr>
<td>68</td>
<td>Indian Rd WWPS (#7)</td>
<td>3.0</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>69</td>
<td>Bellview St WWPS</td>
<td>6.5</td>
<td>Skyway WWTP East Trunk DA</td>
</tr>
<tr>
<td>70</td>
<td>Stillwater Cres WWPS (#10)</td>
<td>4.8</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>71</td>
<td>Unsworth Ave WWPS (#15)</td>
<td>6.9</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>72</td>
<td>Northshore Blvd WWPS (#14)</td>
<td>1.4</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>73</td>
<td>Bayshore Blvd WWPS (#18)</td>
<td>9.5</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>74</td>
<td>Grandview Ave WWPS (#19)</td>
<td>13.7</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>75</td>
<td>Overton Place WWPS</td>
<td>26.7</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>77</td>
<td>Bridgeview St WWPS (#24)</td>
<td>10.4</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>78</td>
<td>Providence Rd WWPS</td>
<td>58.4</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>79</td>
<td>Riverbank Way WWPS</td>
<td>21.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>81</td>
<td>Rebecca St WW Storage Tank PS</td>
<td>75.0</td>
<td>Oakville SW WWTP East Trunk DA</td>
</tr>
<tr>
<td>82</td>
<td>Fulton St WWPS</td>
<td>310.0/310.0</td>
<td>Milton WWTP/Mid-Halton WWTP</td>
</tr>
<tr>
<td>84</td>
<td>Boyne WWPS</td>
<td>1,110.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>85</td>
<td>North WWPS</td>
<td>1,898.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>86</td>
<td>Midblock Arterial WWPS</td>
<td>1,215.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>87</td>
<td>16 Mile Creek/Upper Middle Rd WWPS</td>
<td>570.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>88</td>
<td>Laurier WWPS</td>
<td>258.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>92</td>
<td>Garden Trails WWPS</td>
<td>28.7</td>
<td>Skyway WWTP West Trunk DA</td>
</tr>
<tr>
<td>97</td>
<td>Halton Hills WWPS No. 1</td>
<td>510.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>99</td>
<td>Joshua Creek WWPS</td>
<td>6.3</td>
<td>Oakville SE WWTP DA</td>
</tr>
<tr>
<td>103</td>
<td>Tremaine WWPS</td>
<td>366.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
<tr>
<td>104</td>
<td>Halton Hills WWPS No. 2</td>
<td>300.0</td>
<td>Mid-Halton WWTP DA</td>
</tr>
</tbody>
</table>
10.2 North Halton Stream Based System

10.2.1 Wastewater Treatment Plants

The stream based wastewater system is comprised of three major drainage areas delineated by treatment plant: the Milton WWTP, the Acton WWTP and the Georgetown WWTP. These wastewater treatment plants each discharge to a different receiving stream, each of which has its own unique hydrological characteristics.

Milton WWTP

The Milton WWTP currently provides wastewater treatment for the centre core of the urban area of Milton. The plant is a tertiary treatment facility and discharges treated effluent to Sixteen Mile Creek.

Raw wastewater to the Milton WWTP is fed by gravity sewers to the onsite Fulton Street Wastewater Pumping Station. Earlier studies have concluded that the capacity of the existing Milton WWTP is insufficient to meet the long term requirements within its catchment area. Additional capacity for the plant is limited due to the assimilative capacity of the stream. Notwithstanding, there is a benefit of maintaining existing levels of Milton WWTP effluent flow, as it contributes to the base flow of Sixteen Mile Creek for the area.

The existing rated capacity of the Milton WWTP is 18.5 MLD. The on-site inlet Fulton WWPS is being designed for major upgrades and construction for current and future servicing strategies.

Georgetown WWTP

The Georgetown WWTP currently provides wastewater treatment for the urban area in the Town of Georgetown. The plant is a tertiary treatment facility and discharges treated effluent to Silver Creek, a sensitive receiving stream.

The existing rated capacity of the Georgetown WWTP is 22.7 MLD. There is limited area within the existing site to expand the capacity of the Georgetown WWTP. Expansion of the plant for additional capacity is also restricted due to the limited assimilative capacity of Silver Creek.

Acton WWTP

The Acton WWTP currently provides wastewater treatment for the urban area of the Town of Acton. The plant is a tertiary treatment facility and discharges treated effluent year-round to Black Creek, a sensitive cold water fishery.

The existing rated capacity of the Acton WWTP is 4.5 MLD. A Schedule C Municipal Class EA was completed in May of 2011 for expansion of the plant from current rated capacity of 4.5 MLD to 7 MLD. The implementation of design is currently underway for the plant expansion.

Table 36 shows a summary of the stream based wastewater treatment plants in Halton Region including their location, firm capacity, and receiving stream. Acton WWTP and Georgetown WWTP are located within the Credit Valley Conservation watershed, and Milton WWTP is located in Conservation Halton watershed.
Table 36 Existing Wastewater Treatment Plants in Halton Region (Stream Based)

<table>
<thead>
<tr>
<th>WWTP</th>
<th>Location</th>
<th>Existing Rated Capacity (MLD)</th>
<th>2010 Avg Daily Flows (MLD)</th>
<th>Receiving Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milton WWTP</td>
<td>161 Fulton Street, Milton</td>
<td>18.5</td>
<td>10.4</td>
<td>Sixteen Mile Creek</td>
</tr>
<tr>
<td>Georgetown WWTP</td>
<td>275 Mountainview Road South, Georgetown</td>
<td>22.7</td>
<td>14.7</td>
<td>Silver Creek</td>
</tr>
<tr>
<td>Acton WWTP</td>
<td>202 Churchill Road South, Acton</td>
<td>4.5</td>
<td>3.95</td>
<td>Black Creek</td>
</tr>
</tbody>
</table>

Note:
1 The Acton WWTP is currently operating near its rated capacity and is planned for expansion to 7.0 MLD. A Schedule C Class EA Environmental Study Report was completed by Halton in spring of 2011
2 Silver Creek is a tributary of the Credit River
3 Black Creek is a tributary of Silver Creek, and ultimately the Credit River

10.2.2 Wastewater Collection System

Similar to the lake-based wastewater collection system, wastewater from the stream based system are conveyed by gravity to areas of lower elevation downstream in the collection system. Where the continuation of the gravity system is not possible due to topography or natural features, wastewater pumping stations are introduced to intercept flows and pump them via pressurized forcemains to trunk sewers further downstream. The major trunk sewers eventually outlet to either a wastewater pumping station at a WWTP, or directly to a WWTP.

The stream based wastewater collection system consists of over 2.9 km of sanitary sewers and several local pumping stations and forcemains. The drainage areas, sewer sizes, and pumping capacities in the stream based systems are smaller than those in the lake-based system. The wastewater pumping stations in the stream based system vary in size, with capacities ranging from approximately 10 L/s to 170 L/s.

Acton WWTP Drainage Area

The Acton WWTP Drainage Area covers an area of approximately 670 ha and is serviced by three wastewater pumping stations. Wastewater collection is mainly achieved by smaller local sewers throughout the drainage area. Flow in the west is directed to the Agnes St WWPS, which pumps flow east to the main trunk sewer along the Black Creek alignment to the plant. Flow in east Acton is collected along Churchill Rd and reaches the plant by gravity from the east.

Georgetown WWTP Drainage Area

The Georgetown WWTP Drainage Area covers an area of approximately 2,200 ha and is serviced by 15 wastewater pumping stations, most of which service smaller local drainage areas. There are three main trunk sewers that outlet to the plant. Flow from Georgetown South is collected by local and sub-trunk sewers which merge into a larger trunk sewer near Ninth Line near Mountainview Rd South and Barber Dr. The trunk then runs along Resource Rd to the Georgetown WWTP. Flow from the northwest areas in Georgetown is collected by a trunk sewer generally aligned along Silver Creek from Mill St to the WWTP. Flow from the northwest is collected by a trunk sewer flowing through the residential neighbourhood mainly along Delrex Blvd from Guelph St to the WWTP.

Milton WWTP Drainage Area

The Milton WWTP Drainage Area covers an area of approximately 1,780 ha.
North of the Milton WWTP are two major trunk sewers that run east-west generally along Main Street East and Steeles Avenue East. In addition, a trunk sewer traverses from north to south generally on Regional Road 25 and the 16 Mile Creek alignment, across Highway 401 and through residential areas to the WWTP. The other trunk sewers are located on Main Street East and Steeles Avenue East which outlet to the main north-south trunk.

In cases where there is a need to divert a portion of wet weather flows from the Milton WWTP to the Mid-Halton WWTP, flow could be pumped from the Fulton WWPS to the Laurier WWPS and then south to the existing gravity collection network, South of Derry Rd, wastewater then flows by gravity and via pumping stations to the Mid-Halton WWTP.

Table 37 summarizes the existing pumping stations in the stream based wastewater drainage areas and their firm capacities.

<table>
<thead>
<tr>
<th>SPS #</th>
<th>Facility Name</th>
<th>Firm Capacity (L/s)</th>
<th>Drainage Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Armstrong Ave WWPS</td>
<td>170.0</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>2</td>
<td>Gollop Cr WWPS</td>
<td>63.1</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>3</td>
<td>Lynden Cl WWPS</td>
<td>54.3</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>4</td>
<td>Moore Park WWPS</td>
<td>31.5</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>5</td>
<td>Agnes St WWPS</td>
<td>140.0</td>
<td>Acton WWTP DA</td>
</tr>
<tr>
<td>6</td>
<td>Kingham Hill WWPS</td>
<td>41.6</td>
<td>Acton WWTP DA</td>
</tr>
<tr>
<td>53</td>
<td>Lakeview WWPS</td>
<td>33.2</td>
<td>Acton WWTP DA</td>
</tr>
<tr>
<td>59</td>
<td>Leachate Station 2 WWPS</td>
<td>10.0</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>60</td>
<td>Leachate Station 1 WWPS</td>
<td>10.0</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>62</td>
<td>Gardiner Dr WWPS</td>
<td>14.7</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>63</td>
<td>Cinderbarke Terr WWPS</td>
<td>10.0</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>76</td>
<td>John St WWPS</td>
<td>135.0</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>80</td>
<td>Norval WWPS</td>
<td>50.0</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>83</td>
<td>Main St WWPS</td>
<td>147.0</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>91</td>
<td>Robinson Rd WWPS</td>
<td>10.0</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>100</td>
<td>10th Sideroad WWPS</td>
<td>130.5</td>
<td>Georgetown WWTP DA</td>
</tr>
<tr>
<td>501</td>
<td>Maple Ave WWPS</td>
<td>10.0</td>
<td>Georgetown WWTP DA</td>
</tr>
</tbody>
</table>
11. Existing and Future Wastewater Infrastructure Assessment

This section summarizes findings from the analysis of the performance of the existing wastewater systems and assessment of future servicing needs. The approach focused on identifying existing system opportunities and constraints and layering on population and employment growth to determine future servicing requirements.

Based on the June 2011 BPE data and Design Criteria, evaluation of the planning data and ultimately the project requirements was completed through summarizing the wastewater flows for the following geographic areas:

- Acton stream based service area (i.e., serviced by Acton WWTP)
- Georgetown stream based service area (i.e., serviced by Georgetown WWTP)
- Milton lake-based service area (i.e., serviced by Mid-Halton WWTP)
- Milton stream based service area (i.e. serviced by Milton WWTP)
- South Halton lake-based service area (i.e., serviced by Burlington Skyway, Oakville Southwest, and Oakville Southeast WWTs)
- Sub-drainage areas (i.e., serviced by pumping stations and forcemains)
- Localized TSZs (i.e., serviced by local trunk wastewater mains).

11.1 Opportunities and Constraints

Opportunities and constraints were identified for each system through discussions with Regional and local area municipal staff and based on the ability to provide adequate levels of service, such as conveying peak wastewater flows. This was previously mentioned in Sections 4.3 and 4.7.

11.1.1 Acton Wastewater System

The following opportunities and constraints were identified in the Acton Wastewater System:

- Existing treatment capacity not sufficient to meet projected growth
- High inflow & infiltration
- Isolated service area
- Planned growth is within existing urban boundary (smaller scale growth)
- Stream based assimilative capacity criteria is restrictive for expansion
- Need to consider minimum flows in receiving streams and water balance
- Potential impact on existing infrastructure with additional intensification flow

11.1.2 Georgetown Wastewater System

The following opportunities and constraints were identified in the Georgetown Wastewater System:

- Existing treatment capacity not sufficient to meet 2031 flows
- Isolated system
- Topographical constraints may require pumping
• Large, Greenfield service area growth
• Potential impact on existing infrastructure with additional intensification flow
• Stream based stringent effluent criteria requires to be met if expanded

11.1.3 Milton Wastewater System

The following opportunities and constraints were identified in the Milton Wastewater System:

• Existing treatment capacity at the Mid-Halton WWTP is not sufficient to meet projected growth
• Existing treatment capacity at the Milton WWTP is not sufficient to meet projected growth
• Stream based stringent effluent criteria requires to be met if expanded
• Existing & planned infrastructure sized to divert flow in excess of existing plant capacity
• Milton experiencing significant new growth post 2021
• Divided drainage areas due to environmental features
• Potential impact on existing infrastructure with additional intensification flow
• Growth is distributed throughout the south and east areas of Milton
• Phasing challenges

11.1.4 South Halton Wastewater System

The following opportunities and constraints were identified in the South Halton Wastewater System:

• Potential impact on existing infrastructure with additional intensification flow
• Continued operation & maintenance cost of existing wastewater collection system
• High operation, maintenance and life cycle costs with continued operation of South Halton wastewater pumping stations
• Treatment capacity not sufficient to meet projected flows at Mid Halton WWTP
• Skyway WWTP tertiary treatment required to support Remedial Action Plan (RAP) targets

11.2 Wastewater Flow Requirements

The wastewater flow requirements have been calculated for each WWTP and WWPS. The future flows are based on the growth identified from the Best Planning Estimates. The flow calculation is based on identifying the existing conditions “starting point” and adding the growth related flows. The detailed summary of the wastewater flow projections is provided in Appendix 1-3. A summary of the average day flows and estimated peak flows is provided in Table 38.
Table 38 Wastewater Flow Requirements for each WWTP

WWTP	Average Day Flow (MLD)	Peak Wet Weather Flow	2031		2031
---	------------------------	-----------------------	------		
	Existing 34	2031	Existing	2031	
Acton	4.7	6.5	16.0	25.0	
Georgetown (Including Hamlets and Catch-Up, after transfer to Mid-Halton)	18.4	18.7	86.0	80.0	
Milton	15.5	18.5	61.0	50.0	
Mid Halton	58.1	171.3	162.0	600.0	
Oakville SE	26.8	28.7	109.0	122.0	
Oakville SW	36.1	45.5	150.0	170.0	
Skyway	122.6	131.1	339.0	402.0	

1. Peak wet weather flows are referenced from the hydraulic model and are based on existing calibrated conditions plus peak wet weather flow associated with growth.
3. Average Day Flow in excess of 18.5 MLD and peak wet weather flow in excess of 50 MLD is diverted from Milton WWTP to Mid-Halton WWTP.

11.3 Hydraulic Analysis

11.3.1 Pumping Capacity

The hydraulic analysis carried out in this Master Plan study identified the need for a number of new pumping stations that will be required within the 2031 timeframe to service new growth areas. The timing of these projects is mainly driven by best planning estimates, and has incorporated input from the allocation program, the Transportation Master Plan and other planned roadwork. These new pumping stations are triggered in future growth areas located along the periphery of the existing urban boundary.

11.3.2 Intensification Analysis

A fundamental component of the Provincial Places to Grow Act is providing growth within the existing built boundary of the Region. For the purposes of intensification, the existing built boundary was established as the year 2006. The Province’s Growth Plan identifies that by 2015 and for each year thereafter Halton Region must have a minimum of 40 per cent of all residential development occurring annually within the 2006 built boundary.

The approach for the intensification analysis under the Master Plan was in 2 stages:

1. Complete a Region wide review of the existing systems, both trunk and local, and identify high level opportunities and constraints to support intensification
2. Complete a detailed hydraulic modeling exercise to identify specific projects related the proposed intensification

The results from both stages of the intensification analysis are presented in Appendix 1-7 and discussed further in Section 15.
12. **Wastewater Alternative Solutions**

12.1 **Servicing Strategy Development and the Sustainable Halton Process**

The evaluation and decision making process carried out as part of the Sustainable Halton Water and Wastewater Master Plan was completed to a greater level of detail than previous Water and Wastewater Master Plans.

The Sustainable Halton Water and Wastewater Master Plan is an integrated component of the overall Sustainable Halton process. As such, the development of the servicing strategies evolved in complexity and detail throughout the implementation of Sustainable Halton.

For the Growth Conformity Exercises under Sustainable Halton, land use plans evolved over time from overall growth concepts, to a short list of growth options, to the preferred land use plan ultimately updated for the Regional Official Plan Review ROPA 38. During this land use evaluation process, preliminary water and wastewater servicing considerations and comments were provided to support the land use decision making.

Once the preferred growth option/land use plan was finalized, the Sustainable Halton Water and Wastewater Master Plan utilized the planning data as the foundation for the servicing needs.

At this point in the Sustainable Halton process, the Class EA process for the Master Plan was initiated. The Master Plan followed Phases 1 and 2 of the Class EA process including establishing and evaluating servicing alternatives.

The process for evaluating and selecting the preferred servicing strategies was as follows:

1. Generate a long list of water and wastewater concepts for the lake-based, groundwater-based and stream-based systems – this was a general description of the servicing strategy/intent with only high level description of infrastructure needs
2. Evaluate the long list of concepts and short-list preferred servicing concepts
3. Generate specific servicing alternatives from the short-listed concepts – this involved determination of specific infrastructure needs, locations and capacity for each alternative
4. Evaluate the servicing alternatives using Triple Bottom Line evaluation criteria
5. Establish the preferred water and wastewater servicing strategies including the capital and implementation programs

Figure 23 provides visual context for understanding the development of the preferred servicing strategy.

The overall capital and implementation programs for the water and wastewater servicing strategies form the primary recommendations of the Sustainable Halton Water and Wastewater Master Plan. The Master Plan documentation is ultimately integrated into the total documentation of the Sustainable Halton process.

12.1.1 **Stream Based Servicing Impact**

From the outset the Master Plan process recognized the interrelationship between the stream based servicing and lake –based servicing strategies. The generation and evaluation of servicing solutions for the Region was undertaken in an integrated and holistic manner. The northern stream based systems of Acton, Georgetown, and Milton were evaluated first in order to determine the impact on the south lake-based system.
Sustainable Halton is Halton Region’s growth management and land use response to Places to Grow, the provincial growth plan. It also responds to the Provincial Policy Statement and the Greenbelt Plan. The planning process involved research, public consultation, staff recommendations and Council approval of policy changes to the Regional Official Plan.

The Sustainable Halton Plan identifies the Region’s urban growth area to 2031, what lands will be preserved, and what lands will be reserved for employment and residential uses. The Plan is closely integrated with the Transportation Master Plan and the Water and Wastewater Master Plan.

Background studies complete, define land use constraints and opportunities

Define land areas required to meet 2031 growth

High level Conceptual Wastewater Servicing comment to guide land use options development

Having considered land area requirements, servicing comment, land use constraints, vision and objectives, land use options are generated

Preferred Growth Option

Land Use Option Evaluated

Preferred Land Use Plan Identified, Official Plan Review ROPA 38

Figure 23 Overall Wastewater Evaluation and Decision Making Process

Note: Above mapping is representative only and is not considered all encompassing.
12.2 Acton Wastewater System

Acton’s existing wastewater system is currently being serviced by a network of gravity sewers and local pumping stations that convey flows to the Acton Wastewater Treatment Plant (WWTP). This is a stream based system, as the Acton WWTP discharges to Black Creek.

Drawing from the opportunities and constraints in the Acton Wastewater System described in Section 11.1.1, the need to develop alternative servicing concepts and strategies was based on addressing the limited treatment capacity to accommodate projected growth, while recognizing the implications of having a stream based receiver. Any potential plant expansions would be challenged by the limited assimilative capacity in the receiving water and the requirement to maintain a healthy water balance across watersheds. Future improvements would also need to address the high levels of inflow and infiltration that are currently consuming conveyance and treatment capacity from the system. Consideration must also be given to additional flows due to intensification and that all planned growth is within the existing urban boundary.

12.2.1 Concepts

Three servicing concepts were identified and evaluated for the Acton Wastewater System:

- **Concept 1** is based on expanding the treatment capacity at the Acton WWTP. The existing drainage area will continue to be serviced by the Acton WWTP, and will require an expansion to accommodate the future projected flows.
- **Concept 2** is based on implementing an inflow and infiltration program to reduce extraneous flows in the Acton wastewater system. This will help alleviate some of the capacity constraints at the Acton WWTP.
- **Concept 3** is based on diverting excess flows to the Georgetown or South Halton system. This will require extensive linear works to connect the Acton wastewater system to a different WWTP Drainage Area.

The preferred concept for the Acton WWTP drainage area is a combination of Concept 1 and Concept 2. The existing Acton WWTP does not have the capacity to treat the full buildout flows of Acton and it is anticipated that inflow and infiltration reduction alone will not free up sufficient capacity for future flows. Concept 3 was screened out due to several environmental and financial drawbacks. The wastewater system alternatives were fully evaluated under a separate Class EA Study for the expansion of the Acton WWTP which is now complete.

The preferred wastewater servicing strategy for Acton is a stand-alone solution and does not impact the South Halton Wastewater Servicing Concepts described herein. The evaluation for the preferred servicing concept is described in Table 39 and the preferred concept is depicted in Figure 24.

12.2.2 Strategies

Following the conceptual servicing analysis, a strategy analysis was carried out in order to translate the preferred concept into actual infrastructure projects. The preferred concept for the Acton system described above, does not impact the South Halton wastewater servicing strategy. As such, one servicing strategy was identified based on the preferred concept. The preferred servicing strategy for the Acton Wastewater System consisted of linear upgrades within the existing collection system (triggered by intensification) and the expansion of the Acton WWTP.
Acton Wastewater 1 - Expand the Acton WWTP

Description
Continue to service Acton existing areas through the WWTP
Expand the Acton WWTP
Table 39 Acton Wastewater Servicing Decision Making Process

<table>
<thead>
<tr>
<th>Long List of wastewater servicing concepts</th>
<th>High Level Evaluation & Screening</th>
<th>Preferred wastewater servicing concepts from PIC#1</th>
<th>Summary of Triple Bottom Line Evaluation & Screening (including hydraulic modelling)</th>
<th>Preliminary Preferred Alternative Solution from PIC#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on 12 pt criteria</td>
<td>Preferred wastewater servicing concepts from PIC#1</td>
<td>Based on 12 pt criteria to develop alternative solutions</td>
<td>Preliminary Preferred Alternative Solution from PIC#2</td>
<td>Alternative 1 - Expand Acton WWTP to accommodate 2031 wastewater flows</td>
</tr>
<tr>
<td>Positives</td>
<td>Negatives</td>
<td>Environmental</td>
<td>Social/Legal</td>
<td>Technical</td>
</tr>
<tr>
<td>Concept 1 - Expand the Acton WWTP</td>
<td>• Maximizes existing infrastructure</td>
<td>• Maintain water balance in community</td>
<td>• Need to mitigate impacts during construction</td>
<td>• Site capacity and treatment capacity can meet 2031 wastewater flows and effluent discharge criteria</td>
</tr>
<tr>
<td></td>
<td>• Addresses growth within existing urban boundary</td>
<td>• Concept 1 – Expand the Acton WWTP</td>
<td>• Concept 1 – Expand the Acton WWTP</td>
<td>• Preferred</td>
</tr>
<tr>
<td></td>
<td>• Potential impacts during construction</td>
<td>• Maintain water balance in community</td>
<td>• Need to mitigate impacts during construction</td>
<td>• Site capacity and treatment capacity can meet 2031 wastewater flows and effluent discharge criteria</td>
</tr>
<tr>
<td></td>
<td>• Assessment of site capacity required</td>
<td>• Concept 1 – Expand the Acton WWTP</td>
<td>• Concept 1 – Expand the Acton WWTP</td>
<td>• Preferred</td>
</tr>
<tr>
<td></td>
<td>• Requirement to meet stringent effluent discharge criteria</td>
<td>• Concept 1 – Expand the Acton WWTP</td>
<td>• Concept 1 – Expand the Acton WWTP</td>
<td>• Preferred</td>
</tr>
<tr>
<td>Concept 2 – Reduce Inflow and Infiltration</td>
<td>• Maximizes existing infrastructure</td>
<td>• Minor impact during construction</td>
<td>• Dependent on public participation</td>
<td>• Concept 2 – Reduce Inflow and Infiltration</td>
</tr>
<tr>
<td></td>
<td>• No major upgrades required</td>
<td>• Concept 2 – Reduce Inflow and Infiltration</td>
<td>• Concept 2 – Reduce Inflow and Infiltration</td>
<td>• Concept 2 – Reduce Inflow and Infiltration</td>
</tr>
<tr>
<td></td>
<td>• Requires implementation of flow reduction program</td>
<td>• Minor impact during construction</td>
<td>• Dependent on public participation</td>
<td>• Concept 2 – Reduce Inflow and Infiltration</td>
</tr>
<tr>
<td></td>
<td>• Potential to not meet flow reduction targets</td>
<td>• Minor impact during construction</td>
<td>• Dependent on public participation</td>
<td>• Concept 2 – Reduce Inflow and Infiltration</td>
</tr>
<tr>
<td></td>
<td>• Generally dependent on public participation and commitment</td>
<td>• Minor impact during construction</td>
<td>• Dependent on public participation</td>
<td>• Concept 2 – Reduce Inflow and Infiltration</td>
</tr>
<tr>
<td>Concept 3a – Trunk Sewer Diversion - Send flows to the Georgetown WW System</td>
<td>• No upgrades required to existing plant</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
</tr>
<tr>
<td></td>
<td>• Provides redundancy</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
</tr>
<tr>
<td></td>
<td>• Protected Area (NEC) Crossing</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
</tr>
<tr>
<td></td>
<td>• Potential imbalance of water budget</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
</tr>
<tr>
<td></td>
<td>• High cost for new infrastructure</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
</tr>
<tr>
<td></td>
<td>• High reliance on capacity in Georgetown</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
<td>• Concept 3 – Trunk Sewer Diversion - send flows to the Georgetown WW System</td>
</tr>
<tr>
<td>Concept 3b – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
<td>• No upgrades required to existing plant</td>
<td>• Concept 4 – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
<td>• Concept 4 – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
<td>• Concept 4 – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
</tr>
<tr>
<td></td>
<td>• Provides redundancy</td>
<td>• Concept 4 – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
<td>• Concept 4 – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
<td>• Concept 4 – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
</tr>
<tr>
<td></td>
<td>• Could potentially address full build-out needs</td>
<td>• Concept 4 – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
<td>• Concept 4 – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
<td>• Concept 4 – Trunk Sewer Diversion - Send flows to the South Halton WW System</td>
</tr>
</tbody>
</table>

Notes:

- Inflow /Infiltration program recommended in conjunction with preliminary recommended servicing solution.
The recommended wastewater servicing strategy for Acton is as follows:

- Continuing to service Acton through the existing Acton WWTP
- Expanding capacity at the Acton WWTP
- Providing local servicing improvements to service new growth as required

The decision-making process behind the development of the preferred servicing strategy for the Acton Wastewater System is summarized in Table 39.

12.2.3 Individual Projects

The individual projects identified under the Master Plan include the Acton WWTP expansion, which has completed the Schedule C Class EA study, upgrades to the existing sewer along the Black Creek alignment, which will require a separate Schedule B Class EA study and is not satisfied under this Master Plan, and new local sewer categorized as Schedule A+. There are no Schedule B projects being satisfied under this Master Plan.

12.3 Georgetown Wastewater System

Georgetown’s existing wastewater system is currently being serviced by a network of gravity sewers and local pumping stations that convey flows to the Georgetown Wastewater Treatment Plant (WWTP). The system is a stream based system, as the Georgetown WWTP discharges to Silver Creek, a sensitive stream tributary to the Credit River.

Drawing from the opportunities and constraints in the Georgetown Wastewater System described in Section 11.1.2, the need to develop alternative servicing concepts and strategies was based on addressing the limited treatment plant capacity to accommodate projected growth, while recognizing the implications of having a sensitive stream based receiver. Any plant expansions would be required to meet the stringent effluent criteria. There is a significant amount of Greenfield service area growth both within and outside the existing urban boundary. Service areas with topographical constraints that require pumping and flows due to intensification will need to be accommodated.

Evaluations for individual projects are provided in Volume II - Project File.

12.3.1 Concepts

Three servicing concepts were identified and evaluated for the Georgetown Wastewater System:

- Concept 1 is based on expanding the treatment capacity at the Georgetown WWTP. The existing drainage area and future expanded drainage area will continue to be serviced by the Georgetown WWTP.
- Concept 2 is based on implementing an inflow and infiltration program to reduce extraneous flows in the Georgetown wastewater system. This will help alleviate some of the treatment constraints at the Georgetown WWTP and will free up capacity to accommodate flows from the new growth areas.
- Concept 3 is based on maximizing the existing capacity at the Georgetown WWTP and diverting flows in excess of the existing treatment capacity to the South Halton or Peel wastewater systems. This diversion will require a sewer connection from Georgetown to the South Halton or Peel systems.
Preliminary consideration was given to the concept of decommissioning the Georgetown WWTP and sending all flows to a Lake Ontario based treatment facility. This concept was screened out based on concerns regarding water balance in the community, desire to maintain base flows in the stream from the existing plant and comments regarding these same concerns from Credit Valley Conservation.

The preferred Concept for the Georgetown Wastewater System is a combination of Concept 2 and Concept 3. The existing Georgetown WWTP does not have the capacity to handle the full buildout of Georgetown and it is anticipated that inflow infiltration reduction alone will not free up enough capacity for future flows. Flows from the Georgetown Southwest Greenfield growth area and Georgetown South will need to be sent south to either the Mid-Halton WWTP in Oakville or the Clarkson WWTP in Mississauga with the Halton-only solution preferred. Concept 1 was screened out as it does not provide an adequate servicing solution. Concept 2 and 3 were chosen based on the ability to maximize the existing stream based and lake-based infrastructure and to accommodate the projected growth within Georgetown. The preferred concepts for the Georgetown Wastewater System feed into the South Halton Wastewater Servicing Concepts described herein.

The evaluation for the preferred servicing concept is described in Table 40 and the preferred concept is depicted in Figure 25.

12.3.2 Strategies

Following the conceptual servicing analysis, a strategy analysis was carried out in order to translate the preferred concept into actual infrastructure projects. The preferred concept for the Georgetown system described above, feeds into the South Halton wastewater servicing strategy. The preferred servicing strategy for the Georgetown Wastewater System consists of linear upgrades triggered by intensification and required to service projected growth within 2031.

The recommended wastewater servicing strategy for Georgetown is described below.

Georgetown Wastewater Servicing

- Maximize existing service areas to the existing Georgetown WWTP
- Maintain existing process capacity at Georgetown WWTP

Georgetown South and Georgetown Southwest

- Areas within Georgetown South and Georgetown Southwest generally lie south of the 15th Sideroad and Silver Creek
- The wastewater servicing and strategies for areas is to convey flows south to the Mid-Halton WWTP

Georgetown Southeast Greenfield Area

- Areas within the Georgetown Southeast Greenfield Area generally lie south of Guelph Street and east of 10th Line
- The wastewater servicing and strategy for this area is to convey flows north to Georgetown WWTP
- Lake-based and groundwater water service areas are paralleled by lake-based and stream-based wastewater collection respectively to ensure water balance within the watershed.
The decision-making process behind the development of the preferred servicing strategy for the Georgetown Wastewater System is summarized in Table 40.

12.3.3 Individual Projects

The preferred servicing strategy led to a number of projects requiring separate evaluations for alternative sites and alignments. This separate evaluation was carried out with the intent to satisfy Phases 1 and 2 of the Class EA requirements particularly for Schedule B projects identified through the Sustainable Halton Water and Wastewater Master Plan.

Individual projects within the Georgetown service area and located within the southern areas of Halton Hills that are being screened under this Master Plan include:

- Project No. 6589 – Pumping station (3 MLD) near No. 10 Sideroad and Adamson Street, in Georgetown Southeast Greenfield Growth Area (35 L/s)
- Project No. 6570 – Pumping station (24 MLD) near No. 10 Sideroad and Ninth Line, in Georgetown South (275 L/s)
- Project No. 6572 – 1050 mm Wastewater Main on Steeles Ave from Eighth Line to Crossing Easement

Full documentation for the above projects, including tracking sheets, evaluation tables, maps, and other technical supporting documentation are provided in Volume II – Project File.
Legend
- Existing SPS
- Existing Sewer
- Existing Forcemain
- Streams
- Regional Wetlands
- Provincial Wetlands
- ANSI
- ESA
- Greenland
- Greenbelt
- Niagara Escarpment

3B. Divert flows to South Halton

Georgetown Wastewater 3 - Trunk Sewer Diversion

Description
Divert the exceeding flow to the South Halton System
Table 40 Georgetown Wastewater Servicing Decision Making Process

<table>
<thead>
<tr>
<th>Long List of wastewater servicing concepts</th>
<th>High Level Evaluation & Screening</th>
<th>Preferred wastewater servicing concepts from PIC1</th>
<th>Summary of Triple Bottom Line Evaluation & Screening (including hydraulic modelling)</th>
<th>Preliminary Preferred Alternative Solution from PIC#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on 12 pt criteria</td>
<td>Based on 12 pt criteria to develop alternative solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Positives and Negatives

Concept 1 – Expand the Georgetown WWTP
- Maximizes existing infrastructure
- Addresses growth within existing urban boundary
- Potential impacts during construction
- Assessment of site capacity required
- Requirement to meet stringent effluent discharge criteria
- Concern regarding meeting the full buildout requirements

Positives
- Maximizes existing infrastructure
- Addresses growth within existing urban boundary

Negatives
- Potential impacts during construction
- Assessment of site capacity required
- Requirement to meet stringent effluent discharge criteria
- Concern regarding meeting the full buildout requirements

Concept 2 – Reduce Inflow and Infiltration
- Maximizes existing infrastructure
- No major upgrades required
- Requires implementation of flow reduction program
- Potential to not meet flow reduction targets
- Generally dependent on public participation and commitment

Positives
- Maximizes existing infrastructure
- No major upgrades required

Negatives
- Requires implementation of flow reduction program
- Potential to not meet flow reduction targets
- Generally dependent on public participation and commitment

Concept 3a – Trunk Sewer Diversion - Send flows to the Peel WW System
- No upgrades required to existing plant for growth
- Provides redundancy
- Addresses greenfield growth and could consider full system capacity
- Potential impact on local aquifer due to water balance management
- High cost for new infrastructure
- Confirmation of available Peel capacity and trunk system impacts need to be confirmed
- Fundamentals of agreement need to be established

Positives
- No upgrades required to existing plant for growth
- Provides redundancy
- Addresses greenfield growth and could consider full system capacity

Negatives
- Potential impact on local aquifer due to water balance management
- High cost for new infrastructure
- Confirmation of available Peel capacity and trunk system impacts need to be confirmed
- Fundamentals of agreement need to be established

Concept 3b – Trunk Sewer Diversion - Send flows to the South Halton WW System
- No upgrades required to existing plant for growth
- Provides redundancy
- Addresses greenfield growth and could consider full system capacity
- Potential imbalance of water budget
- High cost for new infrastructure would require coordination with post 2021 service area

Positives
- No upgrades required to existing plant for growth
- Provides redundancy
- Addresses greenfield growth and could consider full system capacity

Negatives
- Potential imbalance of water budget
- High cost for new infrastructure would require coordination with post 2021 service area

Environmental

Concept 1 – Expand the Georgetown WWTP Only
- Need to mitigate impact to effluent receiving stream

Positives
- Need to mitigate impact to effluent receiving stream

Negatives
- Need to mitigate impact to effluent receiving stream

Concept 2 – Reduce Inflow and Infiltration
- Minor impact during construction

Positives
- Minor impact during construction

Negatives
- Minor impact during construction

Concept 3a – Trunk Sewer Diversion - Send flows to the Peel WW System
- Maintains water balance in community

Positives
- Maintains water balance in community

Negatives
- Maintains water balance in community

Concept 3b – Trunk Sewer Diversion - Send flows to the South Halton WW System
- Maintains water balance in community

Positives
- Maintains water balance in community

Negatives
- Maintains water balance in community

Social/Legal

Concept 1 – Expand the Georgetown WWTP Only
- Need to mitigate impact during construction

Positives
- Need to mitigate impact during construction

Negatives
- Need to mitigate impact during construction

Concept 2 – Reduce Inflow and Infiltration
- Dependent on public participation

Positives
- Dependent on public participation

Negatives
- Dependent on public participation

Concept 3a – Trunk Sewer Diversion - Send flows to the Peel WW System
- Requires coordination and agreement with Peel

Positives
- Requires coordination and agreement with Peel

Negatives
- Requires coordination and agreement with Peel

Concept 3b – Trunk Sewer Diversion - Send flows to the South Halton WW System
- Provides service area flexibility

Positives
- Provides service area flexibility

Negatives
- Provides service area flexibility

Technical

Concept 1 – Expand the Georgetown WWTP Only
- Existent site capacity concerns
- Unable to meet full growth capacity
- Requirements to meet stringent effluent discharge requirements

Positives
- Existing site capacity concerns

Negatives
- Unable to meet full growth capacity
- Requirements to meet stringent effluent discharge requirements

Concept 2 – Reduce Inflow and Infiltration
- Does not adequately address growth needs in Acton

Positives
- Does not adequately address growth needs in Acton

Negatives
- Does not adequately address growth needs in Acton

Concept 3a – Trunk Sewer Diversion - Send flows to the Peel WW System
- Provides service area flexibility

Positives
- Provides service area flexibility

Negatives
- Provides service area flexibility

Concept 3b – Trunk Sewer Diversion - Send flows to the South Halton WW System
- Requires investment in Region of Peel infrastructure

Positives
- Requires investment in Region of Peel infrastructure

Negatives
- Requires investment in Region of Peel infrastructure

Financial

Concept 1 – Expand the Georgetown WWTP Only
- Requires significant capital investment

Positives
- Requires significant capital investment

Negatives
- Requires significant capital investment

Concept 2 – Reduce Inflow and Infiltration
- High cost alternative

Positives
- High cost alternative

Negatives
- High cost alternative

Concept 3a – Trunk Sewer Diversion - Send flows to the Peel WW System
- Lower cost alternative but does not adequately address growth needs

Positives
- Lower cost alternative but does not adequately address growth needs

Negatives
- Lower cost alternative but does not adequately address growth needs

Concept 3b – Trunk Sewer Diversion - Send flows to the South Halton WW System
- Least Preferred

Positives
- Least Preferred

Negatives
- Least Preferred

Notes:
- Inflow/Infiltration program recommended in conjunction with preliminary recommended servicing solution
- Cost for sewers to South Halton leverages capital program for South Halton
- Medium cost alternative
- Alternative 3b
- Trunk sewer diversion of new growth flow as well as strategic upgrades/improvements to the Georgetown WWTP
12.4 Milton Wastewater System

Milton’s existing wastewater system is currently being serviced by a network of gravity sewers and local pumping stations that convey flows to either Milton WWTP or Mid-Halton Wastewater Treatment Plant (WWTP). Milton WWTP is a stream based system, as the plant discharges to the Sixteen Mile Creek.

Drawing from the opportunities and constraints in the Milton Wastewater System described in Section 11.1.3, the need to develop alternative servicing concepts and strategies was based on addressing the limited treatment plant capacity to accommodate projected growth, while recognizing the implications of having a stream based receiver. Any plant expansions would need to meet the stringent effluent criteria. There is a significant amount of post-2021 growth both within and outside the existing urban boundary, which will require phasing of infrastructure and integration with planned roadwork. Drainage areas are divided due to environmental features and require pumping. Flows due to intensification within the Milton Core will also need to be accommodated.

Evaluations for individual projects are provided in Volume II - Project File.

12.4.1 Concepts

Two servicing concepts were identified and evaluated for the Milton Wastewater System:

- Concept 1 is based on expanding the treatment capacity at the Milton WWTP. The existing drainage area will continue to be serviced by the Milton WWTP.
- Concept 2 is based on diverting flows to the Mid-Halton drainage area. A portion of the flow from the Milton WWTP drainage area will continue to be serviced by the Milton WWTP in order to maximize the plant efficiencies. Flows in excess of the rated capacity at the Milton WWTP will be diverted to the Mid-Halton WWTP drainage area via the reconstructed Fulton WWPS and WWFM plus new RR25/Boyne Trunk Sewer.

Preliminary consideration was given to the concept of decommissioning the Milton WWTP and sending all flows to a Lake Ontario based treatment facility. This concept was screened out based on concerns regarding water balance in the community, desire to maintain base flows in the stream from the existing plant and comments regarding these same concerns from Conservation Halton.

The preferred Concept for the Milton WWTP drainage area is Concept 2. This concept builds on the previous Master Plan recommendation to divert flows in excess of the Milton WWTP plant capacity to the Mid-Halton drainage area. The advantages of this concept are based on the ability to maximize the existing lake-based infrastructure and also due to plant site expansion constraints. The preferred concept for the Milton Wastewater System feeds into the South Halton Wastewater Servicing Concepts described herein.

The evaluation for the preferred servicing concept is described in Table 41 and the preferred concept is depicted in Figure 26.

12.4.2 Strategies

Following the conceptual servicing analysis, a strategy analysis was carried out in order to translate the preferred concept into actual infrastructure projects. The preferred concept for the Milton system described above, feeds into the South Halton wastewater servicing strategy. Due to the significant Greenfield growth anticipated in Milton within 2031, there were numerous projects identified within the 2021 urban boundary and the 2031 planned urban boundary expansion areas.
The recommended wastewater servicing strategy for Milton is described below.

Milton Lake-Based Wastewater Servicing

- Milton lake-based wastewater service area includes the areas generally outside the central core of the community. These areas flow to the Mid-Halton WWTP
- Wastewater from the core Milton area is conveyed to the Milton WWTP. Wastewater flow to the Milton WWTP beyond the plant’s rated capacity for average and peak flows (18.5 MLD and 50 MLD respectively) are diverted to the Mid-Halton WWTP.

Core Milton Servicing

- Wastewater is conveyed south to the Milton WWTP for the northwest areas of the Milton core. Remaining areas direct flows to Mid-Halton Wastewater Treatment Plant
- As described above, the excessive flows over the Milton plant rated capacity will be diverted to the Mid-Halton Wastewater Treatment Plant

Milton & Halton Hills/401 Employment Corridor Wastewater Servicing

- Halton Hills 401 Corridor lake-based wastewater service area includes the areas generally along Steeles Ave
- Wastewater is conveyed south to the Mid-Halton WWTP

The Milton servicing analysis included the creation of profiles for the various alternative sewer and forcemain alignments and the hydraulic analysis of alternative pumping stations and sub-drainage areas. The preferred servicing strategy for the Milton Wastewater System extends the existing collection system to a larger network of trunk sanitary sewers and pumping stations, phased within 2031.

The decision-making process behind the development of the preferred servicing strategy for the Milton Wastewater System is summarized in Table 41.

12.4.3 Individual Projects

The preferred servicing strategy led to a number of projects requiring separate evaluations for alternative sites and alignments. This separate evaluation was carried out with the intent to satisfy Phases 1 and 2 of the Class EA requirements particularly for Schedule B projects identified through the Sustainable Halton Water and Wastewater Master Plan.

Individual projects within the Milton service area include:

- Project No. 6555 – 17 MLD Pumping Station on Tremaine Road (200 L/s)
- Project No. 6571 – 104 MLD Pumping Station at Trafalgar Road/ Britannia Road
- Project Nos. 6573, 6574 – 1050 mm Trunk Sewer crossing from Steeles Ave to Auburn Road and on Auburn Road from Hwy 401 crossing easement to Trafalgar Road
- Project No. 6584 – 156 MLD Pumping Station at Lower Base Line and Fourth Line (1805 L/s)

Full documentation for the above projects, including tracking sheets, evaluation tables, maps, and other technical supporting documentation are provided in *Volume II – Project File*.
Milton Wastewater 2 - Transfer some areas to the Mid-Halton DA

Description

Continue to service some of the Milton existing areas through the Milton WWTP to maximize this plant
Divert the exceeding flow to the Mid-Halton DA to be serviced from the South Halton System
Table 41 Milton Wastewater Servicing Decision Making Process

<table>
<thead>
<tr>
<th>Concept 1 - Expand Existing Milton Wastewater Treatment Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positives</td>
</tr>
<tr>
<td>• Maximizes existing infrastructure</td>
</tr>
<tr>
<td>• Potential impacts during construction</td>
</tr>
<tr>
<td>Concept 1 - Expand Existing Milton Wastewater Treatment Plant</td>
</tr>
<tr>
<td>Least Preferred</td>
</tr>
<tr>
<td>Need to mitigate impact to effluent receiving stream</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept 2 – Transfer Flows to Mid-Halton Drainage Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positives</td>
</tr>
<tr>
<td>• Addresses build-out requirements of existing service area</td>
</tr>
<tr>
<td>• Maximizes existing Lake based infrastructure</td>
</tr>
<tr>
<td>• Opportunity for staging. Lake based servicing already provided in Milton</td>
</tr>
<tr>
<td>• Opportunity to consider transfer of the full system</td>
</tr>
<tr>
<td>Preferred</td>
</tr>
<tr>
<td>Maintains current water balance</td>
</tr>
</tbody>
</table>

Alternative 2 – Transfer Flows to Mid-Halton Drainage Area

Ultimate diversion requirements to be coordinated with water supply strategy
12.5 South Halton Lake-Based Wastewater System

South Halton’s existing wastewater system is being serviced by a network of gravity sewers and a large number of local pumping stations that convey flows to the Burlington Skyway, Mid-Halton, Oakville Southwest, and Oakville Southeast Wastewater Treatment Plants. The system is a lake-based system, as all four plants discharge to Lake Ontario.

Drawing from the opportunities and constraints in the South Halton Wastewater System described in Section 11.1.4, the need to develop alternative servicing concepts and strategies was based on ensuring that there is sufficient plant capacity available in time to service projected growth in South Halton, including any diverted flows from upstream service areas. The high number of pumping stations in the South Halton system that are resulting in high operation, maintenance and life cycle costs, need to be reduced while maintaining levels of service in the collection system. Flows due to intensification within the Burlington Core and Oakville Core will also need to be accommodated.

Evaluations for individual projects are provided in Volume II - Project File.

12.5.1 Concepts

Four servicing concepts were identified and evaluated for the South Halton Wastewater System:

Concept 1

Concept 1 is based on conveying flows from new growth areas in Georgetown and Milton to the south, crossing 16 Mile Creek to the RR25/Boyne trunk Sewer via Lower Baseline. Flows from the Georgetown Southwest and east Milton drainage area drain south by gravity on the Eighth Line/ Trafalgar Rd Trunk Sewer to Britannia Road, are pumped west crossing the eastern branch of 16 Mile Creek, then flow south by gravity to Lower Baseline before being pumped west to the new RR25/Boyne Trunk Sewer. Flows from the Halton Hills 401 Corridor are split with the area west of Sixth Line conveyed west to the existing Fourth Line trunk sewer in Milton, and the area east of Sixth Line conveyed south to the new Trafalgar Road trunk sewer. Flows from the southwest Milton drainage area are conveyed south on Tremaine Rd to a new WWPS, pumped east to Lower Baseline, then flow on Lower Baseline to the new RR25/Boyne trunk sewer. New growth flows are conveyed to and treated at the Mid Halton WWTP.

Seven (7) alternatives (1A-G) were developed within Concept 1, with Concept 1A being the main baseline Alternative within the Concept. The six other alternatives are slight variations to the overall concept whose main component is sending the majority of new growth flows south to a new WWPS at Lower Baseline and Fourth Line. The other alternatives maintain a similar overall servicing strategy as Concept 1A, but strategically incorporate diversions of flows from certain existing and future trunk sewers and WWPSs to alternate catchment areas.

These variations to Concept 1A include: sending Georgetown and Halton Hills 401 Corridor flows to the RR25 Boyne Trunk sewer via Fourth Line / James Snow Pkwy or Derry Road in Milton, decommissioning BPII WWPS, decommissioning Britannia/James Snow Pkwy WWPS or decommissioning both BPII WWPS and Britannia/James Snow Pkwy WWPS

Concept 1A was chosen as the preferred Alternative from Concept 1. It provides the most efficient and cost effective servicing solution, while limiting the strain on existing infrastructure and facilitating phasing of new projects.
Concept 2

Concept 2 is based on conveying flows from new growth areas in Georgetown Southwest and Milton to the south, crossing 16 Mile Creek to RR25 via Britannia Rd. Flows from Georgetown and the east Milton drainage area drain south by gravity on the Eighth Line/Trafalgar Rd Trunk Sewer to Britannia Road, are pumped west crossing the eastern branch of 16 Mile Creek, then flow west by gravity to the Britannia/James Snow Pkwy WWPS before being pumped west to the new RR25/Boyne trunk sewer. Flows generated south of Britannia Rd in Milton will be pumped north to the Britannia Trunk Sewer via a new WWPS on Lower Baseline and Fourth Line. Flows from the Halton Hills 401 Corridor are split with the area west of Sixth Line conveyed west to the existing Fourth Line trunk sewer in Milton, and the area east of Sixth Line conveyed south to the new Trafalgar Road trunk sewer. Flows from the southwest Milton drainage area are conveyed south on Tremaine Rd to a new WWPS, pumped east to Lower Baseline, then flow on Lower Baseline to the new RR25/Boyne trunk sewer. New growth flows are conveyed to and treated at the Mid Halton WWTP.

Four (4) alternatives (2A-D) were developed within Concept 2, with Concept 2A being the main baseline Alternative within the Concept. The three other alternatives are slight variations to the overall concept whose main component is sending new growth flows to the west to a new WWPS at Britannia Rd and Thompson Rd. The other alternatives maintain a similar overall servicing strategy as Concept 2A, but strategically incorporate diversions of flows from certain existing trunk sewers and WWPSs to alternate catchment areas.

These variations to Concept 2A include: sending Georgetown and Halton Hills 401 Corridor flows to the new RR25/Boyne Trunk sewer via Fourth Line, James Snow Parkway or Derry Road in Milton, and decommissioning the BPII WWPS.

Concept 2A was chosen as the preferred Alternative from Concept 2. It provided the most efficient and cost effective servicing solution, while limiting the strain on existing infrastructure and facilitating phasing of new projects.

Concept 3

Concept 3 is based on conveying flows from new growth areas in Georgetown Southwest and Milton to the south, crossing 16 Mile Creek via North Oakville. Flows from Georgetown Southwest and the east Milton drainage area drain south by gravity on the Eighth Line/Trafalgar Rd Trunk Sewer to a new WWPS south of Britannia Rd, then are pumped south to Lower Baseline, then drain by gravity to another WWPS on the new Burnhamthorpe Rd alignment. Flows are then pumped again across 16 Mile Creek to the new RR25/Boyne Trunk Sewer. Flows generated south of Britannia Rd in Milton will be pumped north to the Britannia Trunk Sewer via a new WWPS on Lower Baseline and Fourth Line. Flows from the Halton Hills 401 Corridor are split with the area west of Sixth Line conveyed west to the existing Fourth Line trunk sewer in Milton, and the area east of Sixth Line conveyed south to the new Trafalgar Road trunk sewer. Flows from the southwest Milton drainage area are conveyed south on Tremaine Rd to a new WWPS, pumped east to Lower Baseline, then flow on Lower Baseline to the RR25/Boyne trunk sewer. New growth flows are conveyed to and treated at the Mid Halton WWTP.

Nine (9) alternatives (3A–I) were developed within Concept 3, with Concept 3A being the main baseline Alternative within the Concept. The eight other alternatives are slight variations to the overall concept whose main component is sending flows to the south then west via Burnhamthorpe Rd in North Oakville. The other alternatives maintain a similar overall servicing strategy as Concept 3A, but strategically incorporate diversions of flows from existing and future trunk sewers and WWPSs to different catchment areas.
These variations to Concept 3A include sending Georgetown and Halton Hills 401 Corridor flows to the new RR25/Boyne Trunk Sewer via Fourth Line or Derry Road in Milton or via Burnhamthorpe Road, Hwy 407, Neyagawa Boulevard or Trafalgar Road in North Oakville.

Concept 3A was chosen as the preferred Alternative from Concept 3. It provided the most efficient and cost effective servicing solution, while limiting the strain on existing infrastructure and facilitating phasing of new projects.

Concept 4

Concept 4 is based on conveying flows from new growth areas in Georgetown Southwest to the Region of Peel via a new trunk sewer draining to the east. Flows from East Milton will be conveyed south in a similar fashion as in Concept 1, while flows from Georgetown are sent east via a new trunk sewer on Winston Churchill Blvd and treated at the Clarkson WWTP. Flows from the Halton Hills 401 Corridor are split with the area west of Sixth Line conveyed west to the existing Fourth Line trunk sewer in Milton, and the area east of Sixth Line conveyed south to the new Trafalgar Road trunk sewer. Flows from the southwest Milton drainage area are conveyed south on Tremaine Rd to a new WWPS, pumped east to Lower Baseline, then flow on Lower Baseline to the new RR25/Boyne trunk sewer. Milton and some Halton Hills 401 Corridor growth flows are conveyed to and treated at the Mid Halton WWTP.

Five (5) alternatives (4A-E) were developed within Concept 4, with Concept 4A being the main baseline Alternative within the Concept. The four other alternatives are slight variations to the overall concept whose main component is sending Georgetown flows east to the Peel Region Wastewater System and sending flows from east and south Milton to the new RR25/Boyne Trunk via the Britannia/James Snow Pkwy WWPS and Lower Baseline WWPS. The other alternatives maintain a similar overall servicing strategy as Concept 4A, but strategically incorporate diversions of flows from certain existing and proposed trunk sewers and WWPSs to alternate catchment areas.

These variations to Concept 4A include sending Halton Hills 401 Corridor flows to the RR25/Boyne Trunk Sewer via Derry Road in Milton, decommissioning BPII WWPS, decommissioning Britannia/James Snow WWPS or decommissioning both BPII WWPS and Britannia/James Snow Pkwy WWPS.

Concept 4A was chosen as the preferred Alternative from Concept 4. It provided the most efficient and cost effective servicing solution, while limiting the strain on existing infrastructure and facilitating phasing of new projects.

The evaluation for the preferred servicing concept is described in Table 42 and the preferred concept is depicted in Figure 27.

12.5.2 Strategies

Following the conceptual servicing analysis, a strategy analysis was carried out in order to translate the preferred concept into actual infrastructure projects. The preferred servicing strategy for the South Halton Wastewater System is integrated with the strategies developed for Milton and Georgetown. Within the South Halton service area, there were no Schedule "B" projects however, all capital program projects consisted of linear upgrades triggered by intensification and other projected growth within 2031.

The recommended wastewater servicing strategy for South Halton is described below.

North Oakville (East Growth Area) Wastewater Servicing

- The North Oakville (East Growth Areas) are generally located east of Sixteen Mile Creek, North of Dundas Street, South of Hwy 407 and West of Ninth Line
• The wastewater servicing strategy for these lands is to convey wastewater flows south to Dundas Street trunk sewer and west to the Third Line trunk sewer which continues to convey flows to Mid-Halton WWTP

North Oakville (West Growth Area) Wastewater Servicing

• The North Oakville (West Growth Areas) are generally located west of Sixteen Mile Creek
• The wastewater servicing strategy for these lands is, for the eastern most section, to convey wastewater flows to the Third Line trunk sewer which continues to convey flows to Mid-Halton WWTP and, for the western most section, convey wastewater flows east along Dundas Street then south to existing sewers near Bronte Road ultimately to Mid-Halton WWTP

Burlington (Central) Wastewater Servicing

• The Burlington (Central Areas) include all areas in Burlington south of the Hwy 407 and Dundas Street excluding the North Aldershot areas
• The wastewater servicing strategy for these lands is to convey wastewater flows to the Skyway WWTP. This is achieved primarily through gravity sewers with localized wastewater pumping stations

North Aldershot Wastewater Servicing

• The North Aldershot service areas include all areas in Burlington generally west of the QEW
• The wastewater servicing strategy for these lands is to convey wastewater flows to the Skyway WWTP. This is achieved primarily through gravity sewers with localized wastewater pumping stations. Isolated areas maintain private servicing

The decision-making process behind the development of the preferred servicing strategy for the South Halton Lake-Based Wastewater System is summarized in Table 42.

12.5.3 Individual Projects

The infrastructure projects identified in the South Halton service area, through the preferred water servicing strategy were related to upgrades of existing infrastructure. One project was identified as Schedule B and required a separate evaluation of alternative servicing options. This separate evaluation was carried out with the intent to satisfy Phases 1 and 2 of the Class EA requirements.

The individual project within the South Halton service area is as follows:

• Project No. 6541 – Deep trunk sewer on Rebecca Street and Lakeshore Road West from Wilson to Oakville Southwest WWTP
Wastewater 1A Lower Baseline - Trafalgar

Milton W – Convey flow south on Tremaine Rd, east on Lower Baseline to RR 25 trunk sewer

Milton E – Drain by gravity south on Trafalgar Rd to Britannia Rd, pump west crossing 16 Mile Creek, south to Lower Base Line and pump west to RR 25 trunk sewer

HH N – Convey flow by gravity south on new Trafalgar Rd trunk sewer, crossing Hwy 401 into Milton East

HH 401 – Area west of Sixth Line convey to existing Fourth Line trunk, area east of Sixth Line convey flow south to new Trafalgar Rd trunk sewer

Treatment – New growth flows conveyed to and treated at the Mid Halton WWTP
Table 42: South Halton Lake-Based Wastewater Servicing Decision Making Process

<table>
<thead>
<tr>
<th>Long List of water servicing concepts</th>
<th>High Level Evaluation & Screening</th>
<th>Preferred water servicing concepts from PIC#1</th>
<th>Summary of Triple Bottom Line Evaluation & Screening (including hydraulic modelling)</th>
<th>Preliminary Preferred Alternative Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept 1 - Expand 2021 Network (1A, 1B, 1C)</td>
<td>Positives</td>
<td>Negatives</td>
<td>Environmental</td>
<td>Social/Legal</td>
</tr>
<tr>
<td>• Provides Halton Hills Z5 redundancy</td>
<td>• Provides Halton Hills Z5 redundancy</td>
<td>• Requires extra Hwy 401 Crossing</td>
<td>Concept 1 A - Expand 2021 Network</td>
<td>Common Halton only infrastructure.</td>
</tr>
<tr>
<td>• Leverages existing infrastructure for full build-out</td>
<td>• Leverages existing infrastructure for full build-out</td>
<td>• One feed to Georgetown no supply redundancy</td>
<td>Georgetown & Milton East/HH 401 Corridor fed from Zone 4 Reservoir</td>
<td>Infrastructure alignments will maximize existing roads and minimize environmental impacts</td>
</tr>
<tr>
<td>• Greater flexibility for sizing and design to support strategy</td>
<td>• Greater flexibility for sizing and design to support strategy</td>
<td>• Halton only servicing concept</td>
<td>Preferred</td>
<td>Preferred</td>
</tr>
<tr>
<td>• Halton only servicing concept</td>
<td>• Halton only servicing concept</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept 2 – Third Spine (2A, 2B, 2C, 2D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Addresses potential full build-out needs</td>
<td>• New crossing through Greenbelt required</td>
<td>Concept 2 – Third Spine</td>
<td>Concept 2 – Third Spine (Screened Out - no further evaluation undertaken)</td>
<td></td>
</tr>
<tr>
<td>• Potential to create further redundancy in Burlington/Oakville system</td>
<td>• Overly redundant (not needed to service 2031 growth)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Independent feed to Milton (not reliant on Kitchen PS & RR25 and Trafalgar spines)</td>
<td>• Does not maximize existing infrastructure (new pumping stations required)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Halton only servicing concept</td>
<td>• One feed to Georgetown no supply redundancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept 3 – Inter-Regional (3A, 3B, 3C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Existing Peel infrastructure in close proximity to Halton service areas</td>
<td>• Fundamentals of agreement needs to be established</td>
<td>Concept 3 A – Peel Inter-Regional</td>
<td>Common Halton only infrastructure.</td>
<td>Requires coordination and agreement with Peel</td>
</tr>
<tr>
<td>• Potential to provide early phasing strategy</td>
<td>• Confirmation of available Peel capacity and trunk system impacts need to be confirmed</td>
<td>Inter-regional Peel Supply to Zone 5</td>
<td>Triggers Peel infrastructure with environmental mitigation requirements</td>
<td>Neutral</td>
</tr>
<tr>
<td>• More direct feed to Georgetown</td>
<td>• Need to enter into inter-regional cost sharing supply agreement</td>
<td>Least Preferred</td>
<td>Least Preferred</td>
<td>Neutral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Potential to defer Burloak WPP expansion</td>
<td></td>
<td>Concept 3B – Peel Inter-Regional</td>
<td>Common Halton only infrastructure.</td>
<td>Requires coordination and agreement with Peel</td>
</tr>
<tr>
<td>• Existing Oakville system can support greater Oakville Plant Capacity (achieved through optimization at existing site)</td>
<td>• Existing Oakville system can support greater Oakville Plant Capacity (achieved through optimization at existing site)</td>
<td>Inter-regional Peel Supply to Zone 6</td>
<td>Triggers less Peel infrastructure with environmental mitigation requirements</td>
<td>Neutral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes: Zone 6 Peel interconnection has been carried forward under preliminary preferred alternative 1A as an emergency supply to Georgetown.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>