APPENDIX F

GEOTECHNICAL INVESTIGATION

205 Nebo Road, Unit 3 Hamilton, Ontario Canada L8W 2E1

Phone: 905-383-3733 Fax: 905-383-8433 engineering@landteklimited.com www.landteklimited.com

Geotechnical Investigation for Class Environmental Assessment Study Ninth Line Transportation Corridor Improvements, Highway 407 to 10 Side Road **Region of Halton**

Prepared for:

Urban and Environmental Management Inc.

5100 Orbitor Drive, Suite 300 Mississauga, Ontario L4W 4Z4

> File: 14057 August 24, 2015

File: 14057

Page i

Landtek Limited is pleased to submit the geotechnical investigation report for the proposed road widening of Ninth Line (Regional Road 13) from Steeles Avenue to 10 Side Road (Regional Road 10) from two to four lanes, in the Town of Halton Hills.

EXECUTIVE SUMMARY

SITE CONDITIONS

The limits of the study site location are shown in Figure 1. The study section of Ninth Line (Regional Road 13) has a two-lane asphalt surfaced rural cross-section with narrow granular shoulders. There are ditches on both sides of the road and no sidewalks. The posted speed limit is 80 km/hr and there is predominantly farm land along the study area with some residential pockets.

Geology map data^[1] indicates that Ninth Line is in an area of clay to silt textured soil of the Halton formation overlying Queenston shale. The borehole information is consistent with the background geology data and indicates that the predominant native subgrade soil is silt till overlying shale bedrock.

MANAGEMENT OF EXCAVATED EXCESS MATERIALS

Analyses for metals and inorganic parameters were carried out on composite subgrade samples from all the boreholes and the results are provided in Appendix D. The samples were tested in relation to MOE Table 1 Full Depth Background Site Conditions and the MOE Table 3 soil quality standards and compared to both the Residential/Parkland/Institutional property use and the Industrial/Commercial/Community criteria given in the MOE document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011. The results are summarized in Table 2.

When compared to the MOE Table 3 Industrial/Commercial/Community Land Use Standards, the parameters of the soils tested met all soil quality standards. Elevated results for Electrical Conductivity (EC) and Sodium Absorption Ratio (SAR) occurred in boreholes 1, 5, 9, 10, 11, and 12 when compared to the MOE Table 1-Full Depth Background Site Condition Standards and the MOE Table 3 Residential/Parkland/Institutional Land Use Standards.

PAVEMENT AND BIKE LANE CONSIDERATIONS

Future road improvements are expected to include both rehabilitation and upgrading of existing asphalt pavement and transition areas, and new asphalt pavement construction for lane widening and bicycle lanes. The asphalt on Ninth Line generally has a substantial thickness that typically ranges from 75 mm to 300 mm and likely reflects past resurfacing practices. As well, crack sealing maintenance practices have been kept up to date such that the current road surface is in good condition without immediate need for major repairs and/or resurfacing. Section 5.0 provides recommendations to address new pavement construction, bike lane construction, and future resurfacing.

File: 14057

TABLE OF CONTENTS

	SECTION	Р	AGE (S)				
1.0	INTRODUCT	TON	,, 1				
2.0	METHODOL	OGY	2				
3.0 3.1 3.2 3.3	2.0 METHODOLOGY 3.0 SITE CONDITIONS AND SUBSURFACE CONDITIONS FIGURE 1 – KEY PLAN OF STUDY SITE 3.1 TRAFFIC VOLUMES 3.2 PAVEMENT STRUCTURE CONDITIONS TABLE 1- SUMMARY OF BOREHOLE CONDITIONS 3.3 SUBGRADE CONDITIONS 4.0 MANAGEMENT OF EXCAVATED EXCESS MATERIALS TABLE 2- SUMMARY OF ANALYTICAL TEST DATA 5.0 PAVEMENT AND BIKE LANE CONSIDERATIONS 5.1 NEW PAVEMENT CONSTRUCTION TABLE 3- PAVEMENT STRUCTURE DESIGN RECOMMENDATIONS 5.2 RECLAMATION AND REUSE OF EXISTING PAVEMENT MATERIALS 5.3 SUBGRADE PREPERATION 5.4 EXISTING PAVEMENT REHABILITATION 5.5 BASE REPAIRS AND SHOULDER BIKE LANE CONSTRUCTION FIGURE 2- HALF ROAD SECTION SHOWING BASE REPAIR TREATMENT						
4.0 5.0 5.1 5.2 5.3 5.4 5.5	TABLE 1- SUMMARY OF BOREHOLE CONDITIONS 3.3 SUBGRADE CONDITIONS 4.0 MANAGEMENT OF EXCAVATED EXCESS MATERIALS TABLE 2- SUMMARY OF ANALYTICAL TEST DATA 5.0 PAVEMENT AND BIKE LANE CONSIDERATIONS 5.1 NEW PAVEMENT CONSTRUCTION TABLE 3- PAVEMENT STRUCTURE DESIGN RECOMMENDATIONS 5.2 RECLAMATION AND REUSE OF EXISTING PAVEMENT MATERIALS 5.3 SUBGRADE PREPERATION 5.4 EXISTING PAVEMENT REHABILITATION 5.5 BASE REPAIRS AND SHOULDER BIKE LANE CONSTRUCTION FIGURE 2- HALF ROAD SECTION SHOWING BASE REPAIR TREATMENT						
6.0	CLOSURE .		12				
REF	ERENCES		13				
	ENDIX A ENDIX B	LIMITATIONS OF REPORT SYMBOLS AND TERMS USED IN THE REPORT CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES					
APP	ENDIX C	DRAWINGS – BOREHOLE LOCATION PLANS LOGS OF BOREHOLES					
	ENDIX D ENDIX E	RESULTS OF ANALYICAL TESTING BY AGAT LABORATORIES PHOTOGRAPHS OF TYPICAL SITE CONDITIONS	LTD.				

1.0 INTRODUCTION

Landtek Limited is pleased to submit the geotechnical investigation report for the proposed road widening of Ninth Line (Regional Road 13) from Steeles Avenue to 10 Side Road (Regional Road 10) from two to four lanes, in the Town of Halton Hills. The work was carried out under engineering agreement with Urban & Environmental Management Inc. in accordance with the Landtek proposal P13210 dated November 28, 2013.

The geotechnical investigation is part of the "Ninth Line Transportation Corridor Class EA [Environmental Assessment] Study" that consists of a 7.5 km long section of road improvements to Ninth Line between Steeles Avenue and 10 Side Road.

The primary objectives of the investigation were: (1) determine the existing pavement structure, shoulder, and subgrade soil conditions to be encountered during the road improvements; and, (2) assess options to address the pavement conditions and provide recommendations for construction.

Page 1

2.0 METHODOLOGY

Fieldwork was carried out in May of 2015. A visual survey of the road section conditions was completed by Landtek and the borehole locations were marked out in the field. Following the clearance of utilities the borehole drilling was completed on May 28 and 29, 2015 under the full time supervision of a Landtek representative using a truck mounted CME continuous flight power auger soil drilling rig. A total of fifteen (15) boreholes were drilled on the paved potion of the road and on the shoulder to a depth of approximately 3.5 m. Standard Penetration Tests (SPT) and split spoon samples were taken in each borehole at selected depths. The borehole locations are shown on drawings 1 to 6, inclusive, and are provided with the borehole logs in Appendix C.

The borehole soil samples were transported to Landtek Limited and visually examined in the laboratory to determine their textural classification. Moisture contents were determined for each soil sample and density determinations were completed on selected samples.

Composite soil subgrade samples from each of the fifteen boreholes were submitted to AGAT Laboratories Ltd. to assess the concentrations of metals and inorganic parameters. The AGAT test results are provided in Appendix D.

Page 2

3.0 SITE AND SUBSURFACE CONDITIONS

The limits of the study site location are shown in Figure 1. The study section of Ninth Line (Regional Road 13) has a two-lane asphalt surfaced rural cross-section with narrow granular shoulders. There are ditches on both sides of the road and no sidewalks. The posted speed limit is 80 km/hr and there is predominantly farm land along the study area with some residential pockets.

Photographs of typical site conditions are presented in Appendix E. Table 1 summarizes the borehole data and presents the pavement structure and road widening area conditions on Ninth Line (Regional Road 13).

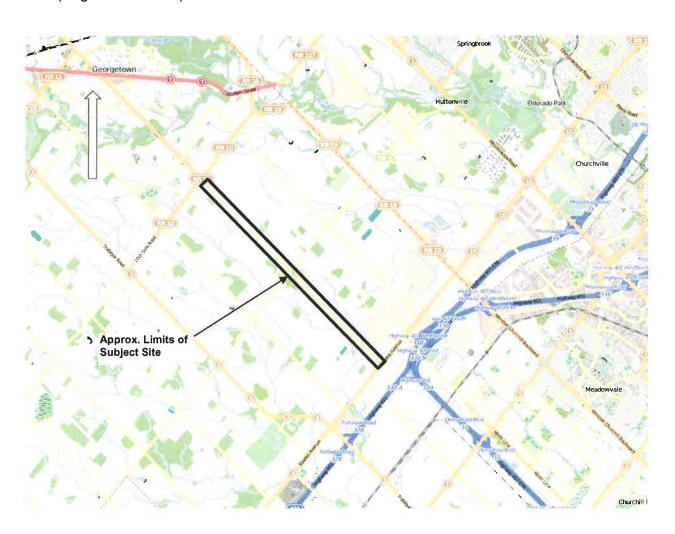


FIGURE 1 - KEY PLAN OF STUDY SITE LOCATION

Page 3 File: 14057

3.1 TRAFFIC VOLUMES

The average annual daily traffic (AADT) provided for this section of road is 5,500 vehicles per day and two-way traffic volumes during peak hour is 1,200 vehicles per hour. Ninth Line traffic volumes are forecasted to increase to 2,600 vehicles per hour by 2031 exceeding the capacity of the current two lanes.

3.2 PAVEMENT STRUCTURE CONDITIONS

The overall pavement condition across the study area is good with no indication of significant pavement structural deficiencies such as wheelpath rutting or distortion, or fatigue related alligator and map cracking. However, there is some transverse cracking, edge cracking and longitudinal joint cracking.

Boreholes 1, 2, 3, 5, 7, 9, 12, and 14 were drilled through the existing pavement. The asphalt thickness ranges from 75 mm to 300 mm and the granular base thickness is variable between 75 mm and 300 mm with the majority of the thickness measurements being in excess of 175 mm.

TABLE 1 - SUMMARY BOREHOLE CONDITIONS

BOREHOLE NUMBER (see Note 1)	BITUMINOUS THICKNESS (mm)	GRANULAR BASE THICKNESS (mm)	TOPSOIL or ORGANIC SOIL THICKNESS (mm)	SUBGRADE CONDITIONS
1	75	175		FILL to 1.4 m depth, over compact silt till to EOH @ 3.5 m
2	125	175		FILL to 1.4 m depth, over a compact to dense silt till to EOH @ 3.5 m
3	75	300		FILL to 1.4 m depth, over a compact to very dense silt till to 2.2 m, over shale to EOH @ 3.5 m
4*		.20	75	FILL to 1.4 m depth, over compact silt till to EOH @ 3.5 m
5	300	75		FILL to 1.4 m depth, over dense to very dense silt till to EOH @ 3.5 m
6*			200	FILL to 2.0 m depth, over loose silt till to 2.8 m, over compact sand to EOH @ 3.5 m
7	75	300	*	FILL to 1.4 m depth, over compact to dense silt till to EOH @ 3.5 m
8*			200	Compact silt till to 2.5 m, over silty sand to EOH @ 3.5 m
9	250	150	• 1	Compact silt till to EOH @ 3.5 m
10*			150	Loose to compact silt till to 2.8 m, over dense silty sand to EOH @ 3.5 m
11*			350	FILL to 1.4 m depth, over compact silt till to 2.8 m over compact silty sand to EOH @ 3.5 m
12	200	200		FILL to 0.9 m depth, over compact silt till to 2.2 m over dense to very dense silty sand to EOH @ 3.5 m
13*		300	7	Compact to very dense silt till to EOH @ 3.5 m.
14	250	250	4	FILL to 2.0 m depth, over compact to very dense silt till to EOH @ 3.5 m
15*			200	Compact to very dense silt till to EOH @ 3.5 m

Notes

Boreholes with an "*" after the number were drilled on the opposite side of the ditch from the road. Borehole 13 was drilled on the opposite side of the ditch (culvert) from the road in a gravel driveway. All other boreholes were drilled on the paved portion of the road.

Page 4

3.3 SUBGRADE CONDITIONS

Geology map data^[1] indicates that Ninth Line is in an area of clay to silt textured soil of the Halton formation overlying Queenston shale. The borehole information is consistent with the background geology data and indicates that the predominant native subgrade soil is silt till overlying shale bedrock.

Boreholes 4, 6, 8, 10, 11, and 15 were drilled on the opposite side of the ditch from Ninth Line in the grass. A layer of organic soil/topsoil was encountered at the surface of these boreholes ranging in thickness from 75 mm to 350 mm. Borehole 13 was also drilled on the opposite side of the ditch, just beyond the culvert, in an existing gravel driveway/lane way. Approximately 300 mm of granular material was encountered at the surface of borehole 13.

Fill

Underlying the pavement or organic soils, fill was encountered in boreholes 1 to 7, 11, 12, and 14 to depths ranging from 0.9 m to 2.0 m. The fill was generally firm and consisted of a mixture of clayey silt with some gravel and organics.

Silt Till

Underlying the fill (boreholes 1 to 7, 11, 12, and 14), organic soils (boreholes 8, 10, and 15), pavement (boreholes 9), or granular (borehole 13), a layer of loose to very dense brown silt till was encountered to a depth ranging from 2.2 m to the final depth investigated (3.5 m). Typical SPT values of 8 to 86 blows for 300 mm penetration of the sampler, and 50 blows per 100 mm penetration of the sampler, were recorded and moisture contents ranged from 9 to 20 percent.

Sand and Silty Sand

A brown silty sand layer was encountered under the silt till deposit to the final depth investigated (3.5 m) in boreholes 8, 10, 11, and 12 and a brown sand layer was encountered in borehole 6 under the silt till deposit to the final depth investigated (3.5 m). SPT values of 13 to 52 blows for 300 mm penetration of the sampler were recorded and moisture contents ranged from 8 to 17 percent.

Shale

Shale was encounter in borehole 4 at a depth of 2.2 m and extended to the termination depth of 3.5 m.

Page 5

4.0 MANAGEMENT OF EXCAVATED EXCESS MATERIALS

Analyses for metals and inorganic parameters were carried out on composite subgrade samples from all the boreholes and the results are provided in Appendix D. The samples were tested in relation to MOE Table 1 Full Depth Background Site Conditions and the MOE Table 3 soil quality standards and compared to both the Residential/Parkland/Institutional property use and the Industrial/Commercial/Community criteria given in the MOE document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011. The results are summarized in Table 2.

When compared to the MOE Table 3 Industrial/Commercial/Community Land Use Standards, the parameters of the soils tested met all soil quality standards. Elevated results for Electrical Conductivity (EC) and Sodium Absorption Ratio (SAR) occurred in boreholes 1, 5, 9, 10, 11, and 12 when compared to the MOE Table 1-Full Depth Background Site Condition Standards and the MOE Table 3 Residential/Parkland/Institutional Land Use Standards.

TABLE 2 - SUMMARY OF ANALYTICAL TEST DATA

SAMPLE IDENTIFICATION	Full Depth B	on to Table 1 - Background Site on Standards	RESIDENTIAL/PARK	on to Table 3 (LAND/INSTITUTIONAL e Standards groundwater situation	Comparison to Table 3 INDUSTRIAL/COMMERCIAL/COMMUNITY Land Use Standards for a non-potable groundwater situation				
	Meets Criteria	Does Not Meet Criteria	Meets Criteria	Does Not Meet Criteria	Meets Criteria	Does Not Meet Criteria			
Borehole 1		EC	$\sqrt{}$		$\sqrt{}$				
Borehole 2			$\sqrt{}$						
Borehole 3	$\sqrt{}$		$\sqrt{}$						
Borehole 4	$\sqrt{}$				$\sqrt{}$				
Borehole 5		EC, SAR		SAR	$\sqrt{}$				
Borehole 6	Borehole 6		$\sqrt{}$		$\sqrt{}$				
Borehole 7	$\sqrt{}$				$\sqrt{}$				
Borehole 8	$\sqrt{}$		$\sqrt{}$						
Borehole 9		EC, SAR		EC, SAR					
Borehole 10		SAR			$\sqrt{}$				
Borehole 11		SAR	$\sqrt{}$		$\sqrt{}$				
Borehole 12		EC, SAR		SAR	$\sqrt{}$				
Borehole 13			$\sqrt{}$						
Borehole 14		EC, SAR		EC, SAR	$\sqrt{}$				
Borehole 15					$\sqrt{}$				

Page 6

Page 7 File: 14057

The elevated EC results are considered to be related to the historical use of road salts for winter de-icing operations and do not present an adverse health risk. Some variability in soil quality parameters may occur within a given sample as well as along the length of a road section. During the course of excavation and mixing of materials the EC and/or SAR parameters may not be an issue. Ontario Regulation 153 indicates that elevated residual road salt parameters in soils within the road allowance that result from winter salting that was placed to address safety issues are not regarded as an environmental problem that requires remediation.

5.0 PAVEMENT AND BIKE LANE CONSIDERATIONS

Future road improvements are expected to include both rehabilitation and upgrading of existing asphalt pavement and transition areas, and new asphalt pavement construction for lane widening and bicycle lanes. The asphalt on Ninth Line generally has a substantial thickness that typically ranges from 75 mm to 300 mm and likely reflects past resurfacing practices. As well, crack sealing maintenance practices have been kept up to date such that the current road surface is in good condition without immediate need for major repairs and/or resurfacing. The following sections therefore provide recommendations to address new pavement construction, bike lane construction, and future resurfacing.

5.1 NEW PAVEMENT CONSTRUCTION

The existing roadway accommodates cars as well as heavy commercial truck traffic and it is anticipated that new pavement construction will incorporate a flexible asphalt on granular structure that is consistent with the existing pavement structure. Traffic information provided to Landtek indicates that for the majority of the study section of Ninth Line the total two lane AADT (Average Annual Daily Traffic) is about 5,500 vehicles per day. The percent of commercial truck traffic was not provided however a recommended design value of about 8 % is assumed. A recommended pavement structure design was developed based on using The Asphalt Institute^[2] methodology for a 20-year design life and the following data:

Percent commercial truck/bus traffic	8.0 %
Estimated AADT (both ways)	5,500
Design traffic split	50/50
Average yearly growth rate in design period	2.5 %
Average subgrade support resilient modulus	35 MPa

The total accumulated 80 kN Equivalent Single Axle Loads (ESAL's) in the 20-year design period for the design lane is to be confirmed. The total pavement structure thickness should be at least one-half the anticipated maximum depth of freezing.

Hot Mix Asphalt

The binder course asphalt should meet current Region of Halton specifications for Heavy Duty Binder Course (HDBC) or HL8 HS. HDBC hot mix asphalt identified in OPSS 1150, Table 1 is a binder course intended for use in locations where rutting and deformation is likely to occur due to frequent heavy traffic loading. The surface course asphalt should meet OPSS specifications for HL3 HS material and have a minimum compacted thickness of 50 mm.

Asphalt cement should conform to OPSS 1101 specifications for Performance Graded asphalt cement binder. All hot mix asphalt should incorporate PG 58-28 grade asphalt cement binder as a minimum requirement. Given that the road is used for commercial truck traffic it is recommended that the grade of asphalt cement be upgraded to PG 64-28 (one level higher than required for the Ontario climate zone) for both the top asphalt and the binder course asphalt.

Page 8

TABLE 3 - PAVEMENT STRUCTURE DESIGN RECOMMENDATIONS

PAVEMENT LAYER	RECOMMENDED PAVEMENT DESIGN
ASPHALT	50 mm HL 3 HS
	100 mm HDBC (two 50 mm lifts)
GRANULAR BASE	150 mm OPSS Granular A
GRANULAR SUBBASE	350 mm OPSS Granular B, Type II
TOTAL THICKNESS (GBE)	650 mm (800)

Note 1: Best paving practice is to specify the compacted lift thickness to be at least 3 times the nominal maximum aggregate size (NMAS) of the mix. For HL 3 HS the NMAS is typically 13.2 mm such that the compacted lift thickness should be at least 39.6 mm to minimize segregation, broken aggregate and other placement problems.

Granular Basecourse and Subbase

The granular base course materials should meet OPSS Granular A specifications. Quarried 20 mm limestone, crushed to Granular "A" gradation specifications, is recommended. The granular subbase material should meet OPSS Granular "B" Type II specifications. OPSS Type II subbase material is assumed in the design and consists of 100 percent crushed aggregate from a quarried rock source. Quarried 50 mm crusher-run limestone, processed to Granular "B" gradation specifications, is recommended.

Compaction

Granular base course and subbase course fill material should be compacted to 100 percent Standard Proctor Density. Hot mix asphalt should be compacted to the criteria set out in the Region's paving specifications, which requires a minimum of 91 to 92 percent of the Marshall Maximum Relative Density (MRD) depending on mix type.

5.2 RECLAMATION AND REUSE OF EXISTING PAVEMENT MATERIALS

The existing bituminous material and granular can be considered for on-site reclamation and reuse in the new pavement using in-place pulverization methods however because of the substantial asphalt layer thicknesses it may not be practical and cost-effective since the depth of the pulverization should be at least two and half times the asphalt thickness to avoid high proportions of asphalt coated particles in the reclaimed granular.

The gradation quality of the recovered pulverized material is expected to be quite variable and the gradation of the reclaimed material is expected to not consistently meet OPSS Granular B Type I gradation limits. For this reason the reclaimed granular should be restricted to the lower half of the subbase layer in the new pavement. If the intention is to pulverize and reclaim the granular and bituminous material for reuse it is advisable to investigate the in-situ materials more thoroughly by means of test pits.

Page 9

5.3 SUBGRADE PREPARATION

The subgrade soil conditions are expected to be variable along the road section consequently from time to time it may be necessary to complete subgrade repairs by excavating poor quality soils and placing structural fill. Subgrade repair areas should be compacted to a target density of 97 % of the Standard Proctor Maximum Dry Density.

It is recommended that prior to the placement of pavement granular fill, the exposed subgrade soil should be observed and proof-rolled using a loaded tandem axle truck to traverse the exposed subgrade and provide for full coverage. The proof-rolling should be monitored by a geotechnical representative of this office to delineate any soft areas, which may require repair. Repairs should be undertaken to avoid creating "bathtub" conditions in the subgrade within the pavement structure.

5.4 EXISTING PAVEMENT REHABILITATION

There is no evidence that the existing pavement structure of Ninth Line has been structurally deficient to date and therefore it is expected that future rehabilitation can focus on road surface improvements. road realignment, grade changes, and/or geometric changes may dictate that other types of more extensive rehabilitation methodologies be examined. The potential rehabilitation options are as follows:

- Option 1 Partial depth cold milling with new hot mix asphalt resurfacing.
- Option 2 In-place full depth pulverization and recycling of the bituminous layer and granular (OPSS 330) plus new asphalt resurfacing.

Option 1, partial depth milling with hot mix asphalt resurfacing, is the most straight forward rehabilitation option and should fit the needs for Ninth Line over the next 10 to 20 years. This option has a relatively low impact on traffic flow, and enables an acceptable grade height and road crossfall to be maintained.

Options 2 uses road re-profiling and reclaiming equipment to recycle existing pavement materials and minimize off-site removals.

For preliminary design purposes to address pavement rehabilitation over the next 10 to 20 years the following option is recommended as follows:

Partial depth cold milling with new hot mix asphalt paving.

- Complete Cold Milling to a depth of at least ±60 mm; milling depth may have to be adjusted and increased to meet surface grade access requirements at existing properties;
- 2. Carry out base repairs based on visual distress conditions in milled pavement;
- 3. Proceed with 60 mm of HL 8 HS (HDBC) binder course paving;
- 4. Complete surface paving with 50 mm of HL 3 HS hot mix asphalt;
- 5. Utilize PG 64-28 asphalt cement in both the binder course and surface course mixes;

Page 10

5.5 BASE REPAIRS AND SHOULDER BIKE LANE CONSTRUCTION

Ninth Line generally does not exhibit areas of distortion and severe cracking that require full depth base repairs. In the event that areas of distress occur or become evident after milling these areas should be repaired prior to pavement resurfacing. Full base repairs should be carried out and should be include excavation to a depth of 500 mm, or deeper if organic soils are encountered, and the placement and compaction of Granular A to 100 % SPMDD.

Wherever possible "bathtub" subgrade conditions should be avoided and the subgrade should be "daylighted" out to the ditch line. This may require additional shoulder excavation to achieve the optimum drainage conditions. Figure 2 below illustrates full depth base repairs to avoid bathtub subgrade conditions.

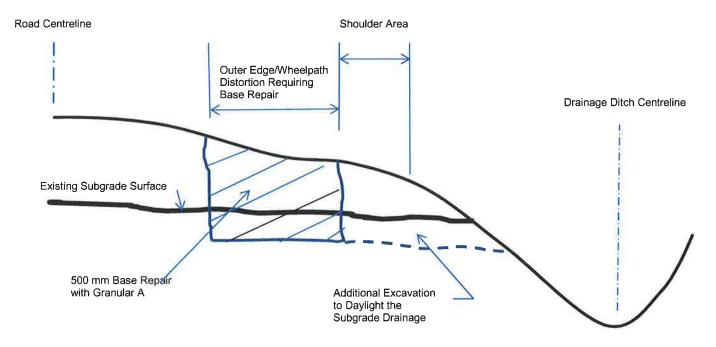


FIGURE 2 - HALF ROAD SECTION SHOWING BASE REPAIR TREATMENT (NTS)

Page 12 File: 14057

6.0 CLOSURE

The Limitations of Report, as stated in Appendix A, are an integral part of this report.

G. W. WUISMAN

Soil samples will be retained and stored by Landtek Limited for a period of three months after the report is issued. The samples will be disposed of at the end of the three month period unless a written request from the client to extend the storage period is received.

I trust this report will assist you with your project. Should you have any questions, please do not hesitate to contact our office.

Yours very truly,

Cory Zanatta, E.I.T.

LANDTEK LIMITED

Greg Wuisman, P.Eng.

REFERENCES

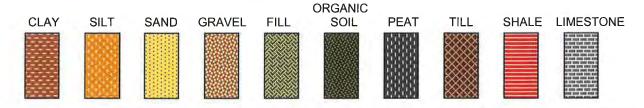
- [1] Quaternary Geology of the Niagara Area, Map P764, Ontario Division of Mines, Ministry of Natural Resources, 1972
- [2] <u>Thickness Design Asphalt Pavements for Highways and Streets.</u> The Asphalt Institute Manual Series No. 1

File: 14057

APPENDIX A LIMITATIONS OF REPORT

The conclusions and recommendations given in this report are based on information determined at the borehole locations. Subsurface and ground water conditions between and beyond the Boreholes may be different from those encountered at the borehole locations, and conditions may become apparent during construction that could not be detected or anticipated at the time of the geotechnical investigation. It is recommended practice that Landtek be retained during construction to confirm that the subsurface conditions throughout the site are consistent with the conditions encountered in the Boreholes.

The comments made in this report on potential construction problems and possible remedial methods are intended only for the guidance of the designer. The number of boreholes may not be sufficient to determine all the factors that may influence construction methods and costs. For example, the thickness and quality of surficial topsoil or fill layers may vary markedly and unpredictably. Contractors bidding on the project, or undertaking construction on the site should make their own interpretation of the factual borehole information, and establish their own conclusions as to how the subsurface conditions may affect their work.


The survey elevations in the report, if available, were obtained by Landtek Limited or others, and are strictly for use by Landtek in the preparation of the geotechnical report. The elevations should not be used by any other parties for any other purpose.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Landtek Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

This report does not reflect environmental issues or concerns related to the property unless otherwise stated in the report. The design recommendations given in the report are applicable only to the project described in the text and then only if constructed substantially in accordance with the details stated in this report. Since all details of the design may not be known, it is recommended that Landtek Limited be retained during the final design stage to verify that the design is consistent with the report recommendations, and that the assumptions made in the report are still valid.

APPENDIX B SYMBOLS AND TERMS USED IN THE REPORT

RELATIVE PROPORTIONS

<u>Term</u>	Range
Trace	0 - 5%
A Little	5 – 15%
Some	15 – 30%
With	30 – 50%

CLASSIFICATION BY PARTICLE SIZE

File: 14057

- 44
Boulder> > 200 mm
Cobble 200 mm – 80 mm
Gravel -
Graver -
Coarse 80 mm - 19 mm
Fine 19 mm – 4.75 mm
Sand -
Coarse 4.75 mm - 2 mm
Medium 2 mm – 0.425 mm
Fine 0.425 mm – 0.075mm
Silt 0.075 mm - 0.002 mm
Clay < 0.002 mm
•

DENSITY OF NON-COHESIVE SOILS

Descriptive Term	Relative Density	Standard Penetration Test
Very Loose	0 - 15%	0 – 4 Blows Per 300 mm Penetration
Loose	15 - 35%	4 – 10 Blows Per 300 mm Penetration
Compact	35 - 65%	10 – 30 Blows Per 300 mm Penetration
Dense	65 - 85%	30 – 50 Blows Per 300 mm Penetration
Very Dense	85 - 100%	Over 50 Blows Per 300 mm Penetration

CONSISTENCY OF COHESIVE SOILS

Descriptive Term	Undrained Shear Strength kPa (psf)	N Value Standard Penetration Test	Remarks
Very Soft	< 12 (< 250)	< 2	Can penetrate with fist
Soft	12 – 25 (250 – 500)	2 – 4	Can indent with fist
Firm	25 – 50 (500 –1000)	4 – 8	Can penetrate with thumb
Stiff	50 - 100 (1000 - 2000)	8 – 15	Can indent with thumb
Very Stiff	100 – 200 (2000 – 4000)	15 – 30	Can indent with thumb-nail
Hard	> 200 (> 4000)	> 30	Can indent with thumb-nail

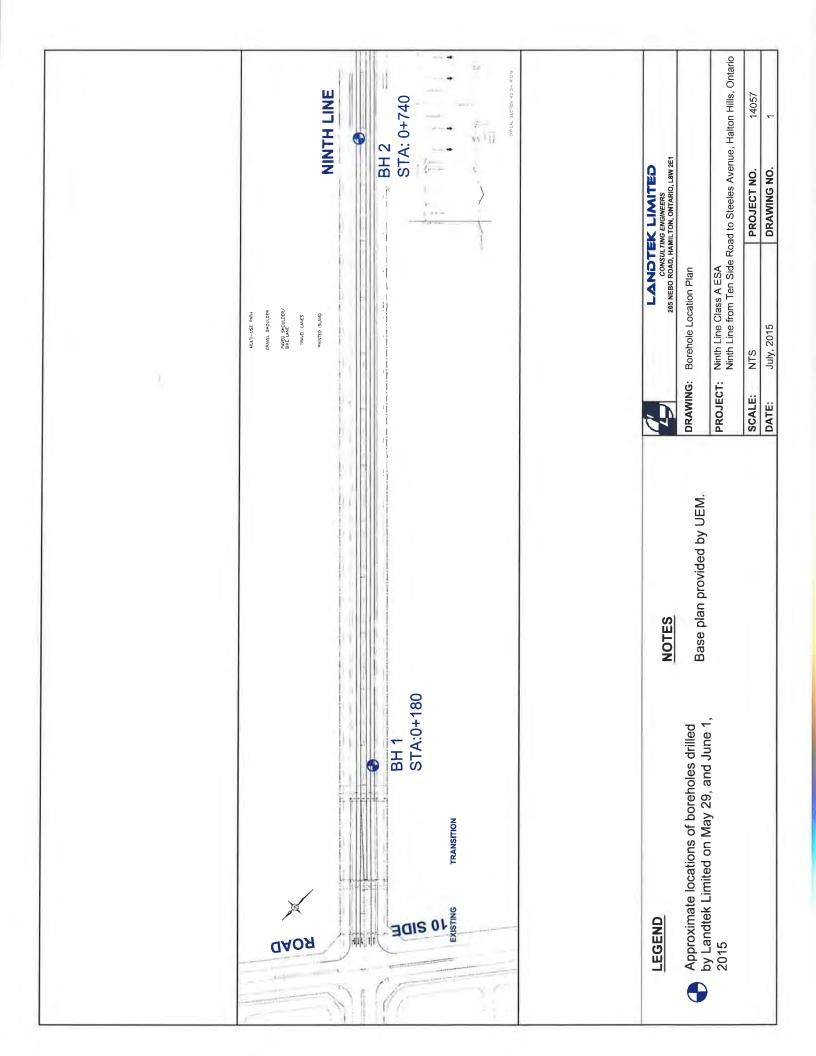
Notes: 1. Relative density determined by standard laboratory tests.

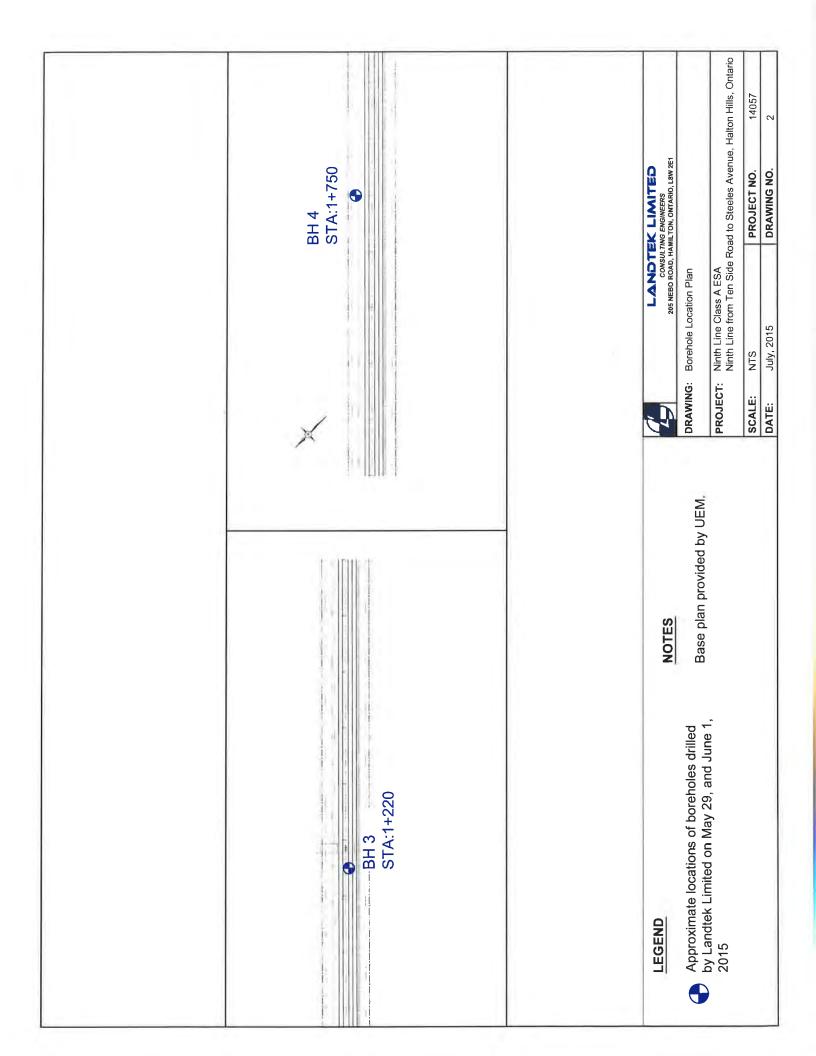
2. N value – blows/300 mm penetration of a 623 N (140 Lb.) hammer falling 760 mm (30 in.) on a 50 mm O.D. split spoon soil sampler. The split spoon sampler is driven 450 mm (18 in.) or 610 mm (24 in.). The "N" value is the Standard Penetration Test (SPT) value and is normally taken as the number of blows to advance the sampler the last 300 mm.

ENCLOSURE 2 CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES

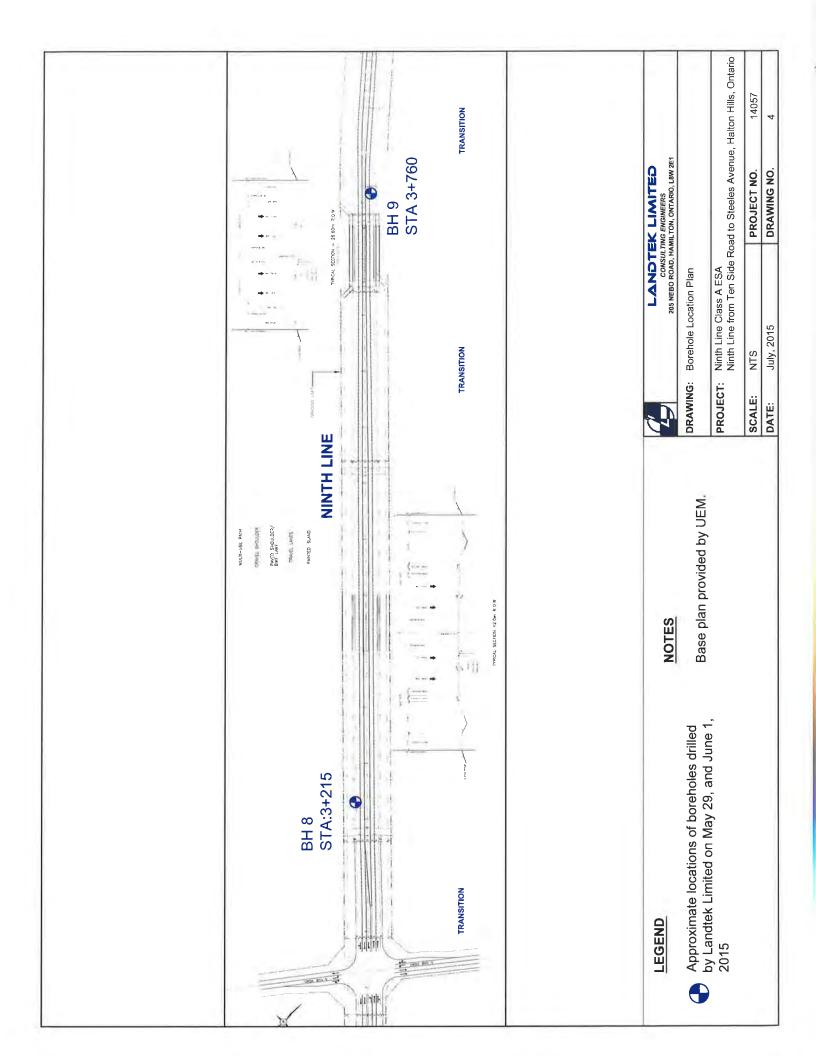
ASTM Designation: D 2487 - 69 AND D 2488 - 69 (Unified Soil Classification System)

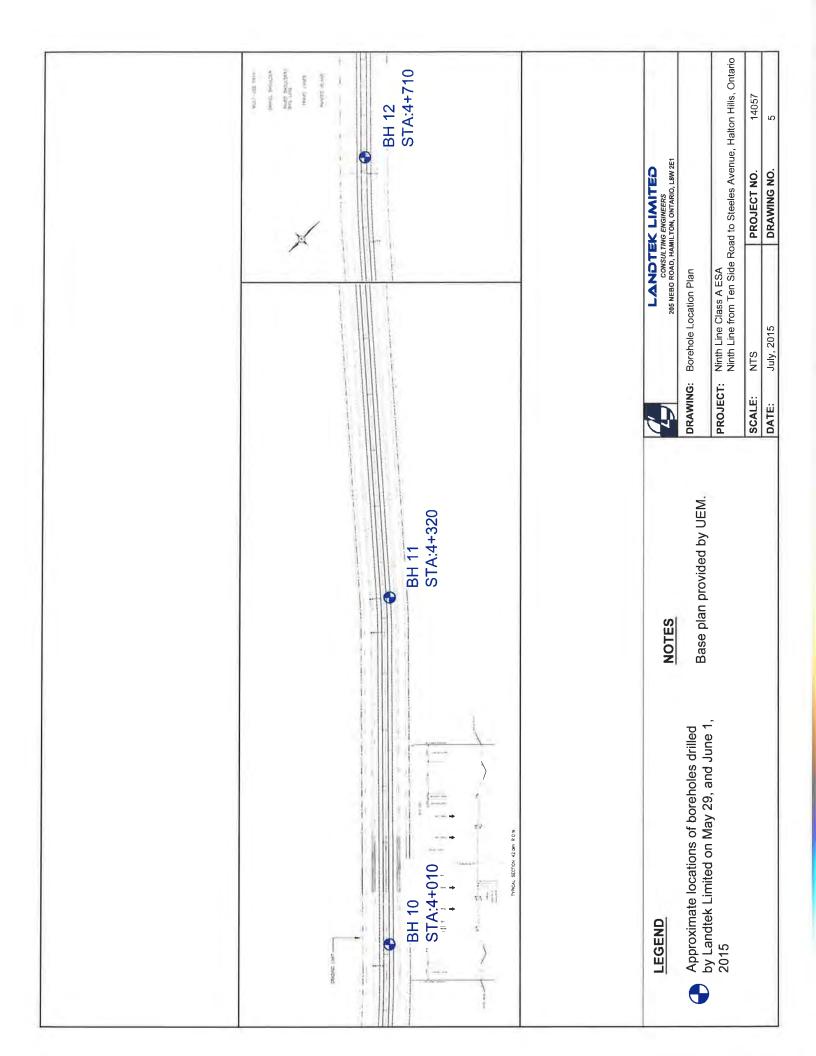
N	Major Divisio	ins	Group Symbols	Typical Names	Classification Criteria									
			GW	Well-graded gravels and gravel-sand mixtures, little or no fines		C_u =D60/D10 greater than 4; $C_z = (D30)^2/(D10xD60)$ between 1 and 3								
		Clean gravels	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines		Not meeting both criteria for GW								
	Gravels 50% or more of coarse		GM	Silty gravels, gravel- sand-silt mixtures		Atterberg limits below "A" line or P.I. less than 4	Atterberg limits plotting in hatched area are borderline classifications requiring use of dual symbols							
	fraction retained on No. 4 sieve	Gravels with fines	GC	Clayey gravels, gravel- sand-clay mixtures	Classification on basis of percentage of fines Less than 5% pass No. 200	Atterberg limits above "A" line with P.I. greater than 7								
			SW	Well-graded sands and gravelly sands, little or	C _u =D60/D10 grea									
		1		no fines	SP	$C_z = (D30)^2 / (D10)^2$	xD60) between 1 and 3							
Coarse- grained	Sands	Clean Sands	SP	Poorly graded sands and gravelly sands, little or no fines	More than 12% pass No. 200 sieve GM, GC, SM, SC	Not meeting both	criteria for SW							
soils More than 50%	More than 50% of coarse		SM	Silty sands, sand-silt mixtures	5 to 12% pass No.200 sieve .	Atterberg limits below "A" line or P.I. less than 4	Atterberg limits plotting in hatched area are borderline classifications requiring use of dual symbols							
retained on No. 200 sieve *	fraction passes No. 4 sieve	Sands with fines	SC	Clayey sands, sand-clay mixtures	Borderline classifications requiring use of dual symbols	Atterberg limits above "A" line with P.I. greater than 7								
			ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands			and fine fraction of coarse-							
			CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silts	grained soils. Atte borderline classific Equation of A-line:	rberg limits plotting i ations requiring use PI=0.73 (LL-20)	in hatched area are of dual symbols.							
	Silts and o Liquid limi less		OL	Organic silts and organic silts of low plasticity	50		СН							
			МН	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts	Plasticity 40 Index		OH and MH							
			СН	Inorganic clays of high plasticity, fat clays	10	CL								
Fine- grained soils	Silts and o Liquid limi than 50%	elays t greater	ОН	Organic clays of medium to high plasticity	10	20 30 4								
50% or more passes No. 200 sieve *	Highly organic soils		Pt	Peat, much and other highly organic soils	* Based on the mat	terial passing the 3 i	n. (76mm) sieve.							

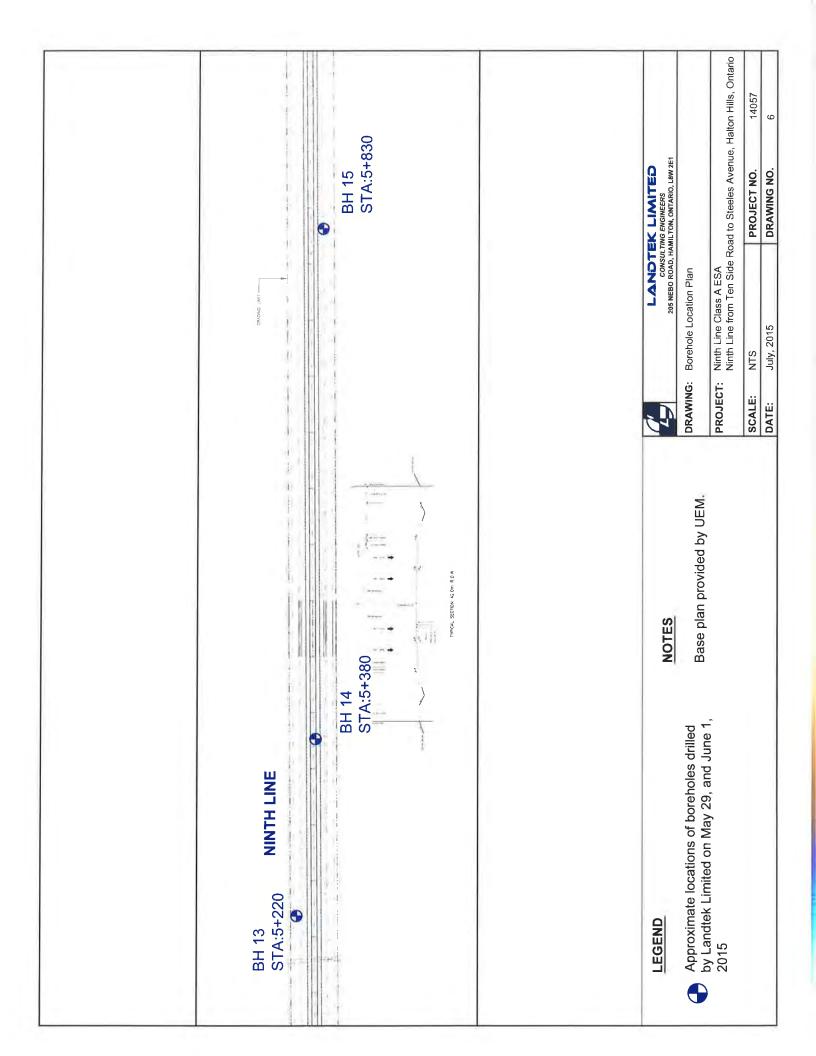


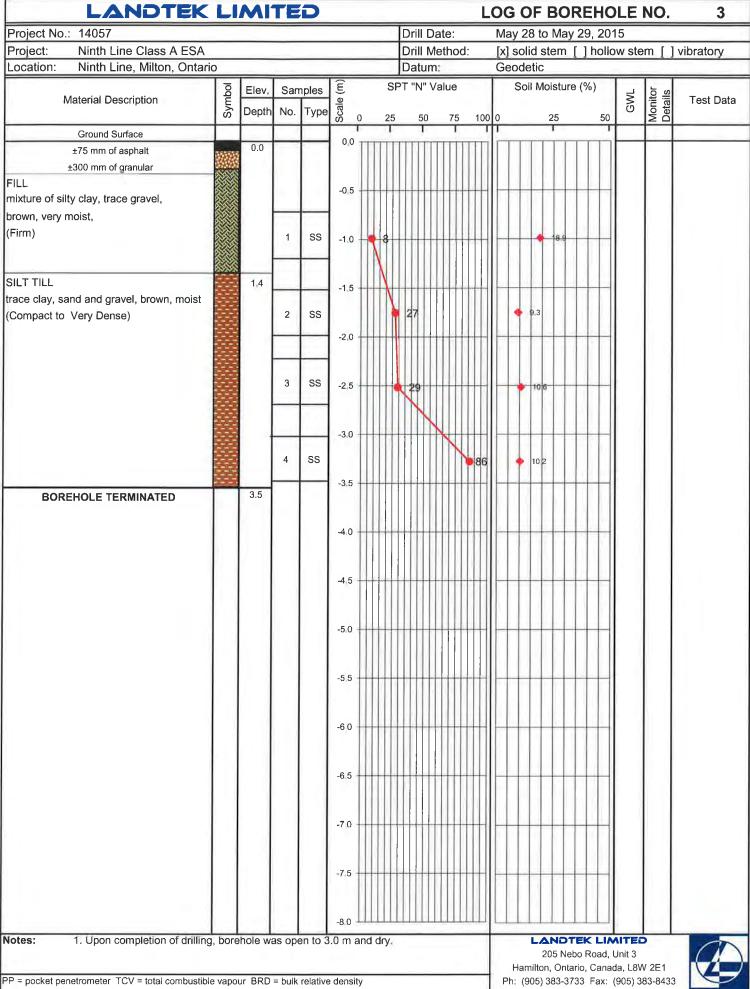

File: 14057

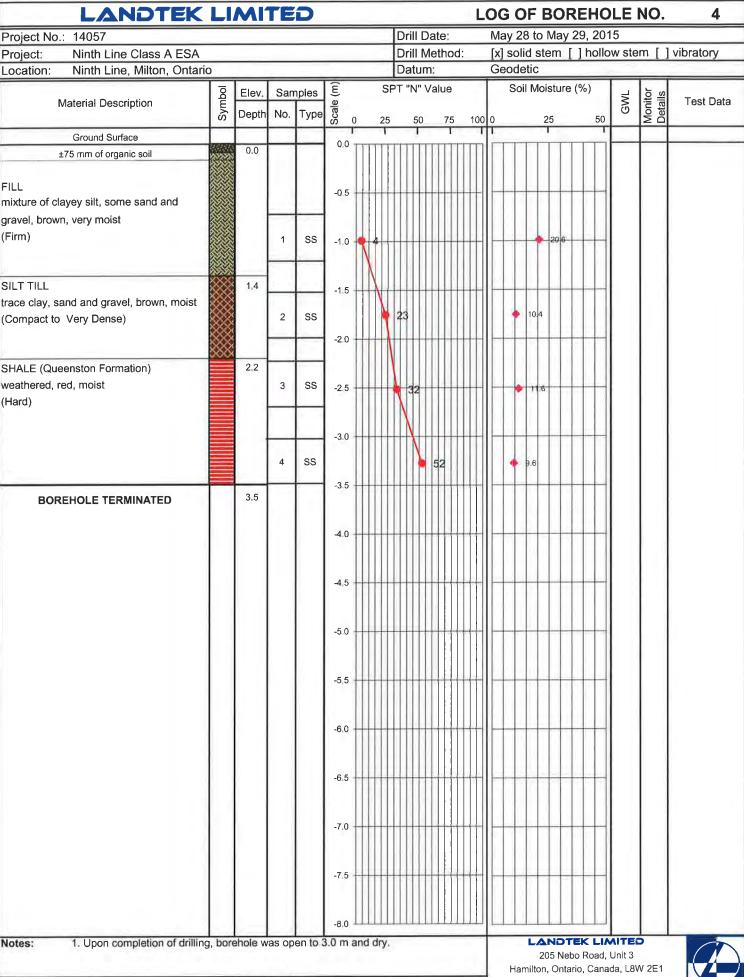
APPENDIX C


DRAWINGS - SITE PLANS SHOWING BOREHOLE LOCATIONS + LOGS OF BOREHOLES








LANDTEK	LI	MI	TE	D		L	OG OF BOREHOLE	NO. 1
Project No.: 14057						Drill Date:	May 28 to May 29, 2015	
Project: Ninth Line Class A ESA				Drill Method:	[x] solid stem [] hollow ste	em [] vibratory		
Location: Ninth Line, Milton, Ontari	0					Datum:	Geodetic	
Material Browning	Pog	Elev.	San	nples		PT "N" Value	Soil Moisture (%)	ارة Test Data
Material Description	Symbol	Depth	No.	Туре	S 0 25	50 75 100	0 0 25 50	Monitor Details Test Data
Ground Surface		1			0.0	1 1		
±75 mm of asphalt	(30303)	0.0			0.0			
±175 mm of granular								1 1
FILL					-0.5			
mixture of clayey silt, some gravel, trace								1 1
organics staining, brown, moist, (Stiff)								
(Sill)			1	SS	-1.0		17.1	
					111111			
SILT TILL		1.4			-1.5			
trace clay, sand and gravel, brown, moist								1 1
(Compact)			2	SS		17	12.6	
					-2.0			
				-				
			3	ss	-2.5	40	100	111
					-2.5	18	10/6	
					-3.0	+++++++++++++++++++++++++++++++++++++++		
			4	ss		26	♦ 11.9	
						20		
BOREHOLE TERMINATED		3.5			-3.5			
		- 1						
100	1				-4.0			
	1							
	1							
					4.5			
	1							1 1
li I	1				-50			
								1 1
	1							
					-5.5			
					-6.0			
	1							
					-6.5			
					-7.0			
					-7.5			
					-8.0			
Notes: 1. Upon completion of drilling	g, bore	l ehole w	as op	en to 3			LANDTEK LIMITE	D
			ľ		,		205 Nebo Road, Unit 3	
PP = pocket penetrometer TCV = total combustib	e vanc	our BRC) = bulk	relativ	e density		Hamilton, Ontario, Canada, L8 Ph: (905) 383-3733 Fax: (905)	
PL = plastic limit LL = liquid limit PI = plasticity inc	www.landteklimited.com							

LANDTEK		Mľ	TE	D						L	00	OF BO	REHC	DLE	<u>NO.</u>	2
Project No.: 14057							Dri	II Date	e:		Ma	ay 28 to May	y 29, 20 ⁻	15		
Project: Ninth Line Class A ESA							Dri	II Met	hod:		[x]	solid stem	[]hollo	ow ste	m []] vibratory
Location: Ninth Line, Milton, Ontario)						Da	tum:			Ge	eodetic				
	0	Elev.	San	nples	Œ	SI	PT "	√" Val	ue			Soil Moistur	e (%)		۳ ا	
Material Description	Symbol				<u>o</u>									GWL	Monitor Details	Test Data
	Ś	Depth	No.	Туре	တိ	0 25		50	75	100	0	25	50	L_	žő	
Ground Surface					0,0					1			,			
±125 mm of asphalt	39393	0.0			1,1	HHH										
±175 mm of granular	000	3				ШШ	Ш	Ш								
FILL					-0,5	11111	Ш		++++	Н			++++			
mixture of silty clay, some gravel, trace							Ш			Ш						
organics staining, brown, moist,				-			Ш			Ш	Ш					
(Firm)			1	SS	-1,0	9 5	#	HH	++++	Н		•	27.9			
						\mathbf{M}	Ш			Ш			1111			
SILT TILL	2000	1.4				HILL	Ш		Ш	Ш						
trace clay, sand and gravel, brown, moist					-1.5		††		1111	Ш						
(Compact to Dense)			2	SS		h 11			Ш	Ш	Ш	111	1111			li .
ľ í					-2.0		Ш		Ш	Ш						
					-2,0	1111	Ш									
					1	$ \cdot \setminus \cdot $	Ш			Ш						l
			3	ss	-2.5	11111	25		Ш	Ш	Н	1111	+++		1	
									1111	Ш			1111	1		
			1 - 1			11/11/1	M		Ш	Ш			1111			
1 3				-	-3,0	+++++	H	+++	₩	Н	Н					
7 t			4	ss		ШШ	11	40	Ш	Ш	Ш	99				
							HŤ		Ш							
BOREHOLE TERMINATED		3,5		- 4	-3,5	11111	Ш		TTT	П				1		
BONEHOLE TERMINATED		.,,	1 /						Ш		11 1			ľ		
[1]			V (-4.0		Ш		Ш	Ш						
1)			1					1	Ш	Ш						
			1					$ \cdot $	Ш	Ш	Ш					
			1		-4,5		+++	+++	##	Н	Н					
						111111	Ш		Ш	Ш	Ш			1		
							Ш		Ш	Ш						
					-5.0	111111	Ħ	++++	###	Н	Н		+++			
1							Ш		Ш		Ш					
							Ш		Ш	Ш						
					-5.5				Ш	П				1		
							Ш		Ш		Ш		1444			
					-6.0	4444	Ш		Ш	Ш						
							Ш		Ш	Ш						
							Ш		Ш			HHHH				
					-6_5	+++++	₩			Н	Н					
							Ш						1411			
							Ш									
					-7.0	11111	Ħ	1111	1111	Ш	Н		+++			
							Ш			Ш				1		
0.00					-7.5		Ш	Ш								
					-7.5		Ш		Ш	Π						
							Ш									
					-8.0	ШШ	Ш	Ш	Ш	Ш						
Notes: 1. Upon completion of drilling	, bore	ehole w	as ope	en to 3	3.0 m	and dry.			_			LAND	TEK LIA	VITE	5	
													ebo Road,			
PP = pocket penetrometer TCV = total combustible	a vano	ur RDN	= hulk	relative	e dene	itv					P	Hamilton, Ont h: (905) 383-3				3
PL = plastic limit LL = liquid limit Pl = plasticity ind							e ser	sitivity			Ė		ndteklimite		22 0 10	LANDTE

www.landteklimited.com

LANDIEK		MI	IE	ט			OG OF BOREHO	LE NO.	5
Project No.: 14057						Drill Date:	May 28 to May 29, 20	15	
Project: Ninth Line Class A ESA						Drill Method:	[x] solid stem [] holld	ow stem []	vibratory
Location: Ninth Line, Milton, Ontario	0					Datum:	Geodetic		
	7	Flave	Com	-las	Ê S	PT "N" Value	Soil Moisture (%)		
Material Description	Symbol	Elev.	San	ples) e		, ,	GWL onitor etails	Test Data
	S	Depth	No.	nples Type	S 0 25	5 50 75 100	0 25 50	GWL Monitor Details	
Ground Surface						1 1 1	1 1 1		
±300 mm of asphalt		0.0			0.0				
±75 mm of granular	5666								
FILL					-0.5				
mixture of clayey silt, some sand and					-0,5			1 1 1	
gravel, brown, very moist								1 1 1	
(Firm)			1	SS	-1.0 7		→ 17.9	1 1 1	
SILT TILL	\ggg	1.4			-1.5				
some sand, trace clay and gravel, brown,	$\otimes\!\!\!\otimes$						100		
moist, (Dense to Very Dense)	$\otimes\!\!\!\otimes$		2	SS		90	10 8		
	$\otimes\!\!\!\otimes$				-2.0	+\			
	$\otimes\!\!\!\otimes$					\mathbf{A}			
	$\otimes\!\!\!\otimes$				11111				
	$\otimes\!\!\!\otimes$		3	SS	-2.5	50 /100 mm	108	1 1 1	
	∞							1 1 1	
	$\otimes\!\!\!\otimes$							1 1 1	
	$\otimes\!$				-3.0				
	∞		4	SS		\$ 50 /100 mm	4 9.2		
	∞				-3.5				
BOREHOLE TERMINATED		3.5							
					40				
								1 1 1	
			8 1		-4.5	44444		1 1 1	
					111111			1 1 1	
								1 1 1	
					-5.0				
)						
) }	1					
				1	-5.5				
				1 1	-6.0				
			1	1	-0.0				
					-6.5			1 1 1	
								1 1 1	
					-7.0				
			1		-7.5				
					-8.0				
Notes: 1. Upon completion of drilling	, bore	hole w	as op	en to 3	3.0 m and dry.	5	LANDTEK LIA 205 Nebo Road,		ON
							ZUS Nebu Road,	Unit J	

205 Nebo Road, Unit 3 Hamilton, Ontario, Canada, L8W 2E1 Ph: (905) 383-3733 Fax: (905) 383-8433 www.landteklimited.com

LANDTEK		MI	TE	D								L	00	3 C	F	BC	RE	EHC	LE	NO.	6
Project No.: 14057							_	Drill							1, 20						
Project: Ninth Line Class A ESA							_	Drill			od:				id s	tem	[]	hollo	ow ste	m [] vibratory
Location: Ninth Line, Milton, Ontari	0						_	Dat					G	eode						_	
Material Deposition	व्	Elev.	San	nples	(m)		SP	T "N	" V	alue	•			So	il Mo	oistu	re (%	6)	GWL	tor is	Test Data
Material Description	Symbol	Depth	No.	Туре	Scale	0 :	25		50	7	5	100	١			25_		50	§	Monitor Details	Test Data
Ground Surface							1	- 2		Ť		1	Ť			T		-			
±200 mm organic soil	A September 1	0.0			0.0	TITT	Ш	Ш	T	T	П	m	Г		П						
FILL mixture of clayey silt, some sand and gravel, brown, very moist (Firm)			1	SS	-0.5 -1.0 -1.5	7											25.7				
			2	SS		7 5		Ш							Ш		26.8			Ш	
SILT TILL		2.0			-2.0		H	111	Ħ	#	1	H		1	Ħ		1				
some sand, trace clay and gravel, brown, moist, (Loose)			3	ss	-2.5		3								•	19.6					
2 7 1 2	$\otimes\!$					Ш		Ш	Ш	П		Ш							1		
SAND medium grained, trace gravel and silt, brown, moist (Compact)		2.8	4	SS	-3.0	1	13								9.7						
BOREHOLE TERMINATED		3.5			-3.5	Ш		ttt	1	Ħ	П	Ħ			Ħ						
					-4.0 -4.5																
					-5.5				112				_								
					-6.0								-								
					-6 5								E								
					-7 0 -7 5																
					-8.0	Ш	Ш	Ш	Ш	11	Ш	Ш	L				1				
Notes: 1. Upon completion of drilling PP = pocket penetrometer TCV = total combustible							y.						F		2 miltor	05 N n, On	ebo tario,	Road, Cana	Unit 3 Ida, L8\ (905) 3		3

PL = plastic limit LL = liquid limit PI = plasticity index FV = field vane LV = lab vane VS = vane sensitivity

LANDTEK	LI	Mľ	TE	D			OG OF BOREHOLE	NO. 7
Project No.: 14057						Drill Date:	May 28, 2015	
Project: Ninth Line Class A ESA						Drill Method:	[x] solid stem [] hollow ste	m [] vibratory
Location: Ninth Line, Milton, Ontari	7	_	,			Datum:	Geodetic	
Material Description	Symbol	Elev.	San	ples	E SF	PT "N" Value	Soil Moisture (%)	o s Test Data
Material Description	Syn	Elev. Depth	No.	Туре	0 25	50 75 100	0 25 50	Monitor Details Test Data
Ground Surface					0.0			
±75 mm of asphalt	(4)	0.0						
±300 mm of granular	20/20/20	2						
FILL organic clayey silt, trace sand, brown to					-0.5			
plack, very moist (Soft)			-	_				
			1	SS	-1.0 🙀 💈		24.2	
21.7	//////////////////////////////////////							
SILT TILL some sand, trace clay and gravel, brown,	$\otimes\!\!\!\otimes$	1.4			-1.5			
moist, (Compact to Dense)	$\otimes\!\!\!\!\otimes$		2	ss	 	20	9.9	
,	$\otimes\!\!\!\otimes$				-20	, , , , , , , , , , , , , , , , , , , ,		
	$\otimes\!\!\!\otimes$							
	$\otimes\!$							
	$\otimes\!\!\!\otimes$		3	SS	-2.5	28	3.8	
	$\otimes\!\!\!\otimes$							
	燚				-3.0			1 3
	$\otimes\!$		4	SS		35	♦ 14.3	
sand seam ±3.3 m	$\otimes\!$				-3.5	7 55		
BOREHOLE TERMINATED		3.5			-3.5			
					4.0			
					-4.5			
					-5 0			
					-5.5			
		3						
					-6.0			
					-6.5			
					-7.0			
					-7.5			
					-8.0			
Notes: 1. Upon completion of drilling	j, bor	ehole w	as op	en to 3	3.0 m and dry.		LANDTEK LIMITED	
							205 Nebo Road, Unit 3 Hamilton, Ontario, Canada, L8V	V 2E1

LANDTEK		MI	TE	D		L	OG OF BOREHO	LE NO.	8
Project No.: 14057						Drill Date:	May 28, 2015		
Project: Ninth Line Class A ESA						Drill Method:	[x] solid stem [] holld	w stem [vibratory
Location: Ninth Line, Milton, Ontari	0					Datum:	Geodetic		
	8	Elev.	San	nples	€ s	PT "N" Value	Soil Moisture (%)	_ io s	
Material Description	Symbol	Depth	No.	nples Type	S 0 25	50 75 100	0 25 50	GWL Monitor Details	Test Data
Ground Surface					0.0				
±200 mm of topsoil		0.0							
SILT TILL some sand, trace clay and gravel, brown, moist, (Compact)			1	ss	-1.0	16	♦ 11/6		
			2	SS	-1.5	29	13 1		
			3	SS	-2.5	89	10.2		
SILTY SAND trace gravel, brown, moist (Very Dense)		2.5			-3.0	/ ~			
sand seam ±3.3 m			4	ss	-3.5	50	♦ 8,4		
BOREHOLE TERMINATED		3.5			4.0				
					-5.0				
					-6.0				
					-6,5				
					-7.0				ı
					-7,5				
				1	-8.0	111111111111111111			
Notes: 1. Upon completion of drilling	g, bore	enole w	as op	en to 3	s.u m and dry.		LANDTEK LIA 205 Nebo Road, Hamilton, Ontario, Cana	Unit 3	

LANDTEK		MI	TE	D			OG OF BOREHO	LE NO.	9
Project No.: 14057						Drill Date:	May 28, 2015		
Project: Ninth Line Class A ESA						Drill Method:	[x] solid stem [] holid	w stem []v	ibratory
Location: Ninth Line, Milton, Ontario						Datum:	Geodetic		
	РОД	Elev.	Sam	ples	E S	PT "N" Value	Soil Moisture (%)	7 P S	
Material Description	Symbol	Depth	No.	Type	Scale (m) 0 25			GWL Monitor Details	Test Data
Ground Surface	<u> </u>		-		ග් 0 25	50 75 100	0 25 50		
±250 mm of asphalt	In the last	0.0			0.0	mmmmi	пппппп		
±150 mm of granular									
	\otimes				-0.5				
SILT TILL	888				-0.5				
some sand, trace clay and gravel, brown,	\ggg								
moist, (Compact)	ண		1	SS	-1.0 🙌 9		4 17.4		
	燹				. II <u>N</u> II				
	⋘		1						
	燚				-1.5				
	888		2	SS		17	♦ 1€.4		
	燹				-2.0				
	燹							1 1 1	
	燚							1 1 1	
	燚		3	SS	-2.5	29	11.9		
	$\otimes\!\!\!\otimes$					Λ			
	∞				-3.0				
	888								
	\ggg		4	SS		40	(0.0t)		
	XXX	0.5			-3.5				
BOREHOLE TERMINATED		3.5							
					-4.0				
					1 4.0				
								1 1 1	
					-4.5	 			
1									
					-5.0			1 1 1	
					-5,5				
					-6.0				
					-6.5				
					-7.0	 			
								1 1	
					-7.5				
					-1.5				
					-8.0				
Notes: 1. Upon completion of drilling	, bore	hole w	as ope	en to 3	3.0 m and dry.		LANDTEK LIA		
							205 Nebo Road, Hamilton, Ontario, Cana		

LANDTEK		Mľ	TE	D		L	OG OF BOREHO	LE NO.	10
Project No.: 14057						Drill Date:	June 1, 2015		
Project: Ninth Line Class A ESA						Drill Method:	[x] solid stem [] hollo	w stem []	vibratory
Location: Ninth Line, Milton, Ontari	0					Datum;	Geodetic		
	200	Elev.	San	ples	Ē SI	PT "N" Value	Soil Moisture (%)	Is to	Test Data
Material Description	Symbol	Depth	No.	nples Type	SC 0 25	50 75 100	0 25 50	GWL Monitor Details	Test Data
Ground Surface					0.0				
±150 mm of topsoil		0.0	- 1						
SILT TILL some sand, trace clay and gravel, brown, moist, (Loose to Compact)			1	SS	-1.0	4	15/8		
			2	SS	-1.5	24	11,5		
			3	SS	-2,5	35	12.2		
SILTY SAND		2.8			-3.0				
trace gravel, brown, saturated (Dense)			4	SS	-3.5	37	- ♦ 16.7		
BOREHOLE TERMINATED		3.5			-4.0 -4.5 -5.0 -5.5 -6.0 -7.0 -7.5				
Notes: 1. Upon completion of drilling	g, bore	ehole w	as op	en to	1.0 m and wate	er level at 1.0 m.	LANDTEK LIN		
							205 Nebo Road, Hamilton, Ontario, Canad		

PP = pocket penetrometer TCV = total combustible vapour BRD = bulk relative density PL = plastic limit LL = liquid limit Pl = plasticity index FV = field vane LV = lab vane VS = vane sensitivity Ph: (905) 383-3733 Fax: (905) 383-8433 www.landteklimited.com

LANDTEK	L	MI	IE	D				L	O	OF BOK	EHO	LE	NO.	11
Project No.: 14057						Dril	Date) :	Ju	ne 1, 2015				
Project: Ninth Line Class A ESA						Dril	Met	nod:	[x]	solid stem [] hollo	w ste	m []	vibratory
Location: Ninth Line, Milton, Ontari	0						um:			eodetic	-			
	7	I			Ê S	PT "N		16	T	Soil Moisture ((%)		_	
Material Description	Symbol	Elev.	San	nples Type	<u>e</u>					0011 1110101010 1	,,,,	GWL	Monitor Details	Test Data
	S	Depth	No.	Туре	S 0 25	5 ;	50	75 100	0	25	50	Θ	Det D	
Ground Surface					1 1				T	1	1			
±350 mm of topsoil		0,0			0.0		$\Pi\Pi$				TTT			
FILL silty clay, trace sand and gravel, brown, very moist (Firm)			1	SS	-0.5					20/5				
SILT TILL some sand, trace clay and gravel, brown, moist, (Compact)		1.4	2	ss	-2.0	16 25				11.6				
	∞							[[]]]]	W					
SILTY SAND trace gravel, unoxidized grey, wet (Compact)		2.8	4	ss	-3.5	26				◆ 12.3				
BOREHOLE TERMINATED		3.5			-4.0 -4.5 -5.0 -5.5 -6.0 -7.5 -7.5									
Notes: 1. Upon completion of drilling	g, bor	ehole w	as op	en to		ter lev	el at 2	2.4 m.		LANDTI			5	
										205 Nebo			N 2F1	

PP = pocket penetrometer TCV = total combustible vapour BRD = bulk relative density PL = plastic limit LL = liquid limit PI = plasticity index FV = field vane LV = lab vane VS = vane sensitivity Ph: (905) 383-3733 Fax: (905) 383-8433 www.landteklimited.com

LANDTEK		MI	TE	D			L	OG OF BOREHO)LE	NO.	12
Project No.: 14057						Drill Date:		June 1, 2015			
Project: Ninth Line Class A ESA						Drill Metho	od:	[x] solid stem [] holl	ow ste	m []	vibratory
Location: Ninth Line, Milton, Ontari	0					Datum:		Geodetic			
	70	Elev.	San	nples	Ê S	PT "N" Value)	Soil Moisture (%)		<u>_</u>	
Material Description	Symbol	Depth	No.	nples Type) Scale 0 25				GWL	Monitor Details	Test Data
Ground Surface					1 1	1	1				
±200 mm of asphalt		0.0			0.0						
±200 mm of granular											
FILL organic silty clay					-0.5						
SILT TILL some sand, trace clay and gravel, brown,		0.9	1	ss	-1.0			20,4			
moist, (Compact)			2	SS	-1.5	16		♦ 12.1			
SILTY SAND		2.2	3	SS	-2.0	\					
trace gravel, brown, very moist (Dense to Very Dense)			3	33	-3.0	37		9.9			
			4	ss	-3.5	52		4 9.5			
BOREHOLE TERMINATED		3.5			4,0						
					-4.5						
					-5.0						
					-5,5						
					-6.0						
					-6.5						
					-7.0						
					-7.5						
					-8.0	шшшш	ШП				
Notes: 1. Upon completion of drilling	, bore	hole w	as ope	en to 3	3.0 m and wate	r level at 2.7	m.	LANDTEK LI 205 Nebo Road,			

PP = pocket penetrometer TCV = total combustible vapour BRD = bulk relative density
PL = plastic limit LL = liquid limit PI = plasticity index FV = field vane LV = lab vane VS = vane sensitivity

205 Nebo Road, Unit 3 Hamilton, Ontario, Canada, L8W 2E1 Ph: (905) 383-3733 Fax: (905) 383-8433 www.landteklimited.com

LANDTEK	LI	Mľ	TE	D			LOG OF BOREHO	LE NO.	13
Project No.: 14057						Drill Date:	June 1, 2015		
Project: Ninth Line Class A ESA						Drill Method:	[x] solid stem [] hollo	w stem []	vibratory
Location: Ninth Line, Milton, Ontari	io					Datum:	Geodetic		
	0	Elev.	San	nples	Ê S	PT "N" Value	Soil Moisture (%)	1 5 0	
Material Description	Symbol	Depth		Туре	Scale (m) 0 25	50 75 10	00 0 25 50	GWL Monitor Details	Test Data
Ground Surface					1 1	1 1	11 1		
±300 mm of granular		0.0			0.0				
SILT TILL some sand, trace clay and gravel, brown, moist, (Compact to Very Dense)			2	ss ss	-0.5 -1.0 -1.5 -2.0	4 38 38 50 /100 π	* 8.9		
	\otimes		-		-3.0				
			4	ss		4 36			
BOREHOLE TERMINATED		3.5			-3.5 -4.0 -4.5 -5.0 -5.5 -6.0 -6.5 -7.0 -7.5				
Notes: 1. Upon completion of drilling	g, bor	ehole w	as op	en to 2	2.9 m and dry.		LANDTEK LIN 205 Nebo Road, Hamilton, Ontario, Canad	Unit 3	

PP = pocket penetrometer TCV = total combustible vapour BRD = bulk relative density

PL = plastic limit LL = liquid limit PI = plasticity index FV = field vane LV = lab vane VS = vane sensitivity

Ph: (905) 383-3733 Fax: (905) 383-8433 www.landteklimited.com

LANDTEK	LI	Mľ	TE	D			LOG OF BOREHOLE NO.	14
Project No.: 14057						Drill Date:	June 1, 2015	
Project: Ninth Line Class A ESA						Drill Method:		vibratory
Location: Ninth Line, Milton, Ontario)					Datum:	Geodetic	
Material Description	DQ.	Elev.	San	nples	E SF	PT "N" Value	Soil Moisture (%)	Toot Date
Material Description	Symbol	Depth	No.	nples Type	<u>a</u> S 0 25	50 75 1	Soil Moisture (%) O C 25 50 O D 25 50	Test Data
Ground Surface					0.0	1 1		
±250 mm of asphalt	NEWS CO.	0.0						
±250 mm of granular	222							
clayey silt, some organics and organic					-0.5			
staining, trace sand and gravel, brown,								
very moist (Firm)			1	SS	-1.0 🔷 5		217	
			وأنسا		-1.0			
					-1.5			
			2	SS			♦ 25.5	
			2	33				
	XXX	2.0			-2.0			
SILT TILL	$\otimes\!$							
some sand, trace clay and gravel, brown,	$\otimes\!\!\!\otimes$		3	ss	-2.5	8	113	
moist, (Compact to Very Dense)	燚							
	$\otimes\!\!\!\otimes$					N IIIIIIIII		
	⋘				-3.0			
	$\otimes\!\!\!\otimes$		4	ss		57	13.5	
	XXX	Co.			-3.5			
BOREHOLE TERMINATED		3.5						
					4.0			
					4.5			
					-5.0			
		1			-5.5			
					0.0			
					-6.0			
					-6.5			
					-0.5			
					-7.0	+++++++++++++++++++++++++++++++++++++++		
					7.5			
					-7 5			
			3 4		-8,0			
Notes: 1. Upon completion of drilling	, bore	hole w	as ope	en to 3	3.0 m and wate	r level at 2.7 m.	LANDTEK LIMITED	
							205 Nebo Road, Unit 3 Hamilton, Ontario, Canada, L8W 2E1	

PP = pocket penetrometer TCV = total combustible vapour BRD = bulk relative density
PL = plastic limit LL = liquid limit PI = plasticity index FV = field vane LV = lab vane VS = vane sensitivity

205 Nebo Road, Unit 3

Hamilton, Ontario, Canada, L8W 2E1

Ph: (905) 383-3733 Fax: (905) 383-8433

www.landteklimited.com

LANDTEK		Mi	TE	D					L	OG	OF B	ORE	EHO	LE	NO.	15
Project No.: 14057							Drill Da	ate:		Jui	ne 1, 201	5				
Project: Ninth Line Class A ESA							Drill M				solid ster	n []	hollo	w ste	em [vibratory
Location: Ninth Line, Milton, Ontari	o						Datum	:		Ge	odetic					
	8	Elev.	San	nples	(E)	SP	T "N" V	alue			Soil Moist	ure (%	%)	ر ا	lo s	
Material Description	Symbol	Depth	No.	Туре	Scale (m)									GWL	Monitor Details	Test Data
	100	- SPAIN	-	.,,,,	8 0	25	50	75	100	0	25		50	\vdash	ΣΔ	
Ground Surface	1488	0.0		_	0.0	нін	пп	THE	П		TIT	TT			-	
±200 mm of organic soil	×××	0.0							Ш	Ш						
	888	{			111		Ш			Ш		Ш				
SILT TILL	XX				-0.5		Ш		Ħ		+++	11	П			
some sand, trace clay and gravel, brown,	∞			_					Ш	Ш	1111					
moist, (Compact to Very Dense)	\ggg		1	SS	-1.0						161				1	
	∞	1			-1.0	1					101					
	$\otimes\!\!\!\otimes$					М				Ш						Y
	$\otimes\!$				-1.5	1		444	Ш							
	∞							1111		Ш			Ш.			
	$\otimes\!\!\!\otimes$		2	SS		1	23	11111	Ш	Ш	4 14	11.				
	888				-2.0	+++		+++++	Ш			H	+			
	∞							Ш	Ш	Ш						
	$\otimes\!\!\!\otimes$		3	SS	0.5											
	∞		J	33	-2.5		29		Ш		14.3					
	$\times\!\!\!\times$				11	111/		Ш	Ш	11 1						
	※				-3.0		Ш	Ш	Ш							
	⋘		1						111							
	$\otimes\!\!\!\otimes\!$		4	SS		•	25	4111	Ш	И	4.2				1 1	
	XXX				-3.5	+HH	+++++	Н	++1	H	++++	+				
BOREHOLE TERMINATED		3.5				Ш		Ш	Ш	Ш		Ш				
					- 11	Ш	ШН	Ш	Ш				4			
	l. I				4.0	1111		11111	Ħ							
						1111			Ш			Ш				
					4.5	Ш	Ш		Ш				Ш			
	6			ı ı		1111										
	0				- 111	Ш			Ш			111				
				1	-5.0	++++	11111	HHH	H	H			4			
				1		Ш		Ш	Ш							
					- 411	Ш		Ш		W		Ш				
			1		-5.5	1111	11111	1111	Ħ	H						
								Ш	И							
					-6.0			Ш	Ш							
								ШИ	Ш							
									Ш							
					-6.5			++++	HI	H	+++	+	+			
						Ш		Ш	Ш							
						Ш		Ш	Ш							
					-7.0	111	HH	1111	Ħ	H		T				
						Ш		1111	Ш	Ш						
					-7.5				Ш							
													9			
		1														
					-80 111	Ш	ШШ		Ш	Ц						
lotes: 1. Upon completion of drilling	, bore	ehole w	as ope	en to 3	.0 m and	dry.					LAN				5	
													Road, U		V 2E4	
P = pocket penetrometer TCV = total combustibl	e vapo	ur BRD	= bulk	relative	e density						Hamilton, O n: (905) 383					
L = plastic limit LL = liquid limit PI = plasticity inc						vane	sensitivit	V					klimite			LANDTE

File: 14057

APPENDIX D

RESULTS OF CHEMICAL ANALYSES BY AGAT LABORATORIES LTD.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: LANDTEK LTD.

205 NEBO ROAD, UNIT 3 HAMILTON, ON L8W2E1

(905) 383-3733

ATTENTION TO: Cory Zanatta

PROJECT: 14057

AGAT WORK ORDER: 15T992589

SOIL ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

DATE REPORTED: Jul 13, 2015

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

ŀ	NOTES
ľ	VERSION 1: Partial report excluding the Chromium VI data for sample 6712702 sent on July 13, 2015
1	
1	
ı	
ı	
l	
ı	
ı	
ı	
1	
1	
ı	
ı	
ı	
ı	
L	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

MOTEC

Page 1 of 8

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc, (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation, AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific, A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certificate of Analysis

AGAT WORK ORDER: 15T992589

PROJECT: 14057

ATTENTION TO: Cory Zanatta SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

O. Reg. 153(511) - Metals & Inorganics (Soil) **DATE REPORTED: 2015-07-10** DATE RECEIVED: 2015-07-06

		SAMPLE DES	CRIPTION:	BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH6
		SAM	PLE TYPE:	Soil							
		DATE	SAMPLED:	6/22/2015	6/22/2015	6/22/2015	6/22/2015	6/22/2015	6/22/2015	6/22/2015	6/22/2015
Parameter	Unit	G/S	RDL	6712687	6712688	6712689	6712690	6712691	6712692	6712693	6712695
Antimony	µg/g	1.3	0.8	<0.8	<0.8	<0.8	<0.8	< 0.8	<0.8	< 0.8	<0,8
Arsenic	µg/g	18	1	5	4	4	4	2	3	4	4
Barium	μ g /g	220	2	68	61	42	62	21	33	94	96
Beryllium	µg/g	2.5	0.5	< 0.5	< 0.5	<0,5	<0.5	< 0.5	<0.5	< 0.5	< 0.5
Boron	µg/g	36	5	6	6	7	8	<5	<5	7	5
Boron (Hot Water Soluble)	μ g /g	NA	0.10	0.13	0.11	0.50	0 12	<0.10	< 0.10	0.12	0 13
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5
Chromium	µ9/g	70	2	14	13	12	13	6	11	15	12
Cobalt	µg/g	21	0.5	8.9	8.3	7.1	7.6	3.1	5.8	8.6	7.4
Copper	μg/g	92	1	33	28	28	32	11	16	31	27
ead	µg/g	120	1	8	7	7	7	3	6	8	9
/lolybdenum	µg/g	2	0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel	µg/g	82	1	18	16	14	15	6	12	18	15
Selenium	µg/g	1.5	0.4	<0.4	< 0.4	< 0.4	<0.4	< 0.4	< 0.4	< 0.4	<0.4
Silver	µg/g	0.5	0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	µg/g	1	0.4	< 0.4	< 0.4	<0,4	<0.4	< 0.4	< 0.4	< 0.4	< 0.4
Jranium	μg/g	2.5	0.5	0.5	< 0.5	0.5	<0.5	< 0.5	< 0.5	0,6	< 0.5
/anadium	µg/g	86	1	19	18	18	18	12	18	22	17
linc	µg/g	290	5	48	42	38	39	18	32	48	40
Chromium VI	µg/g	0.66	0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2
Cyanide	µg/g	0.051	0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	< 0.040	< 0 040
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.10
Electrical Conductivity	mS/cm	0.57	0.005	0.588	0.484	0.472	0.151	0.608	0.299	0.498	0 213
Sodium Adsorption Ratio	NA	2.4	NA	1.69	1.46	2.11	0.959	7.41	1.98	2 37	1,74
H, 2:1 CaCl2 Extraction	pH Units		NA	7.66	7.70	7.87	7.68	7.29	7.32	7.69	7.88

Certified By:

Male Minesia

Certificate of Analysis

AGAT WORK ORDER: 15T992589

PROJECT: 14057

ATTENTION TO: Cory Zanatta

CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)										
DATE RECEIVED: 2015-07-06									DATE REPORTI	ED: 2015-07-10
Parameter	Unit		CRIPTION: PLE TYPE: SAMPLED: RDL	BH9 Soil 6/22/2015 6712697	BH10 Soil 6/22/2015 6712698	BH11 Soil 6/22/2015 6712699	BH12 Soil 6/22/2015 6712700	BH13 Soil 6/22/2015 6712701	BH14 Soil 6/22/2015 6712702	BH15 Soil 6/22/2015 6712703
Antimony	µg/g	1.3	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	4	3	5	4	3	4	5
Barium	µg/g	220	2	84	46	78	55	55	77	89
Beryllium	μ g /g	2.5	0.5	<0.5	<0.5	< 0,5	< 0.5	< 0.5	<0.5	0.6
Boron	µg/g	36	5	5	<5	<5	<5	<5	5	8
Boron (Hot Water Soluble)	μ g /g	NA	0.10	0.16	<0.10	0 10	< 0.10	< 0.10	0.16	0 14
Cadmium	µg/g	1 2	0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0,5	< 0.5
Chromium	µg/g	70	2	14	7	14	12	9	14	20
Coball	µg/g	21	0.5	90	4.6	8.5	7 9	5.9	9 5	13.7
Copper	µg/g	92	1	51	23	29	35	28	30	33
Lead	µg/g	120	1	8	8	10	8	6	8	11
Molybdenum	µg/g	2	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0,5	< 0.5
Nickel	µg/g	82	1	17	9	18	15	11	17	27
Selenium	µg/g	1.5	0.4	<0.4	< 0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Silver	µg/g	0.5	0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2	<0.2
Thallium	µg/g	1	0.4	< 0.4	< 0.4	<0.4	< 0.4	< 0.4	<0,4	<0.4
Jranium	μg/g	2.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	0.6
Vanadium	µg/g	86	1	21	13	20	17	15	21	26
Zinc	µg/g	290	5	46	28	45	42	31	50	62
Chromium VI	µg/g	0 66	0.2	<0.2	<0.2	<0 2	<0.2	<0.2		<0.2
Cyanide	µg/g	0.051	0.040	< 0.040	<0 040	< 0.040	< 0.040	< 0.040	<0 040	<0 040
Mercury	µg/g	0.27	0.10	< 0 10	< 0.10	< 0.10	< 0 10	<0 10	< 0.10	<0 10
Electrical Conductivity	mS/cm	0 57	0.005	1.14	0 224	0.313	0.617	0 111	0.791	0 169
Sodium Adsorption Ratio	NA	2 4	NA	9.21	3.38	4.20	5.64	0.304	6.45	0 278
oH, 2:1 CaCl2 Extraction	pH Units		NA	7.73	7.83	7 71	7 87	7 82	7.40	7.73

RDL - Reported Detection Limit. G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use
6712687-6712703 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil) pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Certified By:

Male Muneum

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
http://www.agatlabs.com

Guideline Violation

AGAT WORK ORDER: 15T992589

PROJECT: 14057

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

					mp:	//WWW_BDB0BBCOM
CLIENT NAME	:: LANDTEK LTD.			ATTENTION TO: Cory Zanatta		
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
6712687	BH1	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	0.57	0.588
6712691	BH5	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	0.57	0,608
6712691	BH5	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	7.41
6712697	ВН9	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	0.57	1.14
6712697	BH9	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	9.21
6712698	BH10	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	3.38
6712699	BH11	ON T1 S RPI/ICC	O Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	4.20
6712700	BH12	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soll)	Electrical Conductivity	0.57	0.617
6712700	BH12	ON T1 S RPI/ICC	O Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	5.64
6712702	BH14	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	0.57	0.791
6712702	BH14	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	6.45

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: LANDTEK LTD.

PROJECT: 14057 SAMPLING SITE: AGAT WORK ORDER: 15T992589 ATTENTION TO: Cory Zanatta

SAMPLED BY:

Soil Analysis															
RPT Date:				UPLICATI			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		eptable mits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & In	organics (Soil)														
Antimony	6712698 6	3712698	<0.8	<0.8	0.0%	< 0.8	93%	70%	130%	83%	80%	120%	82%	70%	130%
Arsenic	6712698 6	3712698	3	3	0,0%	< 1	99%	70%	130%	97%	80%	120%	97%	70%	130%
Barium	6712698 6	3712698	46	47	2.2%	< 2	93%	70%	130%	95%	80%	120%	94%	70%	130%
Beryllium	6712698 6	3712698	<0.5	<0.5	0.0%	< 0.5	83%	70%	130%	97%	80%	120%	90%	70%	130%
Boron	6712698 6	3712698	<5	<5	0.0%	< 5	85%	70%	130%	97%	80%	120%	85%	70%	130%
Boron (Hot Water Soluble)	6712687	3712687	0.13	0_12	8.0%	< 0.10	106%	60%	140%	98%	70%	130%	96%	60%	140%
Cadmium	6712698 6	3712698	< 0.5	< 0.5	0.0%	< 0.5	103%	70%	130%	99%	80%	120%	98%	70%	130%
Chromium	6712698 6	3712698	7	8	13,3%	< 2	83%	70%	130%	100%	80%	120%	94%	70%	130%
Cobalt	6712698 6	712698	4.6	4.7	2.2%	< 0.5	90%	70%	130%	100%	80%	120%	93%	70%	130%
Copper	6712698 6	3712698	23	23	0.0%	< 1	87%	70%	130%	102%	80%	120%	95%	70%	130%
Lead	6712698 6	3712698	8	8	0.0%	< 1	100%	70%	130%	98%	80%	120%	94%	70%	130%
Molybdenum	6712698 6	712698	<0.5	< 0.5	0.0%	< 0,5	102%	70%	130%	97%	80%	120%	100%	70%	130%
Nickel	6712698 6	712698	9	9	0.0%	< 1	92%	70%	130%	98%	80%	120%	91%	70%	130%
Selenium	6712698 6	712698	<0.4	<0_4	0.0%	< 0.4	79%	70%	130%	96%	80%	120%	98%	70%	130%
Silver	6712698 6	712698	<0.2	<0.2	0.0%	< 0.2	80%	70%	130%	101%	80%	120%	97%	70%	130%
Thallium	6712698 6	712698	<0.4	<0.4	0.0%	< 0.4	96%	70%	130%	104%	80%	120%	99%	70%	130%
Uranium	6712698 6	712698	< 0.5	<0.5	0.0%	< 0.5	101%	70%	130%	104%	80%	120%	100%	70%	130%
Vanadium	6712698 6	712698	13	13	0.0%	< 1	86%	70%	130%	99%	80%	120%	95%	70%	130%
Zinc	6712698 6	712698	28	28	0.0%	< 5	94%	70%	130%	101%	80%	120%	101%	70%	130%
Chromium VI	6723563		<0,2	<0.2	0.0%	< 0.2	105%	70%	130%	105%	80%	120%	91%	70%	130%
Cyanide	6712687 6	712687	<0,040	<0.040	0.0%	< 0_040	106%	70%	130%	110%	80%	120%	108%	70%	130%
Mercury	6712698 6	712698	<0.10	<0.10	0.0%	< 0.10	104%	70%	130%	100%	80%	120%	92%	70%	130%
Electrical Conductivity	6712687 6	712687	0.588	0.584	0.7%	< 0.005	101%	90%	110%	NA			NA		
Sodium Adsorption Ratio	6712687 6	712687	1_69	1.75	3.5%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	6712693 6	712693	7,69	7.80	1.4%	NA	100%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Certified By:

Mile Muneaux

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: LANDTEK LTD.

AGAT WORK ORDER: 15T992589
ATTENTION TO: Cory Zanatta

PROJECT: 14057

SAMPLED BY:

PROJECT. 14057	All
SAMPLING SITE:	SAN

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		1,	
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4,12 & 3.26 & EPA SW-846 6010B	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER

5835 Coopers Avenue Mississauga, ON L4Z 1Y2

Laboratory Us	e Only	9.7	0-9
Arrival Temperature	7-8	9-2	0.0
AGAT WO #:	0-0-	8-1-	Y
Lab Temperature:			-00

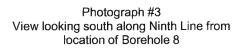
LU.	U V		Li	abor	atories	vww.ag	gatla	bs.co	m · webe	arth.ag		4Z 1\ 0 s.co		AGAT			e:	0-5	- 8-	1-	
Chain of Custody	Record						P: 9	05.7	12.5100	• F: 90	5.71	2.512	22	Notes				151	90	125	280
Client Information Company: Contact: Address: Phone: Project: AGAT Quotation #:			Regulation 153/04 reg 521 4menc Table		er Use	e one		Regulation CCMÈ Other (sp Prov. Wa Objective	ecify)	3 ality		Regu Rush Rush	aro far I/ far (Surc 3 Wo	T Wor pleas narge rking	rking se pro es Ap Days Days	ovide prior ply			ired*		
	on number is not provided, I full price for analysis. Same: Yes No		Soil Texture (check one, Coarse Fine Is this a drinking water sample? (potable water intended for human consumption Yes No		mption)		1?	OR Date Required (Rush surcharges may apply): *TAT is exclusive of weekends and statutory h		_ olidays											
Address:	Report Info 1. Name: Email: 2. Name: Email:	Cory	- reports t	o be sent to	If "Yes", please use the ng Water Chain of Custody Form o:	and Inorganics	ua.	Hydride Forming Metals Client Custom Metals	□ B-HWS □ CI- □ CN- □ EC □ □ Cr+6- □ SAR /NO ₂ □ N-Total □ Hg □ pH	: ☐ TP ☐ NH ₃ ☐ TKN ☐ NO ₂ ☐ NO ₃ /NO ₂	□ VOÇ □ THM □ BTEX	ictions 1 to 4		enols	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Organochiorine Pesticides	dis/ iioigaiios ie				
Sample Identification	Date Sampled	Time Sampled	Sample Matrix	# of Containers	Comments Site/Sample Information	/ Metals ar	Metal Scan	Hydride F	ORPs: 🗆 B-H	Nutrients:	VOC: □ V	CCME Fractions	PAHS	Chlorophenols	PCBs	Organochiorine	Sewer Use				
BH 2 BH 3 BH 5 BH 6 BH 7 BH 9																					
Samples Relinquished By Prin Name and Signit			Date/Tin		Samp Reserved By Thirth Name and	X Series			S ful	fod,	Chate	/ 2	7	<i></i>	Yello	w Co	y - Clie	GAT	Page	of_	2

5835 Coopers Avenue Mississauga, ON L4Z 1Y2

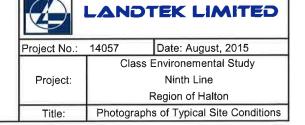
Laboratory Use	Only	9-7-9-0
Arrival Temperature:	67	0 /
AGAT WO #:	1.9-	1. 1-80

nain of Custody Record P: 905.712.5100 · F: 905.712.5122					Lab Temperature:				
lient Information	Regulatory Requirements					Turnaround Time Required (TAT) Required*			
company: contact: ddress: chone: droject: Please note, if quotation number is not provided, client will be billed full price for analysis.	Table Region CCME Rundicate one Indicate one Other (specify) Rundicate one Other (specify) Other (specify) Rundicate one Other (specify) Rundicate one Other (specify) Other			Table 1 Region CCME Sto 7 Working Days Indicate one			se provide prior notification) es Apply Days Days Days		
voice To Same: Yes No 🗆	is this a drinking water sample? (potable water intended for human consumption) ☐ Yes ☐ No)	is submission for a Record of Site Condition?		Date Required (Rush surcharges may apply): *TAT is exclusive of weekends and statutory				
contact: ddress: Report Information - reports to	T A	=	R R CN-			æ			
W Surface Water P Paint Email:	the dimited com-	d Inorg	Cr+6 Cr+6		henols	chlorine Pesticide	Jse lingening		
Sw Surface Water P Paint Email: D Sediment S Soil Sample Identification Date Sampled Sampled Sampled Matrix C	14 1 1 1 1	Metals and Inor Metal Scan Hydride Forming Cllent Custom M	27-6-7 00, 00, 00 00 00 00 00 00 00 00 00 00 00	ABNS	Chlorophenols	Organochlorine Pesticides	Sewer Use		
W Surface Water P Paint D Sediment S Soil Email: Name: Email: Email: Time Sample	# of Comments	d Inorg	Cr+6 Cr+6	ABNS	Chlorophenols	Organochlorine Pesticide	Sewer Use		
Sw Surface Water P Paint S. Soil Sample Identification Sampled Sampled	# of Comments	Metals and Inor Metal Scan Hydride Forming Cllent Custom M	Cr+6 Cr+6	ABNS	Chlorophenols	Organochlorine Pesticide	Sewer Use		

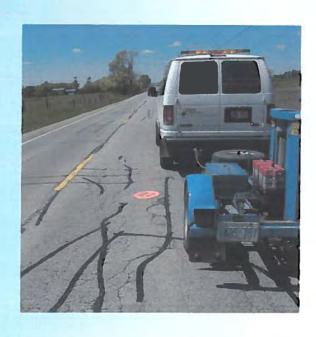
File: 14057


APPENDIX E PHOTOGRAPHS 1 TO 4 SHOWING TYPICAL SITE CONDITIONS

Photograph #1
View looking south along Ninth Line from location of Borehole 1


Photograph #2 View looking northalong Ninth Line from location of Borehole 10.

Photograph #4
View looking north along Ninth Line from location of Borehole 13.



PR-2494

PAVEMENT DESIGN REPORT NINTH LINE

From Steeles Avenue To No. 10 Sideroad

December 2005

Submitted to:

Regional Municipality of Halton Engineering & Services Division 1151 Bronte Road Oakville, Ontario L6M 3L1

ARA Project Number 16931

December 5, 2005 .

PAVEMENT INVESTIGATION

NINTH LINE RESURFACING FROM STEELES AVENUE TO No. 10 SIDEROAD TOWN OF MILTON, ONTARIO

Submitted to:

The Regional Municipality of Halton

Applied Research Associates Inc. 5401 Eglinton Avenue West, Suite 204 Toronto, Ontario M9C 5K6

Telephone: 416-621-9555 Facsimile: 416-621-4917

Website: www.ara.com\transportation

TABLE OF CONTENTS

1.0	INTRODUCTION	
2.0	INVESTIGATION METHOLODGY	
3.0	PHYSIOGRAPHIC SETTING	
4.0	SITE CONDITIONS	
4.1	Condition Survey	
4.2	Subsurface conditions	4
4.3	Groundwater Conditions	6
4.4	Falling Weight Deflectometer Testing	e
5.0	ENGINEERING CONSIDERATIONS	
5.1	Traffic Loading	8
5.2	Structural Requirements	8
5.2.1		
5.2.2		
5.2.3	Existing Pavement - No. 5 Sideroad to No. 10 Sideroad	9
5.3	Pavement Functional Requirements	10
6.0	RECOMMENDATIONS	
6.1	Appropriate Options for the Rehabilitation of the Existing Pavement	10
6.2	Rehabilitation of Existing Pavement	13
6.3	Shoulders	14
6.4	Transition Treatments	14
6.5	Materials	
6.5.1	New Construction Materials	17
6.5.2	Recycling Existing Materials	18
6.6	Grade Raises	18
7.0	CLOSURE	18
	NDIX A – Detailed Distress Survey Results	
	NDIX B – Photographs of Typical Pavement and Associated Features	
	NDIX C – Rut and Cross Fall Results	
APPEN	NDIX D – Coring Results	

APPENDIX E – Borehole Logs APPENDIX F – Laboratory Test Results APPENDIX G – Falling Weight Deflectometer Test Results

1.0 INTRODUCTION

Applied Research Associates Inc. (ARA) was retained by The Regional Municipality of Halton to complete a pavement evaluation and to provide recommendations for the rehabilitation of Ninth Line, from Steeles Avenue to No. 10 Sideroad in the Town of Milton, Ontario. Written authorization to proceed with this assignment was provided in a letter dated May 16th, 2005.

We understand that Halton Region is considering rehabilitating this section of roadway as part of their 2006 asphalt-resurfacing program.

The purpose of this assignment was to determine the current condition of the in-place pavement and subgrade materials, estimate the remaining life of the in-place pavement structure, identify potential rehabilitation options, and recommend a cost-effective pavement rehabilitation strategy.

2.0 INVESTIGATION METHOLODGY

The field investigation for this assignment consisted of the following tasks:

- A detailed pavement surface condition survey was completed to determine the location, extent and severity of pavement distresses. All distresses were identified in 100 m sections for both lanes on Ninth Line.
- Cross fall and rut depth measurements were completed on regular intervals throughout the project limits.
- Pavement coring was completed at roughly 100 m intervals to determine information on the type and thickness of the various asphalt layers throughout the roadway.
- Boreholes were advanced to determine both the type and thickness of the existing
 pavement structure components, as well as the subgrade and groundwater conditions at
 the site. Borehole locations were established at a frequency of roughly 500 m, with
 four boreholes advanced in distressed areas.

• Falling Weight Deflectometer (FWD) testing was completed to determine the structural adequacy of the pavement.

The pavement surface condition survey was completed over the period from May 24-27, 2005. The survey consisted of a detailed examination of the pavement surface noting the general conditions of the pavement including areas of pavement distress and distortion. The survey was conducted in general accordance with the MTO Manual for Condition Rating of Flexible Pavements, SP-024.

Project stationing for the field investigation was referenced from the intersection of Ninth Line and Steeles Avenue. The intersection chainage was assumed to be Station 0+000.

The structural adequacy of the existing pavement was evaluated by FWD pavement load/deflection testing. At each test location, a series of four load applications was applied to the pavement surface. The first application was a "seating" load to ensure the FWD load plate was firmly resting on the pavement surface. The next three loads were approximately 30, 40, and 50 kN. Pavement surface deflections under the load were measured by sensors (velocity transducers) placed at fixed spacing from the load plate in accordance with SHRP testing protocols. The FWD testing was conducted in each lane at roughly 100 m intervals. The testing was completed on May 25, 2005.

The geotechnical work for this investigation was carried out on July 12, 2005 and comprised a total of 57 cores and 15 boreholes advanced to a depth of 1.5 m below existing grade. The cores were selected randomly at roughly 100 m intervals while the borehole locations were selected to investigate structurally deficient locations as identified through the FWD testing as well as to supplement the geotechnical investigation previously completed by others.

The boreholes were advanced using a truck-mounted drill rig equipped with continuous flight solid stem augers supplied and operated by Malone's Soil Samples Company Ltd. A member of the ARA technical staff provided full-time supervision of the drilling operations.

Representative samples of the granular base/subbase and subgrade materials encountered in the boreholes were retained for detailed visual examination and laboratory classification testing. Routine laboratory testing consisted of grain size analysis, moisture content determination, and Atterburg Limits. Groundwater conditions were recorded during and on completion of drilling.

3.0 PHYSIOGRAPHIC SETTING

The site lies within the physiographic region known as the Peel Plain, *The Physiography of Southern Ontario*, 3rd edition, L.J. Chapman and D.F. Putnam. The underlying geological material of the plain consists predominately of till containing large amounts of shale and limestone. In much of the Peel plain this material has been modified by a veneer clay which, when deep enough, can be varved. The area has a gradual and fairly uniform slope towards Lake Ontario

4.0 SITE CONDITIONS

4.1 Condition Survey

The pavement section on Ninth Line from Steeles Avenue to No. 10 Sideroad comprises a 2-lane rural collector roadway. There is a 3-lane urban section at the intersection with Steeles Avenue and a 5-lane urban section at the intersection of No. 10 Sideroad.

The condition of the existing pavement was assessed to be in fair to good condition with local poor areas. The Pavement Condition Rating (PCR) was evaluated to be 68 from Steeles Avenue to No. 5 Sideroad and 58 from No. 5 Sideroad to No. 10 Sideroad. The ride quality was considered to be fair with few to intermittent bumps or depressions. The predominate distresses throughout this pavement section included; longitudinal cracking in the wheel paths, transverse cracking, and alligator cracking. Many of the older longitudinal cracks had been sealed. Localized areas of patching and rutting were found within this pavement section. A summary of the detailed surface distress survey results is presented in Appendix A. Typical photographs of the site can be seen in Appendix B

In addition to the detailed distress survey, wheel path rut depths and transverse cross fall was measured along the sections. A summary of the rut and cross fall survey is presented in Table 4.1 and the detailed results can be seen in Appendix C.

Table 4.1: Summary of Rut Depth and Cross Fall

Section From	Section To	Mean LWP Rut	Mean RWP Rut	Mean Crossfall
Steeles Avenue	No. 5 Sideroad	7.6 mm	5.0 mm	1.47%
No. 5 Sideroad	No. 10 Sideroad	11.0 mm	9.5 mm	1.17%

4.2 Subsurface conditions

Based on the results of the geotechnical field investigation, the subsurface conditions within the study area comprise a flexible pavement structure underlain by the clayey silt till/silty clay subgrade.

Based on the cores/boreholes completed as part of this assignment, the existing asphalt thickness on the traveled portion of Ninth Line was found to range from a low of 100 mm to a high of 270 mm but was typically found to be in the order of 140 to 170 mm. At several locations along the project, substantial differences in asphalt thickness were found between the northbound and southbound lanes. At Station 4+500, in the northbound lanes, a 90 mm buried asphalt layer was found at a depth of 250 mm. For ease of reference, Table 4.2 summarizes the main lane pavement and granular thickness from boreholes.

Granular base/sub-base was encountered beneath the asphalt layer at the borehole locations. The granular base generally consisted of a crushed gravel layer with a typical thickness typically varying between 300 and 500 mm. At three locations (Stations 1+635, 4+500, and 4+575), the granular base thickness was only 100 to 130 mm. At these locations, a layer of granular subbase was penetrated. At two locations, the granular base was measured to be 550 and 750 mm thick. The moisture content of samples tested from the granular base varied from 3.4 and 4.2 percent.

The sub-base material consisted of brown sand that sometimes contained trace gravel. This subbase material was only encountered at three location (Stations 1+635, 4+500, and 4+570). The moisture content of this layer was measured at 3.7%.

The grain size analysis of selected granular base/subbase samples indicated that all of the tested samples were found to be finer that OPSS gradation requirements for Granular A and Granular B.

Specifics of the field investigation are summarized in Appendices D and E. The evaluation of the pavement cores is presented in Appendix D. Borehole logs summarizing the geotechnical field investigation; including soil classification, groundwater observations, and moisture content determination are presented in Appendix E.

Table 4.2: Summary of Main Lane Pavement Thickness

Station	Direction	Asphalt Thickness (mm)	Granular Base (mm)	Granular Subbase (mm)	Total Granular Thickness (mm)
		Steeles Avenu	e to No. 5 Sid	leroad	······································
0+500	NB	165	410	_	410
1+000	SB	120	750	-	750
1+500	NB	180	450	-	450
1+635	SB	100	120	280	400
2+005	SB	120	550		550
2+500	NB	170	430	-	430
2+970	NB	105	465	-	465
	ľ	No. 5 Sideroad	to No. 10 Si	deroad	
3+494	NB	110	340	-	340
4+100	SB	140	325	-	325
4+500	NB	150	100**	100	290
4+570	NB	170	130	270	400
4+805	NB	150	335	_	335
5+000	SB	150	370	-	370
5+500	NB	150	300	-	300
5+715	SB	150	400	-	400
Average Std Dev		141.4 26.2	365 169.0	217 101.2	423 114.2

^{** -} a layer of buried asphalt was encountered between the granular layers (thickness of 90 mm)

Underlying the pavement structure on Ninth Line, the subgrade generally comprised of brown clayey silt till. The moisture content of the clayey silt till varied from 11 to 12 percent, which is considered to be dryer than the plastic limit for this material. At Station 1+000, the moisture content was measured at 22 percent, which is considered to be wetter than the plastic limit.

4.3 Groundwater Conditions

On completion of drilling, free water was not encountered in any of the boreholes. The regional ground water table is likely lower than the depth investigated.

4.4 Falling Weight Deflectometer Testing

Several analysis methodologies were used to analyse the FWD deflection data.

Materials Characterization: The pavement thickness data from the boreholes was used in conjunction with the FWD results to estimate the stiffness (strength) of the existing pavement. Pavement layer stiffness back-calculation uses closed form models to estimate layer elastic modulus values, given the layer thickness and FWD data. The FWD data provides the magnitude and contact area of the load and the output from the FWD deflection sensors.

The procedure as outlined in the AASHTO 1993 Guide for Design of Pavement Structures, Part III, Chapter 5, was used to determine the properties of the as-constructed flexible pavements. The resultant data includes the composite elastic modulus (E_p) for the combination of all bound layers above the subgrade (e.g., the asphalt concrete and granular bases), the subgrade elastic modulus (E_s), and the subgrade resilient modulus (M_r). Typically, M_r is calculated from E_s by reducing the value of E_s by a factor of 3.

Maximum Normalized Deflection: The maximum deflection (D₀), measured in the centre of the load plate, is a good indicator of overall pavement strength. The deflection at this location is a function of the pavement layer stiffness, as well as the support capacity of the subgrade. Because deflection is a function of load, and because of slight variations in measured load at each test point, a linear extrapolation of the measured deflection is made to adjust deflections at all test locations to a "standard" load level of 40 kN.

Effective Structural Number: Based on the back-calculated pavement moduli, the effective structural number (SN_{eff}) of the existing pavement was calculated using the 1993 AASHTO Guide for Design of Pavement Structures procedure.

The detailed results of the pavement load/deflection testing and data analysis are presented in Appendix G and summarized in the following Table 4.3.

Table 4.3: Summary of FWD Test Results

	D ₀ (μ m)	M _R (I	MPa)	E _P (I	MPa)	SNeff	(cm)			
		St.		St.		St.		St.			
Station	Mean	Dev	Mean	Dev	Mean	Dev	Mean	Dev			
	Steeles Avenue to No. 5 Sideroad										
0+000 - 1+000	430	58.1	30	3.6	459	87.3	10.3	0.6			
1+000 - 2+000	465	133.7	29	4.4	449	151.4	10.1	1.2			
2+000 - 3+110	442	160.2	30	5.1	491	154.2	10.4	1.2			
	No.	5 Sidero	oad to N	o. 10 S	ideroad						
3+110 - 4+000	560	199.6	28	9.1	370	133.7	9.5	1.2			
4+000 - 5+000	512	180.6	30	7.9	392	116.5	9.7	1.0			
5+000 - 6+000	550	112.2	24	4.1	361	72.4	9.5	0.7			

The FWD test results were divided into 1 km sections to show any variation along the project. The normalized deflection, D_0 , varied between 289 and 1,117 μm . The M_r of the subgrade was found to be in the order of 30 MPa. These values would indicate poor to fair subgrade support.

The effective structural number (SN_{eff}) for the entire roadway varied 7.2 and 12.3 cm. In general, SN_{eff} was in the order of 10 cm between Steeles Ave and No. 5 Sideroad, and around 9.5 cm between No. 5 Sideroad and No. 10 Sideroad.

5.0 ENGINEERING CONSIDERATIONS

We understand that Halton Region is considering infrastructure improvements to the roadway, including rehabilitation of the existing pavement.

To evaluate the structural adequacy of the existing pavement structure, new pavement designs were developed for Ninth Line. The designs were completed in accordance with the AASHTO Guide for the Design of Pavement Structures, 1993.

Key inputs for the pavement design include subgrade soils, pavement layer material types and thickness, current and projected traffic data including heavy vehicle volumes and distributions and consideration of the roadway classification and utilization. The output of the 1993 AASHTO flexible model is a structural number that characterizes the structural capacity of the pavement layers required for the given set of inputs. This structural number

(SN) is then distributed in terms of thickness among the various pavement layers (e.g., HMA surface, binder, aggregate base, and so on) according to coefficients characterizing the relative structural support of each material. The AASHTO design method and input parameters were adapted and verified for pavement design in Ontario as outlined in the 2001 MI-183 publication (ERES 2001). Details on the input data used for the pavement designs are given in the following sections.

5.1 Traffic Loading

Traffic data was provided for our use by Halton Region and summarized as follows. Traffic volumes on Ninth Line between Steeles Avenue and No. 10 Sideroad are in the order of 11,500 AADT. The distribution of vehicles was broken down into the following vehicle categories; 96.1, 0.6, 0.6, and 2.7 percent for cars, small trucks, medium trucks, and heavy trucks, respectively. A growth rate of 5.0 percent was projected.

The AASHTO pavement design methodology measures the damaging effect of traffic loading using the concept of equivalent single axle loads (ESAL's). An ESAL is defined as an 80 kN single axle load. Assuming a 20-year design period, these traffic parameters yield some 3,481,000 ESALs.

5.2 Structural Requirements

5.2.1 New Pavement Design

New pavement designs were completed in accordance with the AASHTO Guide for the Design of Pavement Structures, 1993. The designs were based on the type and frost susceptibility of the roadbed soils (clayey silt – low frost susceptibility), along with the anticipated traffic volumes over a 20-year design period.

The output of the 1993 AASHTO Guide flexible pavement model is a structural number that characterizes the structural capacity of the pavement layers required for the given set of inputs. This structural number is then distributed in terms of thickness among the various pavement layers (e.g., hot mix asphalt (HMA) surface, binder, aggregate base, subbase and so on) according to coefficients characterizing the relative structural support of each material. The following inputs were chosen for calculation of the required structural number (SN) for flexible pavements in the AASHTO method:

- Design ESAL's = 3.48 million
- Design Period = 20 years
- Initial serviceability, P_i = 4.4
- Terminal serviceability, P_t = 2.2
- Subgrade resilient modulus = 29 MPa
- Reliability level, R = 90 percent
- Overall standard of deviation, $S_0 = 0.44$
- HMA layer coefficient, $a_i = 0.42$
- Granular A layer coefficient, $a_i = 0.14$
- Granular B layer coefficient, $a_i = 0.09$
- Drainage coefficient for all layers, $m_i = 1.0$

In accordance with the AASHTO Guide for the Design of Pavement Structures, 1993, and based on the measured in-situ strength of the subgrade, along with the anticipated traffic volumes over a 20 year design period, a design SN of 12.2 cm was calculated. An appropriate pavement design is suggested as follows:

40 mm	HL-1 Surface Course
50 mm	HDBC Upper Binder Course
50 mm	HDBC Lower Binder Course
150 mm	Granular A
475 mm	Granular B

5.2.2 Existing Pavement - Steeles Avenue to No. 5 Sideroad

The SN_{eff} for this section of Ninth Line, based on the FWD testing, was found to average around 10.3 cm with 90% of the SN_{eff} values above 8.8 cm. When compared to the design SN of 12.2 cm, this section of Ninth Line is considered to be structurally deficient.

To increase most of the SN_{eff} to the design SN for future traffic loading, an additional 80 mm of HMA would be required.

5.2.3 Existing Pavement - No. 5 Sideroad to No. 10 Sideroad

The average SN_{eff} for this section of Ninth Line, based on the FWD testing, was found to be around 9.5 cm with 90% of the measurements exceeding 8.3 cm. When compared to the

design SN of 12.2 cm, this section of Ninth Line is also considered to be structurally deficient.

To increase most of the SN_{eff} to the required SN_{des} level, an additional 95 mm of HMA would be required.

5.3 Pavement Functional Requirements

An important component of the pavement rehabilitation process is estimating the remaining life of the in-service pavements. Remaining life should be defined in terms of both structural capacity and functional serviceability. As noted in the previous section, the structural capacity of the pavement is currently inadequate for future traffic requirements.

The functional performance of a pavement is the users' perceived ride quality. Based on the ARA condition survey of the existing pavements, the roadway is in fair to good functional condition.

6.0 RECOMMENDATIONS

Both sections of Ninth Line are structurally deficient and will require rehabilitation of the existing travel lanes to support future traffic. A prioritized needs assessment synthesizing rehabilitation, replacement, and operational improvement components was required to develop cost-effective rehabilitation strategies. The selection of the most appropriate rehabilitation strategy for Ninth Line may be affected by the strategies and budgets developed by other disciplines. After identifying all potential options for rehabilitating the roadway, the following feasible options emerge for the existing flexible pavement.

6.1 Appropriate Options for the Rehabilitation of the Existing Pavement

The existing sections of Ninth Line were found to be structurally deficient. Rehabilitation of Ninth Line would therefore need to consider structural improvements. This can be accomplished selecting a rehabilitation technique that will increase the structural capacity of the existing pavement structure.

Partial-Depth Removal and Placement HMA Overlay

A common technique for the rehabilitation of asphalt concrete pavements is a mill and overlay strategy. This strategy involves the removal of 40 mm of the existing HMA followed by replacement with 90 mm of new HMA. This strategy does not include remediation of existing distress areas that will likely lead to premature deterioration of the pavement as a result of reflection cracking. As existing pavement distresses are not being treated, a service life of only 3 to 7 years is expected.

Partial-Depth Removal, Crack Repair, and Placement of an HMA Overlay

An enhanced mill/overlay strategy that would mitigate the occurrence of reflection cracking, would include repair of distressed pavement sections. As noted in Section 5.2, a structural overlay in the order of 100 mm would be required to improve structural adequacy of the existing pavement for the anticipated future traffic loading. However, to be successful, existing pavement distresses would need to be remediated. Untreated cracks in old asphalt layers have a tendency to reflect through overlays, resulting in a reduced overlay service life.

Areas exhibiting fatigue or multiple cracking would require full depth removal of the asphalt to the granular base. Treatment of existing distress would include a combination of saw cut with removal/replacement of larger areas or crack strip milling. Due to the density of the cracks encountered during the distress survey, this type of repair would represent approximately 50% of the project limits.

Assuming a milled depth of 40 mm, the overlay requirement would therefore be 135 mm. The service life expected for this option is 10 to 12 years.

Pulverize and Overlay

An alternative rehabilitation solution to address cracked flexible pavements is to pulverize (Full Depth In-Place Reclamation) the existing HMA, grade and compact, followed by placement of a new HMA overlay. Pulverizing of the existing roadway should be carried out in accordance with OPSS 330, Construction Specification for In-Place Reclamation of Bituminous Pavement and Underlying Granular. This rehabilitation method would eliminate the occurrence of reflection cracking, permit reprofiling the road grade, and improve the overall ride quality of the pavement.

The following pulverizing and overlay strategy is recommended for the existing main lanes should this alternative be considered.

Ninth Line

	Steeles Avenue to	No. 5 Sideroad to
	No. 5 Sideroad	No. 10 Sideroad
HL-1 Surface Course	40 mm	40 mm
HDBC Upper Binder	50 mm	50 mm
HDBC Lower Binder	50 mm	50 mm
New Granular A*	50 mm	50 mm
Pulverized Thickness	~300 mm	~300 mm

^{* -} The Granular A addition is often beneficial for fine grading the granular base layer. The use of this layer is considered to be optional.

Alternatively, the pulverizing option can be supplemented with expanded asphalt stabilization. The expanded/foamed asphalt method is an in-place recycling technique that uses foamed asphalt as a stabilizing agent. Foaming occurs when small amounts of water are added to hot asphalt in a controlled expansion chamber. The advantages of foamed asphalt stabilization over other stabilization techniques, include: can have lower costs, an acceptable driving surface immediately after placing and compaction, reduces the overall grade raise required, and the method is relatively insensitive to environmental constraints (ambient weather) during placement. The following pulverizing and expanded asphalt strategy is recommended for the existing main lanes should this alternative be considered.

Ninth Line

	Steeles Avenue to	No. 5 Sideroad to
	No. 5 Sideroad	No. 10 Sideroad
HL-1	50 mm	40 mm
HDBC	70 mm	60 mm
Stabilization with Foamed Asphalt	~150 mm	~150 mm
Pulverize Existing Pavement	~300 mm	~300 mm

Expanded asphalt stabilization of the existing roadway should be carried out in accordance with OPSS 331, Construction Specification for Full Depth Reclamation With Expanded Asphalt Stabilization.

The service life expected for this option approximately 15 years.

Reconstruction with HMA

Another potential rehabilitation option is to completely reconstruct the existing traffic lanes, or portions of them. Reconstruction consists of removal of all of the existing HMA layers and replacement. Reconstruction is usually considered when the cost of restoration for the amount of existing distresses is too high, there is little remaining life in the original pavement, or the original pavement no longer serves the purpose for which it was intended (e.g., geometrics, structural capacity). A minimum 250 mm of additional Granular A and 140 mm of new HMA would be required to support future traffic over the service life of the pavement. The expected service life for this option is 15 to 17 years.

6.2 Rehabilitation of Existing Pavement

The four alternatives presented above were compared based on the initial construction costs as well as the expected maintenance and rehabilitation costs over a 30-year analysis period. Assuming a discount rate of 6 percent, a simplified life-cycle cost analysis yields the following:

	Estimated Initial	Estimated Life-Cycle
	Construction Cost (\$)	<u>Cost (\$)</u>
Pulverize and Overlay	102,500	134,000
Mill and Overlay, with Distress Repair	104,500	149,500
Reconstruction	123,000	154,000
Mill and Overlay	85,000	209,000
Note: Assumed costs based on lane-km.		

Alternatives ranked based on assumed 30 year Life-Cycle cost.

Based on the results of the simplified life-cycle cost analysis, the pulverize and overlay option is considered to be the life-cycle cost efficient alternative when considering a 30-year analysis period. This alternative will mitigate reflective cracking, as well as, allow for reprofiling with granular material rather than padding with HMA. The recommended pavement design for the pulverizing strategy is presented in Table 6.1.

Table 6.1: Recommended Pulverize and Overlay Design

Layer	Steeles Avenue to No. 5 Sideroad	No. 5 Sideroad to No. 10 Sideroad
HL-1 Surface Course	40 mm	40 mm
HDBC Upper Binder	50 mm	50 mm
HDBC Lower Binder	50 mm	50 mm
New Granular A	50 mm	50 mm
Pulverized Thickness	300 mm	300 mm

To ensure that the existing roadway can be properly pulverized, milling is recommended to bring the HMA thickness to no greater than 200 mm. Milling of the surface HMA should be completed at the locations identified in the Table 6.2 and Figures 6.1 and 6.2.

Table 6.2. Milling Areas Required Prior to Milling

Direction	Station From	Station To	Mill Depth (mm)
NB	2+100	2+300	50
SB	3+200	3+600	70
SB	4+600	4+800	50

6.3 Shoulders

In consideration of grade increases in the order of 200 to 300 mm, a review of the shoulder geometry should be completed to determine if shoulder improvements are required.

6.4 Transition Treatments

Smooth transitions will be required where the new pavement meets the existing pavement at the limits of the work project.

At the ends of the work project, the tie-ins at the existing pavement should be cold planed to a depth of 40 mm, full width, to ensure that the new surface course can be placed flush with the top of the existing pavement surface. A tack coat should be utilized between all asphalt courses and at all tie-ins and vertical surfaces.

Figure 6.1: Areas that Require Milling Prior to Pulverization

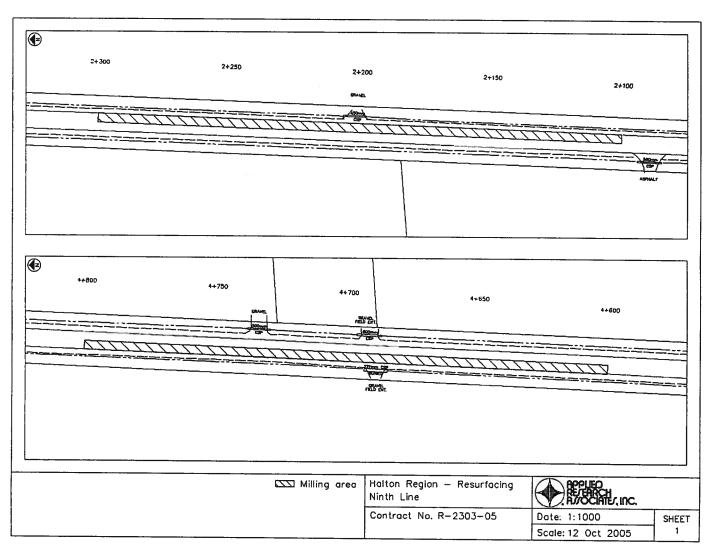
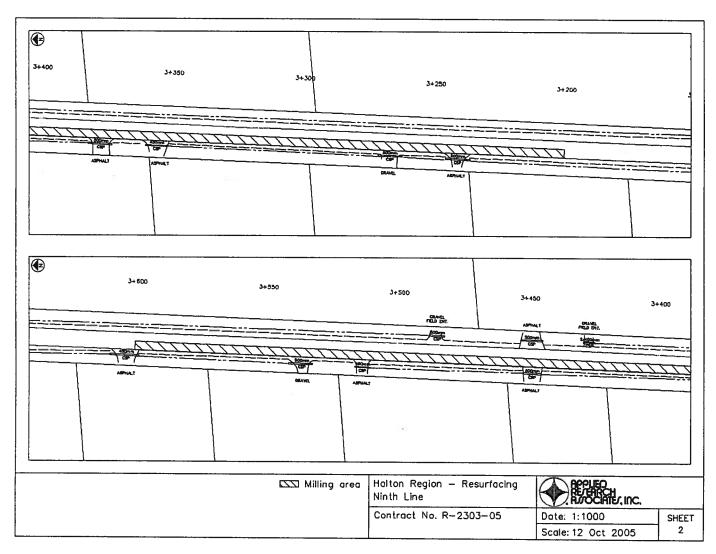



Figure 6.2: Areas that Require Milling Prior to Pulverization

ARA's mission is to provide innovative and cost-effective solutions for pavements..

At potential widenings and/or turn tapers, tie-ins must be constructed to ensure positive drainage from the base of the existing granular sub-base. This can be achieved by constructing the base of the new pavement granular at or below the base of the existing granular.

6.5 Materials

The crossfall measurements indicated an average cross-slope of 1.65% from Steeles Avenue to No. 5 Sideroad and 1.32% for the 2.89 km section from No. 5 Sideroad to No. 10 Sideroad. The crossfall can be corrected when regrading the pulverized surface.

The following table specifies the material quantities required for the mainline pavement rehabilitation:

Item	Conversion	Quantity
HL-1	2.512 tonne/m ³	5,275 tonne
HDBC	2.45 tonne/m ³	13,425 tonne
Granular A	2.4 tonne/m ³	7,200 tonne
Shoulder Granular	2.4 tonne/m ³	17,500 tonne*
Tack Coat		00 200 m ²

Table 6.3. Estimated Material Quantities

6.5.1 New Construction Materials

All HMA materials should meet the requirements of the Region of Halton Specifications for Hot Mix Asphalt Paving, Materials, Sampling and Testing and be compacted to at least 97 percent of the Marshall density. PG 58-28 asphalt cement is recommended for all mixes.

All granular base and subbase materials should meet the requirements of OPSS 1010 and be compacted to at least 100 percent of the standard Proctor density. The granular base should meet the gradation and characteristic requirements of OPSS Granular A.

^{* -} Shoulder quantity considers no geometric improvements to the shoulders.

6.5.2 Recycling Existing Materials

The pulverizing alternative will allow for 100 percent recycling of existing materials within the project.

6.6 Grade Raises

The pulverize alternative will require grade raises to Ninth Line. The geometric issues arising from the grade raise should be reviewed as part of the detailed design process.

7.0 CLOSURE

The recommendations provided in this report are for the use of the Regional Municipality of Halton and their design engineers. Details of the investigation and the recommendations given in this report are considered to be complete. However, should any questions arise, please do to he sitate to contact our office.

Sincerely,

Applied Research Associates, Inc.

Mark Popik, M.Eng., P.Eng.

Project Engineer

PROFESSIONAL CHOOSE

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M |

M | D | M | D |

M | D | M | D |

M | D | M | D |

M | D | M |

M | D | M | D |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D | M |

M | D |

M | D | M |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

M | D |

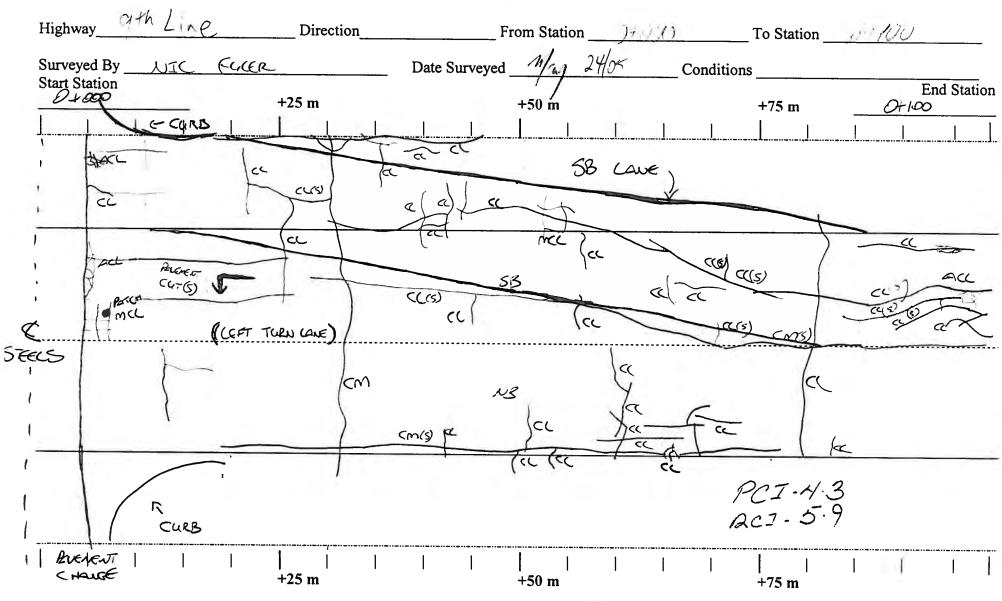
M | D |

M | D |

M | D |

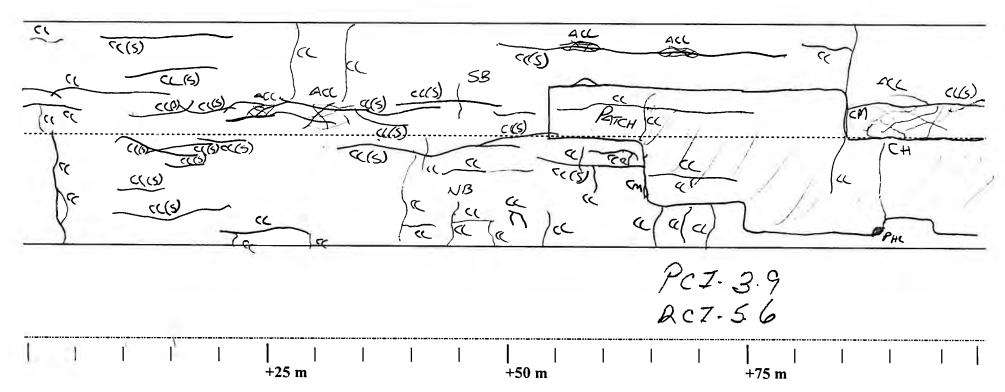
M | D |

M | D |


M | D |

M

Chris Olidis, P.Eng. Senior Engineer


APPENDIX A DETAILED DISTRESS SURVEYS

				111	. 1714				VACAA A	1105	OICVI	<i>3</i> 1						
Highway 9th line Direction							From	Station	0-	1000		_ To S	tation _	6-1	100		_	
Surveyed By	人ばく	EUCER				Date S	Surveye	d	Was a	14/25	(Conditio	ns					
Start Station		_	+25 r	n				+50	'/)m				+75	m	0	1200 E	nd Stat	ion
	1]	1	1									1		l	

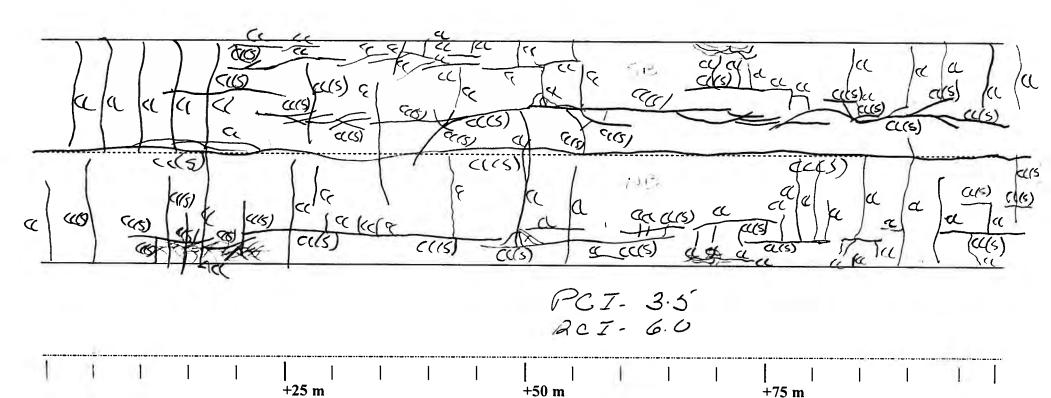
ARA Project No 16 73/

			PAV	EMENT	DISTRE	SS MAPI	PING SU	JRVEY				
Highway	9/h	line	Direction_		F	rom Station	OHO	100	To S	tation	5+100	10.00 110 110 110 110 110 110 110 110 11
Surveyed By _	UIC	- Euc	CZ	Date	e Surveyed	May 2	405	Condition				
Start Station			+25 m			+50 m			+75	m	0+300	End Station
	<u> </u>		<u>l</u>			1					<u> </u>	<u> </u>
	· · · · · · · · · · · · · · · · · · ·		· -		,	100						
	<(3)		_			1(0)	₹ ``			1-		
a					K 55	((S) (US)	(15) (15)	- ((6)		K	(1131	
54 946	5/	in	222	e l,	- 20(5)	-	cus					(2)
111	, km	((3)है	EL C	1 ((3)	11	ر الأر	<u>a(</u>	5) (((()	·/	((4(5)	C
PSITCH		511		-//	/ MR	25	q ($<$ $\alpha(s)$		/cc /8	. –	Con
.000		C((s)	KC CCCS	cus	1/1		-60	\	((<u>(</u>)			
		7 60	FIIS	1	· ·	7(5)	(10)		——————————————————————————————————————	Q		CU(5)
~	۹ در ر	<i>در</i> بد برز					1	OC 7- 3	3.9			
							i i	PCI- 3 2 cZ · 3	-3	-		
1 1	1	1	 +25 m	1 1	1	+50 m	I	1	 +75	 5 m	1 1	

Highway	91h	Cone	Directio	n		I	From Sta	tion _	01	000		_ To Sta	tion _	61	100	
Surveyed By _ Start Station	LITE	CUER			Date S	Surveyed	May	24	15	C	ondition	ıs			F,	nd Station
0+300	>		+25 m				+50 m					+75 r	n	01	100 E	iu station
]	<u> </u>							<u> </u>			<u> </u>					
									5 (6)							
			((c		(_			(St	- ((s)	To K	a	Q1				
(2)	Roy CC		$\left\langle a\right\rangle$		1/4	SB		(2)	aces			4				
<u> </u>) (ı,		cus)	<u></u>	48)		, +	aa)	a)	_					(4)
6(2)) 4	CC(S)	(a (a)	5	5 P	ر د	CUS	<u>lu =</u>	C(S)		(3) /	ÇÇ.	· c	1	(5)	((5))
Tres	u_1	Ja	a fa	<u>d</u>	te by					la)	Z		c((\$)	-	C /a
a) "	1 01	es (c)		a/a	(4)	(3)		((5)		<u>در</u>	ر درچ) «		<(s)		(CC)
)			(1	OC;	T- 4	. 6					,
								/	つ <i>C</i> ; ス <i>C I</i>	්. ර	·5					•
	1 1		+25 m				 +50 m	 	I			 +75 r	 n	I		

		FAVEN	TENT DISTRESS MAPPIN	NG SURVEY			
Highway	9th Lu	Direction	From Station	02000	To Station	6-100	
Surveyed By _ Start Station \$\infty\$ + 400	WITC.	+25 m	Date Surveyed	Condition Condition	ions	Enc O1500	d Station
	<u> </u>	<u> </u>		1 1	1 1		1 1

	1	Carlos (AS)	« a a a	a (15)	fu le	a a	(18) (18)	(US) (C) (US) (US)	Tar la	(a / (1)	<u>u</u>	(a) a)
$\int_{a(s)} \cdot \int_{a(s)} \frac{a}{s}$	as l	(are)	With the		((s) (as)	a a w	a a a	(CS) (CS)	cus)	<u> a</u>	(15) - 200 - 200 - 200	E C
								PCI- RCI-				
1	V	1	I	 +25 m		1	 +50 m			 +75 m		


Highway Surveyed By Start Station	The line	Direction		From Station	01000	To Station	6+100
Surveyed By	ARC EUG	2					
Start Station		_	Date Su	rveyed Man	24/30	Conditions	
0+500		+25 m		+50 m	17.52	+75 m	End Station
	<u> </u>		1 1	1 1	1 1		1 1 1
C CC	(1(5) C((1(5) C((1(5)	Carrains)	((3)	(4(5) CC (4(5) (4(5))	(1 <u>a(s)</u> (1 <u>a(s)</u> (1) (2) (2) (3) (4) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1)		(c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
· 		v <u></u>	1 1	PCI- ACI-	4.4 5.4		<u></u>

Highway	91h	line	Dire	ction		Fro	om Statio	n <u>0-1</u>	000		_ To St	ation	6-17	100		
Surveyed By _ Start Station O_\(CO)	NAC	Gul	+25 m	············	Date Sur		₩а ₂ +50 m	24/5	C	onditio	ns	m		E1 +7 <i>0</i> 9	nd Statio	o n
				<u> </u>		1	1 1			<u> </u>			<u> </u>			1
						;	5B,									
(F (C)	(C() () () () () () () () () ((4)	(C) (C)	aus)	(1 2	acs)) (1 (10)	a do	a cus	<u>((3)</u>	a cus	(c((((5)		(()	<u> </u>
(10) F (10) F	(s) (n/2)	a	- (u	<1/10 C(C(C(C(C(C(C(C	1 6 C		ردر در	(B) (4))cy			100 cm	(s) (c		a(s)	a (u
						100					PC.	J: 2 J: 5	9			
	1 1		 +25 m				 +50 m			l	 +75	 m		l		

Highway	9th 6	ne	Direction_	F	rom Station _	OH CHO	7	To Station _	5-100	1
Surveyed By Start Station	VI(GUEL		Date Surveyed	ug 2	405	_ Conditions	S		End Station
0+700		+2	5 m		+50 m			+75 m	07820	Lind Station
1	<u> </u>	1 1	1	1 1 1	1 1	1 1	1			

Highway	9th line	Direction		From Station _	0100	00	_ To Station	5 - 16	10
	LEC EUGE		Date Surveye	d May 2	1415	Condition	ıs		
Start Station Of 人の		+25 m		+50 m			+75 m	04900	End Station
]]	1 1	<u> </u>		1 GRAJICE	اعم	<u> </u>		1 1	1 1
				. ORIVE	-4				
			1	WAS					
					3				
	Ja	(-1			ake		Ser V	Ja)
	(01)		\c <u>c</u>	k	-a	2000	ACC		/ (4
-) 19(5)	als) also	a	مرا	cus)	1.5	cm / A	je Je		cus) cus)
a la	(11) (11s) (11s) (1	cus			M	1/2	ATCH ST	1/1/2	C037_507
CIOS)	(4)	la a L	cr ⁴¹ cc	J	الع م	4 (1 Ja			Jee (1)
(cis)	(Q) et la us) en	Ta Y	12 9	cu(s)	ja · Cul			//kc)	ic a fue
cos) o	a CUS la	k((s)(a))		((5)		Tels) CM	- 6	CL(S)
-d	(c) / (c)	(15) 4 (15)	~	ata a	MACHA	/porthole	C((S)	J Tech	- Ker)
	a			007-3.					
			· ·	CJ-5.					
			K	(4 - 5	* NOTE -	POOR ED	TON / POTHECE	atend-	(ow
1 1	1 1	1 1	1		1	 		1 1	1
		+25 m		+50 m			+75 m		,

			-				II I DON	· V LO I				
Highway	916	line	Direction	on	F	rom Station	0100	0	To Station _	07	100	
Surveyed By	UK	ELLER	*··	Date	Surveyed	Manz	4/05	Condition	ıs			
Start Station			+25 m			+50 m		Augo	+75 m	1-1	En	d Station
	<u> </u>]	1	الأكرا	sampy	1			<u> </u>
												7.07
			r	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>					7(5)	
		((1)	((3)	Jaracak)	:((5)		\		•	1		(S) }
ci(s)		'((رن)	des	100	4		1 a	<u>(3(5)</u>	cus) cu	<u> </u>	ध्री ।	<u>ب</u> ا
3)	(((3))	. 00	PATCH CI	(5)		11 74	acs		(13)		.(3)	1
101/2	a (()	3)		<u> </u>	(1)	<1- Tu			21/3)			
cus a fac	× 10	(55)	- 4	44	(a ·		+	T			(a 6
Cast La	a(s)	aldy	ful	(C) ce	CL.	(de)	CUS) CU	((5)	le cus) (4	-4	PNC
14/cc	Ca)	٠. د د د د		cus		(cis)	(الالا)	(ex)		<u> </u>	17.	
						.2/	CI. H.	4				
						7-0	1-5.	/				
						120	1-3-9	P				1
1 1	1 1	1	1	1 1		<u> </u>	1	I /	1 1	1	1	1
			+25 m			+50 m	Craw	yar	+75 m			
							POET OF	~ <u>~</u> ~				

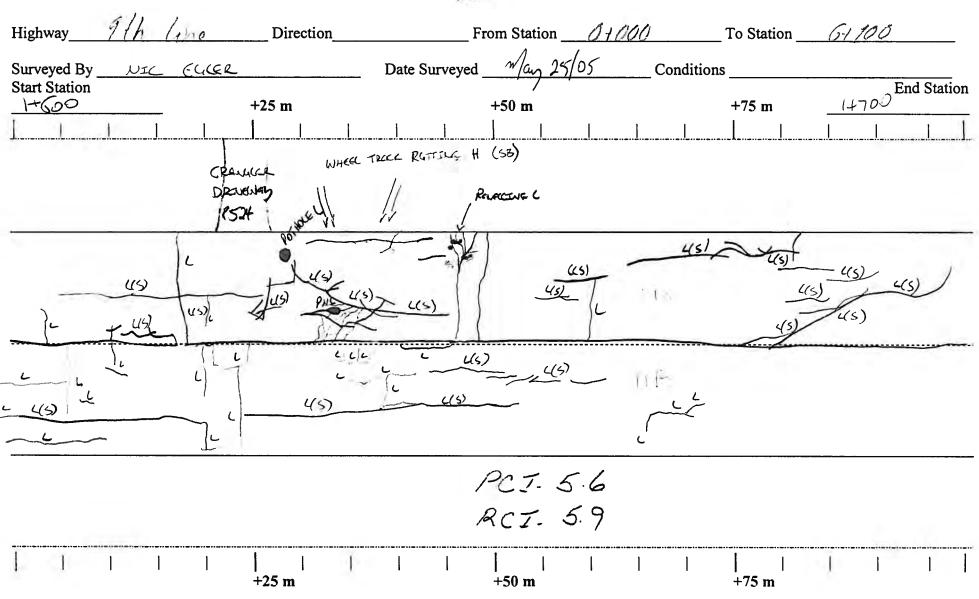
ARA Project No 16/31

Highway/	th line	Direction		From Station	OFINGO		_ To Station _	61100	
Surveyed By Start Station 	1 se Euce	+25 m	Date Surveye	d <u>Mag s</u> +50 m	24/2 / P	_ Condition	+75 m	<u> H100</u> l l	End Station
					PENED PRACES				PANED DESTALA 1300
/a /a /a	2 (C) (S)	(15) (15) (11)	((S) ((S)) (u)	(1(5))	Cu	((0))	c cost	(((5)
COR) LA COR		$\frac{\alpha}{\alpha}$	C(Q) C(Q) C(Q) C(Q) C(Q) C(Q)	a paiss	(cist	a(s)		(u(s))	ci a
				PCI- RCI-	3.8				
J I		+25 m		 +50 m			 +75 m		1

	Highway	9-1/	lano	Directio	n	Fro	om Station _	01000	_	To Station _	6-110	70	
	Surveyed By	LIC	ELCER		Date S	urveyed _	May 24	<u>05</u> c	onditions				
	Start Station → (20			+25 m			+50 m			+75 m	1+20	End St	ation
	<u> </u>	<u> </u>		<u> </u>			<u> </u>			11		11_	1
AUE AUG 361	ion									Puco Diamy 5382	ļ	Develop 1388	
	2 cus	a a	s) a		SV, CUS)	CO) H	(C(S)	(15) (16) (16) (16)	(16) (u	u) la	(u) (u)	(6) (4) (a) (46)	da a
8	a la	all	(a)	(د /	a	Q	((s)	(US) (US)		Tu /	(3) Cr (1)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,
							PCI. RCI.	4.6					
	1	1 1	1	 +25 m	1 1		 +50 m			 +75 m			

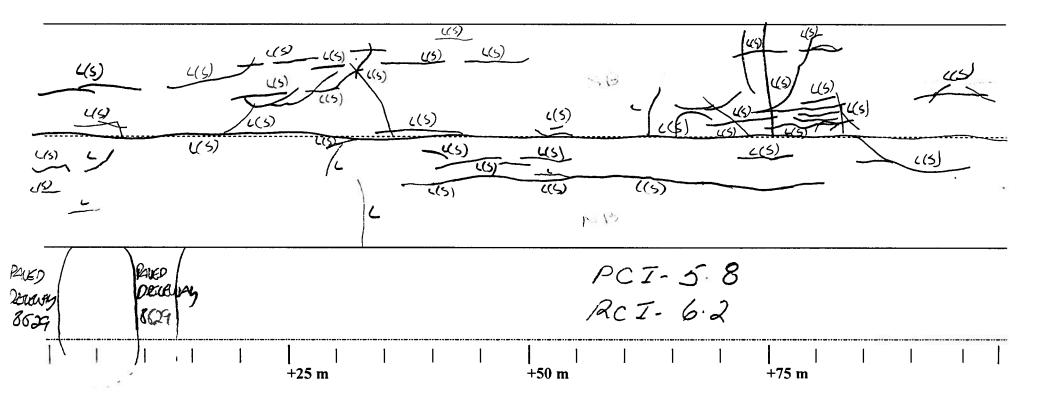
Highway	91/2 (1)	<u>ψ</u> Direction		_ From Station	n <u>0100</u>	06	To Station _	6-100	<u>/</u>
Surveyed By Start Station		125-	Date Survey	red May	24/05	Condition			End Station
1	1 1	+25 m	1 1 1	+50 m	ı	1 1	+75 m	1+30	1 1
		Paed Dening 8420	(<u></u>		<i>(</i> 1			
CUS) CU(S)	<u>((5)</u> a(5)	a (5) ay	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(3) ((5)	(((s) < 'C' < (T)	(a) (c(s) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	((s) (us)	CUS	(US) (US) (US) (US)
21. bien	CL(5) CL h	大心 上	C((5) C((5) C((5) C((6)	a lua	a	(s) and (s)		((s) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
							I-3.5 I-6.0		
1 1	1		1 1	 +50 m		1 1	 +75 m		

Highway	91h line	Direction	Fro	om Station <u>34</u>	000	To Station	6-1100
Surveyed By		R	Date Surveyed _	May 24/25	Conditions	S	
Start Station (+3の		+25 m		+50 m		+75 m	End Station
180	JUNED BUKUNG 138		<u> </u>	<u> </u>		1	pervences pervences
a a la	lacus la cue	<u>a</u> ~ (1)	(US) (US) (US) (US)	((5) ((5) ((5)		(6) (1)	(3) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
(C) (U) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	(CC) (CC)	(Z)	(a) (u(s)	Jul a	(((5))	1 / CC ((3) (F CES)
				1	PCI-48 RCI-6.1	3	
1 1		 +25 m		+50 m	1 1	+75 m	


Highway	9th 6	he	Direction	l		_ From S	tation _	0+0	100		_To Stati	ion	6+	100	
Surveyed By Start Station (+400	UIC	EUGR	+25 m	Da	ate Survey	ed <u>n</u>	/	4/05	Co	ondition	s +75 m		-برا	Eı	nd Station
	1 Dan				<u> </u>		<u> </u>	<u> </u>		<u> </u>		1		1	1 1
	D50 848	-						,							
	(5)		(1)	(C)		<u>e</u> , t	a	/cc	((c))	CCS.	(((3)	(((S	(5)		
CCCS	cus) an	(5)	ci	(s) ac cc (s		44.76 2.1	८८(२) ८५(५)	\(\cdot \cdot \cdo	Pec	1	s) ((s)	((s) T		((s)	
					T-	CI RCZ-	5.	2							
1	1 1	1	 +25 m		Ĭ	 +50	m	1		I	 +75 m	 -		1	1

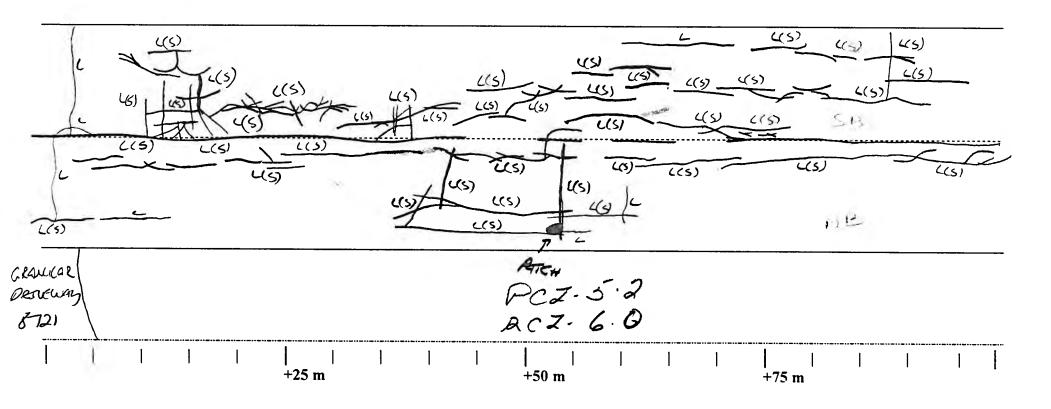
ARA Project No <u>16931</u>

Highway	9th line	Direction	From Station	700 To Station	6+100
Surveyed By	LIE EUC	٨.	Date Surveyed Way 25/05	Conditions	
Start Station (+500)		+25 m	+50 m	+75 m	End Station
	<u> 1 </u>	<u> </u>		<u> </u>	
~ ~ ~			LAWE HAS HIGH RUTTURE WITHIN	in 3 m In 58 cane (when	. 82(TH)
	(s) tus)	(4)	(S) US) US)	Ju /1	le le
((s)			((5)	(15) L	((S)
u(s)	- (45)	125 45	-L ((5)	e /c	- L
			PCI-4.1	GRANGAR DESUGNAS 8519	
Ţ	1 1 1	 +25 m			


Highway	916	line	o	n	irection	23112						91000		To Static		5-1100	
Surveyed By	Nic						Date					C		_	on	MT 100	
Start Station				+25 1	m				+5	0 m				+75 m		1.5800	End Station
<u> </u>		<u> </u>		1									<u> </u>		<u> </u>	1	1 1
								· · · · · · · · · · · · · · ·			<u> </u>			<u>us)</u>	<u>u5)</u>	· · · · · · · · · · · · · · · · · · ·	
(15)		(3)			4	<u> </u>	US)		<u>((ح)</u>			X ((3)			(5)		
<u> </u>	ب	(2)		45)		<u> </u>			1		4	3	43 40	(<u>3)</u> (4)	(45)		
			((s)	L(S)	_				u(s)			<i> </i>		45)	Li	***************************************	
	45)		(5)		۷(۶)				TO			۷		-/	(L.	},
	V(5)									}	ر س	/	L	(
									RC	'ブ- ご	7					-	
									RC	7- 6	5 · O						
1 1	T	1	1	+25	 m	1			+5	 0 m				+75 m	1	j.	

Highway	16/	line	Direc	tion		From Station	0100	70	_ To Station	6.1100	
Surveyed By Start Station (+89©		C EU	+25 m		Date Surveye	d <u>Way</u> +50 m	25/05	Condition	+75 m	E	End Station
	1 1	<u>L</u>				1 1		1 1	1 1	1 1	
	US	<u>US)</u>	(45)	US	((5)	14(5)	74	(3)	(US)		-
	<u> </u>	(9) ×	(6) LUSZ	L(4)	(t)	(f (15)	(3)	1 (15)	(S)	A. '	
			(19 (15) (15) (15)		L)		\ \ \			1-	
					PCI. QCI -	5.9					P4UED DRIVAUS 3629
1	1 1	1	 +25 m	1		+50 m	1		+75 m		1

Highway	91h	ano		Dire	ection		F	rom Station _	0+0	00	To Station	6-1-100
Surveyed By		NIC	Eco	KR.		Date	Surveyed	May 2	5/05	Conditio	ons	-
Start Station				+25 m				+50 m			+75 m	End Station
]		1			1 1	1		1	1	1 1	1	


Highway	911	lup	Directio	n		_ From S	Station	1100	10		To Station _	6-110	0	
Surveyed By	Vic	EULER		D	ate Survey	red	Way 2	5/05	Coi	nditions	3			
Start Station	-	_	+25 m			+50	m	•			+75 m	24	OEnd	1 Station
	1 1				<u> </u>					<u> </u>	1			
((5)	(S) (US) (US)	(L) (L5)	US) us)	(°5) 		49	s) ((s) ((s)	(15) - SG	((5)	4(5)	ASPH DEIV JEGO US)	entry	((5)
(s) <u> </u>	(S) =	~ (4s) -	<u>((s)</u>	US)	_	<u>((5)</u>	_	US	<u>)</u> Ви	<u>(4</u>	-	US)	L(S))
						S. /2	CI-	5	.9					***************************************
l i		1	 +25 m		l	 +50	 m			1	 +75 m	l		

			FAVEN	TENI DISTRE	SS MAPPI	NG SUK	/ L Y			
ighway	91h	line	Direction	F	rom Station _	11000		_ To Station _	61100	
urveyed By		C E46	<u>q</u>	Date Surveyed	May 2	5/05	_ Condition	18		
tart Station	l 		+25 m		+50 m			+75 m	2+20	End Station
]	1 1				1				
			~							
/	L (5)						50			
(5)	<u>「</u> (5)	((5)	(19)	1	<u>((5)</u>	((5)		((5)	<u>((3)</u>	
, 4	7	(3)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	XX ((5)		1-1			
	<u> </u>		((5)				<u> </u>		\ . ~	US) (5)
	(s)	•	1	(5)	(3)	-U5) U			<u>v(s)</u>	US W
			L)		_		i i i i i i i			
) 4(5)
				Or	7-51	2				
				/ (I-5:1 Z-6:1	/				RANGO
				/d C	x = 60·/				State Servi	Detuci 37
1		[]	 +25 m	1 [+50 m		ŧl	 +75 m		1

Highway	9th Line	Direction	Fr	om Station <u>() + () ()</u>) To Station	6+100
Surveyed By _ Start Station	NIC FC.	CEL	Date Surveyed _	May 25/05	Conditions	F 10:
200		+25 m		+50 m	+75 m	End Station
	<u> </u>			1 1		

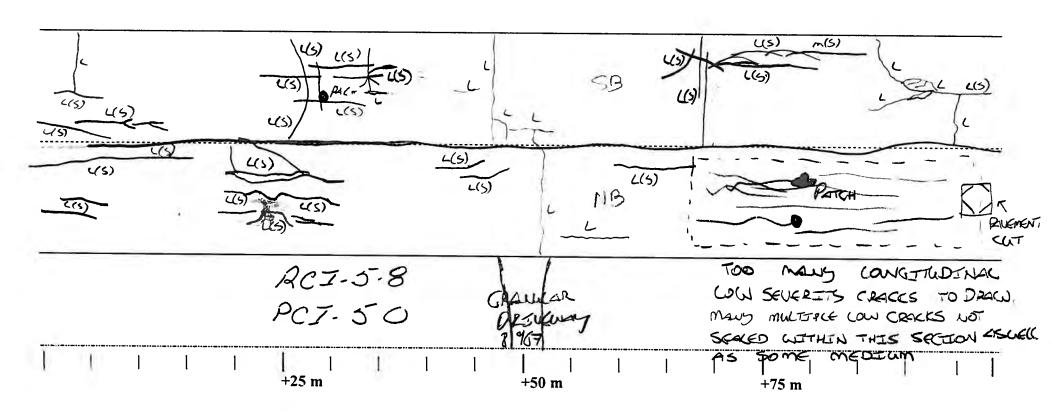
					PA	A IFIATE	FILT	121K	ESS MAP	PING	SUK	EX						
Highway	91/	life		D	irection	ı			From Statio	n	1000)	To	Station	6	1100		
Surveyed By		NIC	Eucer	2_			Date S	urveye	d Man	25/0	5	Condi	tions					
Start Station				+25 1	m			·	+50 m			_		75 m		2440	End S	ation
<u>] </u>	<u> </u>]	<u>l</u>					<u>l</u>		<u> </u>								
(S) (S)	((5)	W X	(5)	2(5)	45)	L(5)			(CS) (CS) (CS)	7	(5)	(3)	(())	((5) (45)		(5)	((5)) ((s)
							PC	Z- I-	5.6									
l 1				 +25	 m				 +50 m		1			75 m				

1						
Highway 91/1 (ne	Direction	From Station	61000	To Station	6+100	
Surveyed By NEC FLICER		Date Surveyed May 25	Condition	ns		
Start Station 21 400	+25 m	+50 m		+75 m	21500 Enc	d Station
						1 1
desurbe					50. 44.0	
Alexander 870				İ	Jeruchan Jeruchan	
(s)					8808	
		c(s) (SB	(6) (6)			(5) (5)
((3)	45) (5)	- Think	4(5)	١.		
1 (19 45)	(3)	(s) (cs)	AD!			
(3) (4) (15)			(s) (vs)	_		
<u>(1)</u>		L L MB		5),	c(s)	(15) (15)
\c				ردی	(R)	M. M.
		PCT-5.0			PANED	7
		PCI-5.0 RCI.6.0			DRIVEN	bay
1 1 1 1						·····
1 4 1 1	+25 m		1 1	 +75 m	1	1]

Highway	916	lin	,	Dir	ection				From	Station	St	200		To S	tation_	6-	1100		
Surveyed By Start Station		UI	F	ace.			Date	Surveye		May	3/05		Conditio				E	nd Sta	_ tion
<u>2500</u> 				+25 m	<u> </u>	1			+5	0 m		<u> </u>		+75 	5 m	l	H600 		
<u> </u>								S	B	(G) - X	4			u:	s)	(ن)	- CO 10	' 5)	
A A	((S) \	(s)	271	((5)		4(5)	20	<u>(s)</u>			· / (C)	<u> </u>			Si .	9 5	2	OTTCH (S)	6
45)		· ((s)	<u>.</u>	<u> </u>						/ ((S)		(g)	\$\) \	L(5)			(3)	
4	(S) J	L(5)	<u> </u>						Þ 	<u> </u>		(3)	- - -			-			
									P	C]-	5.6	4 2							
1 1]	+25 m	1	1			+5	 m			1	 +75	 	 			

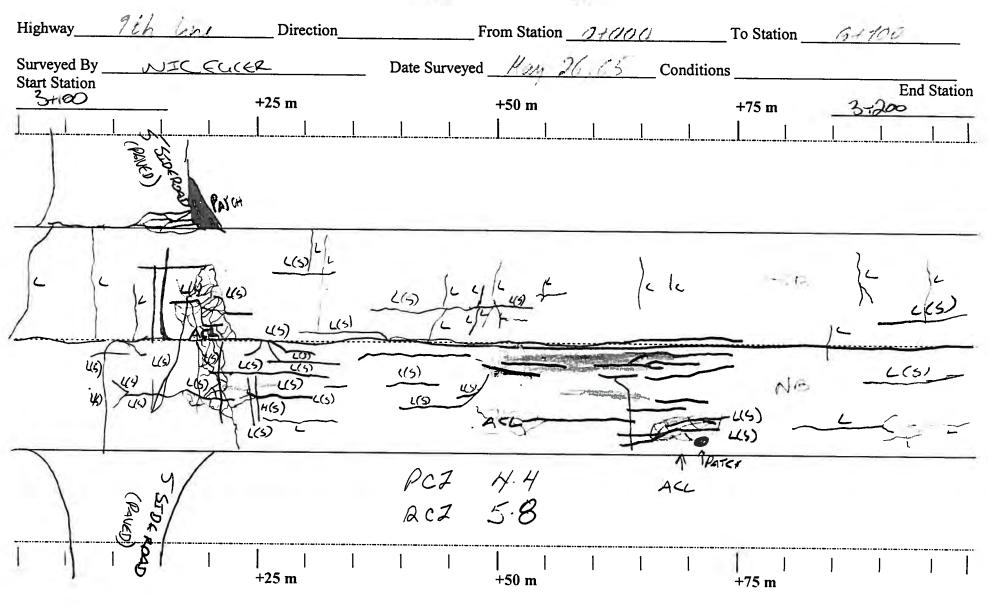
Highway	9th 4	Direction_	From Station_	11000	_ To Station	6-1 101	0
Surveyed By	NIC	Eucer	Date Surveyed	Condition	ns		
Start Station		+25 m	+50 m		+75 m	2+-	End Station
<u> </u>			<u> </u>	1 1			1]
			ceoular	CONFEL			
			/8872				
5) (((5)	c(s)		L(5) (L(5)	((5)	۷(۶)	(45)
		(S) 1=X (CS)	۷(۶)				L(5)
(3)			- (5) (5)	(13)	- {	457	((5)
\(\(\cup_{\cup}\)		(3)		.(5)	/		
		ragrah Crancicar Detrans	PCI - 4.6 BCI - 5 4	CULUKET			
1 1	1 1	+25 m		1	 +75 m	1	-

ARA Project No <u>16931</u>

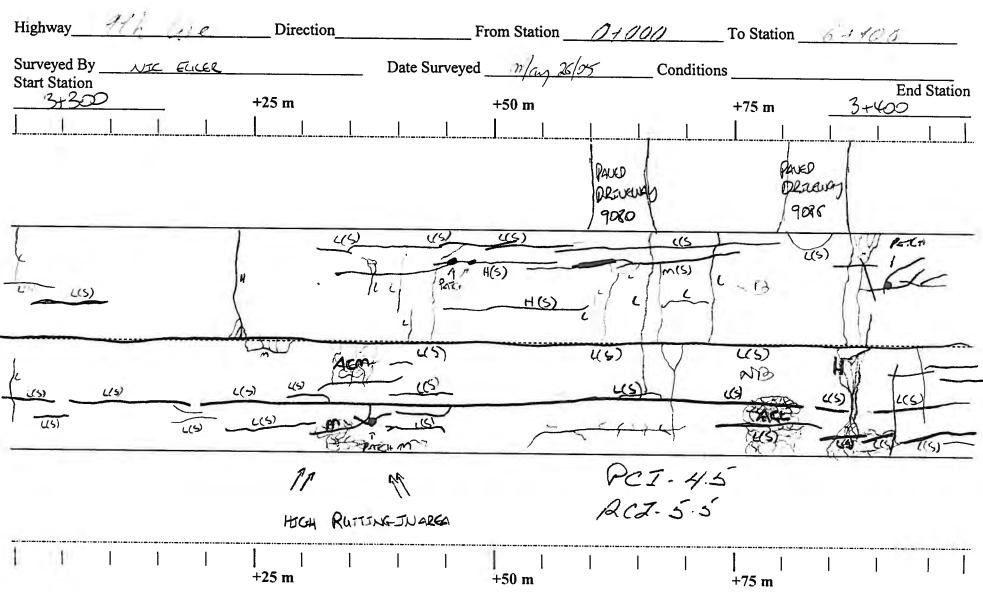

Highway	91/1	line	Directio	on		_ From Stat	ion <u>01</u>	000	Te	o Station	6	100	
Surveyed By Start Station	NIC	FULER			Date Surve	yed/n/	y 25/05	Cor	nditions _				nd Station
		11	+25 m	1		+50 m	<u> </u>	11	<u> </u>	-75 m	<u> </u>)+800 	
4.													
L 45)	<u>(45)</u>		(3)		(5)	M	<u>((5)</u>	45)	(43)	ų.	(S)	(3) (45)) ((5)
((S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	for her state	~(S)	_ ((s)	L		- N			3) 7	KK)		((5)	-4
^					P	CI-4 CI-5	73	•					
l t	1 1		+25 m			+50 m	1 1			-75 m			1

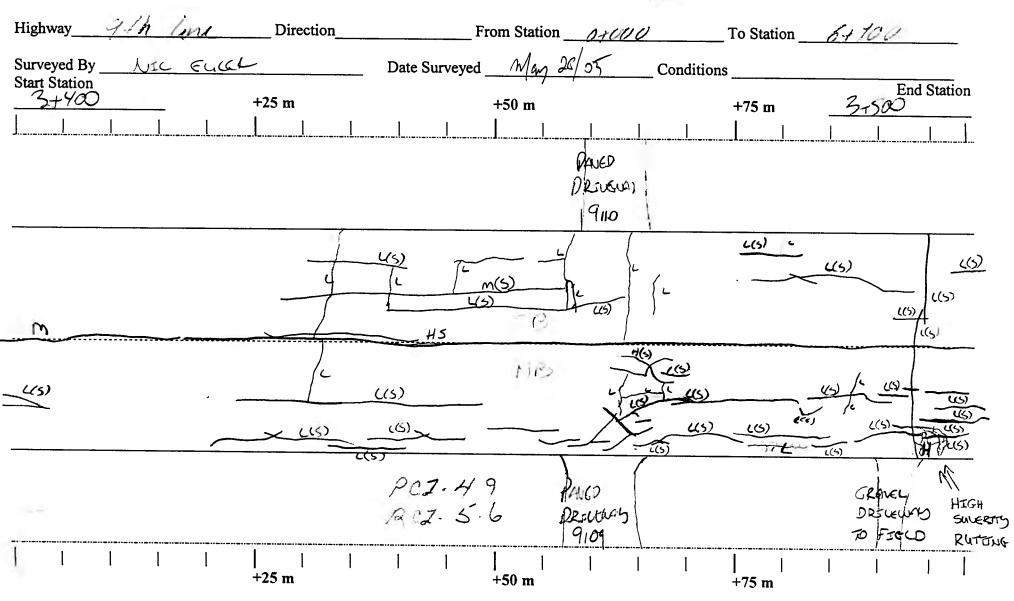
		* * * * * * * * * * * * * * * * * * * *	A TOTAL DIAL I	OIO I KEOO	IATURE I II.	io son	VVL				
Highway	9th line	Direction			n Station	040	00	To Station	6-1	100	
Surveyed By_	NIC ELCE	_	Date	Surveyed	Mrs 25/	05	Conditio	ons			
Start Station 2+700		+25 m			50 m			+75 m		En 149 <i>9</i> 0	nd Station
	<u> </u>			<u></u>			<u> </u>	1 1		1	
	4(1)			1		-					
	WIT TO THE REAL PROPERTY OF THE PERTY OF THE	4.7				1		1(5)			
<u>L(5)</u>	with -	¥ L(s)		10	E-	ccs		<u>L(5)</u> .	((5)	•	\~
			_	1	ادر			_=			
L(S)	(s)	(4)	(s)	. \	43)	(3)	۷(۶)			- ()
		crs)			(15)		5(2)	(6)			
	1		(13)	-(s) 5	(5)	<(s)	<u> </u>		cat		1.
	<u> </u>	.			c(s)#		- (3)		,		/m -cc
		(S)	-	111	-		· -	 			c(s)
7	1			1.3.4							
many can					Pn-	ナ ム	0				
CRACKS, TO					PC; RCI	Z - '/ '	0				
many to s		enery			RCI	- 5°	\cdot				
NOCE IN		7									
1 1	10 12	<u></u>									

Highway 9th line Direction	From Station Of (10)	To Station 6+ 100
Surveyed By LIC FLICER Start Station	Date Surveyed May 25/35	Conditions
25 m	+50 m	+75 m End Station

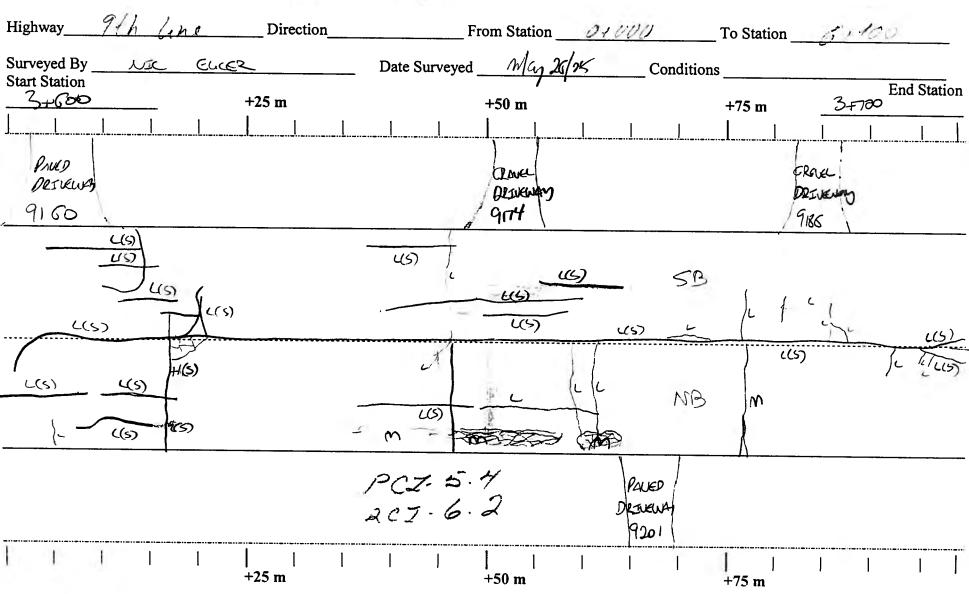


Highway 9/	line	Direction	Fr	om Station	01000	To Station	61106
Surveyed By	IC. Fu	CR	Date Surveyed	May 25	/25 Cor	ditions	
Start Station		+25 m		+50 m	7.0	+75 m	End Station
			<u> </u>	11	11	1 1	1 1 1
foo many us search and not	ow/med co	29CKS					
			27	~		·	7- 5
	₩(s)	(R) (R)	(a) Tus)	((5)	- () () - (s) - (s)	((s)	13) TO US
			PCI-	4.8			
	J 1	 +25 m		 +50 m	1	 +75 m	


ARA Project No _______

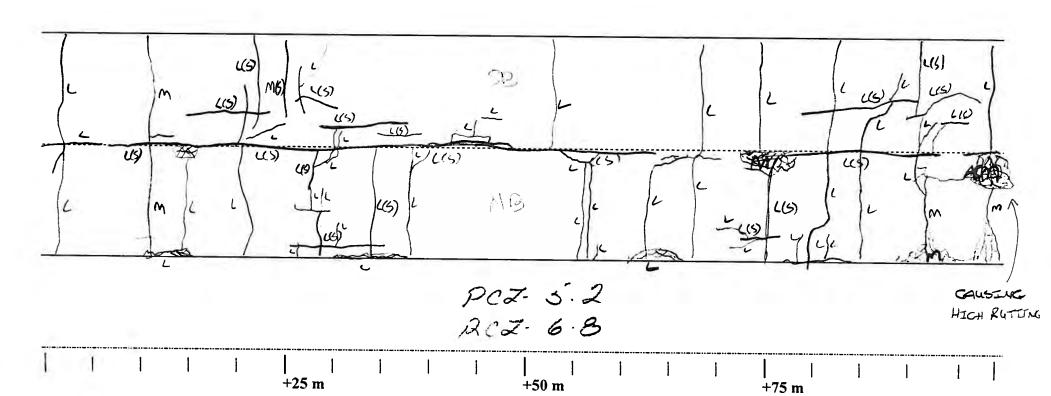


			1.7	X A TOTAL TOTAL	DISTRE	OO WAT I	uio son	VEI					
Highway	Ath.	ine	Direction	on	F	rom Station_	01000		_ To Station		1100	·	
Surveyed By	/ NEC-	ÇUK	_	Date	Surveved	Mus 2	5/05	Condition	ne				
Start Station	1		+25 m		Date Surveyed			+75 m			End Station		
]					<u> </u>	111		1	1	1	1	1	
(5) (5)	PANCEMENT CUT ((5)	L(5)	Tu [1	(4) X	(5)	(5) (L(5)	(4) (4)	(((s) m	<u> </u>	<u>u</u>		Mrs.	
					PC RC	7-4.5 7-5.7							
1. 1	1 1	1	 +25 m	1	l	 +50 m	1	1 1	 +75 m	1	1		

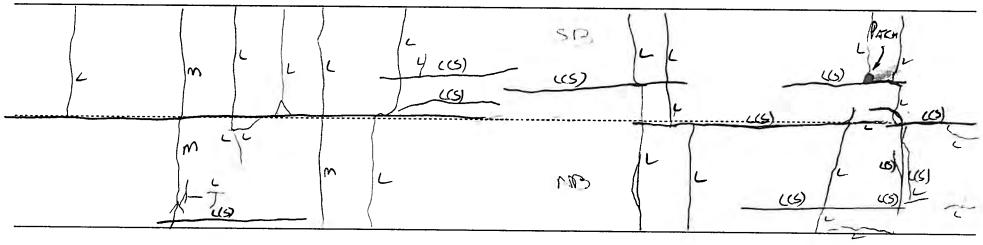


ARA Project No 16. 931

Highway 9	h line	Direction	Fro	om Station <u>010</u>	100	_ To Station	6.100
Surveyed By Start Station	VIC FUER		Date Surveyed	May 26/25	Condition	ns	F. 10:
3+500		+25 m		+50 m		+75 m	End Station ろんの
	<u>, l</u> <u>l</u> ,	<u> </u>		<u> </u>			1 1 1
	PAUED DRIVEWAY 9,32		Descury 9138				
((s)) (19	(s) L					
		LILIL	- L	5 6		L(S)	۷
115) LCs,	L(S)	,	us -	ه) درد) درد	7-1		- c \(\frac{1}{4(5)}\)
<u>us</u> <u>us</u>			(45)	110	L	(4)	(6)
			PCJ- RCZ-	6.2			
1 1 1		 +25 m	1 1	 +50 m	l	 +75 m	



Highway	9th line	Direction	F	rom Station _	11000		To Station	6.1100	
Surveyed By	MC E	uce	Date Surveyed	Man 2	95	_ Conditions	S		
Start Station 3,700		+25 m		+50 m		_	+75 m	Er 34800	d Station
<u> </u>	<u> </u>				<u> </u>		1		1 1
		Pauch Actions 9292							
((5)	<u>((5)</u> <u>((5)</u>	M PATCH CAUSING HIGH RUTTING		5B		(5)		(45) LCS)	(((5)
	((S) ((S)	7 145) M		NB '	۷	غر _	- Lus	(US) (US)	L(5)
			J.	CI- 6	3				
I I		 +25 m	1 1	 +50 m	1 1	<u> </u>	 +75 m]	

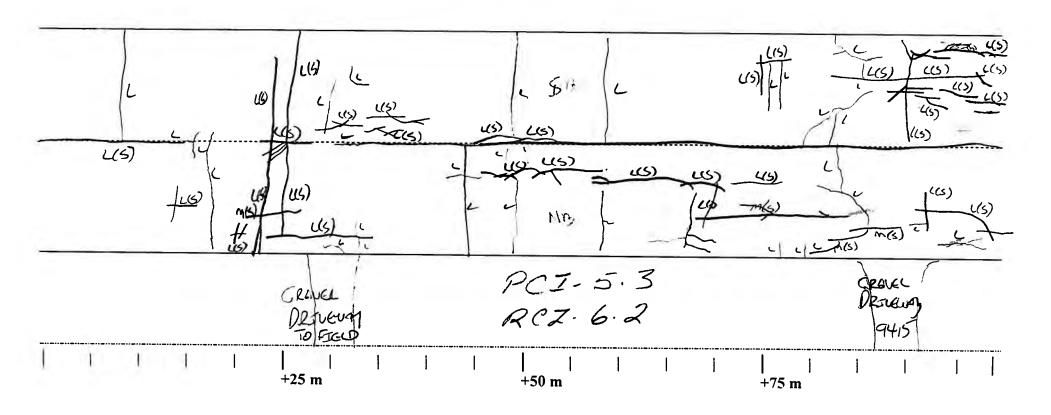

Highway 9	16	ine	Σ	Directio	n			From S	Station_	01	000		_ To Station _	61100
Surveyed By						Date S	Surveye	d			c	Conditio	ns	
Start Station 3+880			+25	m				+50	m				+75 m	End Station
	<u> </u>	<u> </u>	l	<u> </u>						<u>.</u>	1			1 1

PAVEMENT DISTRESS MAPPING SURVEY

									_										
Highway	964	12/20	6).	I	Directio	on		<u></u>	From	Station	010	100		To S	tation _	5-1	100		_
Surveyed By		UI(_	Cu	CER			Date	Surveye	ed	Mar	26/04	<u> </u>	Conditio	ns				·	_
Start Station 3+900		<u></u>		+25	m				+50	/) m				+75	m	4	E 1920	nd Stat	tion
	<u> </u>	<u> </u>	ĺ			1	<u> </u>	1					1		1			i	T

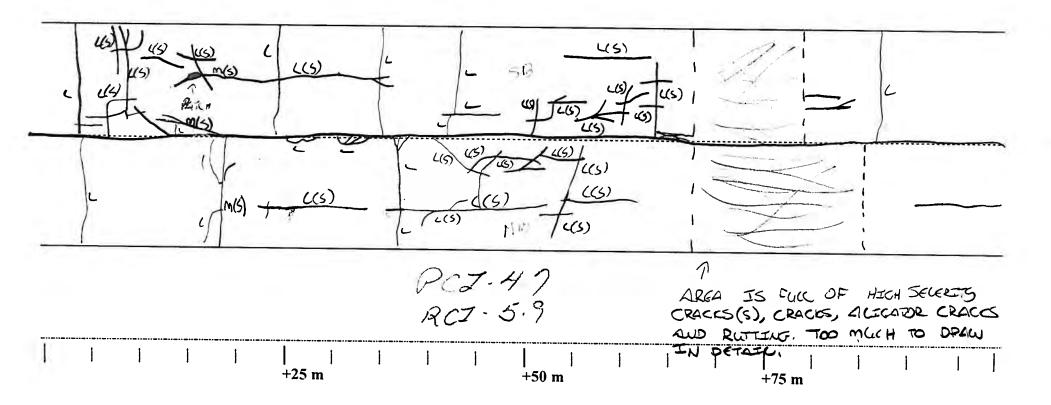
PCJ. 6.3 QCJ. 9.0 +25 m +50 m +75 m

Highway	9/1 is	, the	Direct	on		I	From Station	210	100		_ To Sta	tion	die 4	00	
Surveyed By Start Station		EUCR			Date S	urveyed	May.	26/05	C	onditio	ns			En	d Station
4,000	<u> </u>		+25 m				+50 m				+75 r	n	4+	100 EII	a Station
<u></u>			<u> </u>			1			1					1	1 1
		· · · · · · · · · · · · · · · · · · ·	ORACL DEJURIO												
	(((5)	(15)	((<u>s)</u>		ردد).	4	((5)	<u>L(5)</u>	513 u	LCSV	(2))	
	М		د د د د د د د د د د د د د د د د د د د		Tu to	us)	L'IL	(1)	M (CS)	.(5)	NB	m		-	- Lander Co
							PCI. RCI.	5.3							
	1 1		+25 m			l	 +50 m	1		1	 +75 n	 1	l		1


			~	DIVIDITY DIO	I IMMI I	TIO SOKA	D I	
Highway	916 1	71	_ Direction_		From Station	01600	To Station	61100
Surveyed By	LIC	FLICE		Date Surv	eyed Man	26/05	Conditions	
Start Station					,	<u> </u>		End Station
1	t 1	+ 	25 m		+50 m		+75 m	4+200
J			<u> </u>	11			<u> </u>	
		H) ms			L (1	- Lu	(s) L	(4) (13) (15)
(3)	(3) (5) (4) (5) (4) (5)	2	((5)	(S) (C)	(C)	NB	L (L	(S) (S) (S) (US) (US)
						- 5.6		
high			 25 m		+50 m	l I		

Highway	9/h	line	Dire	ection		F:	rom Station	07	000		To Station	n <u> </u>	1100	
Surveyed By Start Station	'	(40	€₽ +25 m	ž.	Date Su	urveyed	<i>May</i> +50 m	26/05	Co	nditions			Er	nd Station
	1	<u></u>		11_		1	+50 m	<u> </u>	<u> </u>	1	+75 m	<u> </u>	4+300 	1 1
(/S)	د د	(k) 19(5)	100 mg	L((s) ((2(5)		LES	5B		<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1000	L(s)	
	9 /	ε(s)	(15)	- 	m m		N	10 -	((5)		((4)			((5)
								CZ.		7				
1	İ	1 1	 +25 m	1	i	1	 +50 m	I		1	 +75 m			1

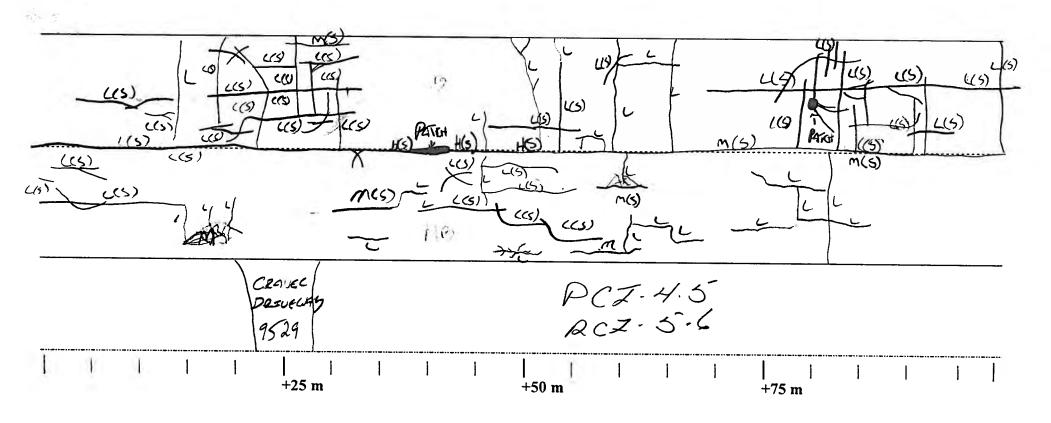
Highway 94	h ler	. e	Directi	on		Fr	om Station	0100	10		To Station	61	100		
Surveyed By Start Station	NITC	Euc	٤٤		Date	Surveyed _	Ma	205	c	onditions				10	:
41300			+25 m				+50 m				+75 m		4+400 14-400	nd Stati	on
	1						1			<u> </u>	<u> </u>		1		$\overline{\perp}$
													•		



Highway	914 0	me	Direct	ion	F	rom Station _	01000)·	To Station	10110	
Surveyed By	NIC	EUCET	2	Da	ate Surveyed	May.	26/05	_ Conditions			
Start Station	<u> </u>		+25 m			+50 m			+75 m	4150	End Station
	<u> </u>			1 1			1 1		<u>l </u>		
L L(5)	-10	7).)				У	MI	-	
		رارد)	دري) ا	- (A			ررز	s) e(s) ((5)		
L	51			(L ((5))				<u>((5)</u>	M(S) (CS) L	/c	
	<u>((5)</u>	7:	1.	J- 112			(115)		1(0)		
	T(US)	Lus Lus	1	_US)	NB		((5)	/L /L	m(5)m	145	
×××		149	+	((S)			1-	1	stance	(R)	
	- 03)00	2		^(\$) <u>^</u>		10 10	10				
					PCI	7.5.3	3				
3					Qc Z	1.5.3	/				
1 1		I	<u> </u>		1	1 1	1 1		1 1	1 1	
	•	•	+25 m	, ,	4	+50 m		' 9	+75 m	1 1	Î

ARA Project No	16231

Highway 9th line Direction_	From Station 61600	To Station	61100
Surveyed By NTC CULER Start Startion	Date Surveyed May 26/05	_ Conditions	
<u>4+500</u> +25 m	+50 m	+75 m	End Station



Highway	116 h		Direction_		From Station	5100	v .	_ To Station	0-10	
Surveyed By		Cuce		Date Surve	eyed May	2/5	_ Condition			
Start Station (+600		-	⊦25 m		+50 m	,		+75 m	4+120	End Station
				1 1	1 1	1 1	1	1 1		
			Mac. Seaces / (Cow L	IPLE) MAP CRYCK! SELKETTY)	≤,					CRAVA DRIN EIE
۷	() (4)	++		(6)	U	5)L	۷		(c) (c) (c) (c) (c) (c)	(5)
杨力		((3)	U(5) U(5)	(L) ((5)) L	(Q)	(3)	(3)	(5) (C5)	(5) (5) (5)	(5)
CAUSTUST RUTTING	(m)			J- 12	CZ-4.	6				
1	1 1		+25 m	1 1	 +50 m			 +75 m		

ARA Project No ________

Highway 9/h	lino	Direction	From Sta	tion <u>01000</u>	To Station _	64 100
Surveyed By	سات وسره	2	_ Date Surveyed $_{-}$ $_{\sim}$	cy 25/05	Conditions	
Start Station 4+700		⊦25 m	+50 m	/ I	+75 m	End Station $\mathcal{Y}_{+} \mathscr{g} \infty$
1 1 1				1 1	1	

Highway	916 line	Direction			01000		To Station	51100	
Surveyed B	y NIC ELLE	.0	Date Surveyed	w/kg	idox (Conditions			
Start Station	1	+25 m		+50 m			+75 m	4+920	End Station
]	1 1	<u> </u>		<u> </u>		<u>l</u>	<u> </u>]	
<u>((3)</u>	(C2) (C2) (C3)	H(s) L(s) L(s)		5,16		L(S)	V.	,	ALL (15)
CRACCIN	SEUGRITY ALICATOR OF 3 SEALED CROK STY PUTTING.	m Ju	i.G.	7	PCI- RCI-	s) (w)	Jus	((5)	
	1 1 1	 +25 m		 +50 m			 +75 m		

ARA Project No 1693 1

		IAVEN	ENI DISTRESS N	TAPPING SURVEY		
Highway	9th las	Direction	From S	Station	To Station	6+100
Surveyed By	NEC GILLE	-	Date Surveyed	Van 20/04 Cond	itions	
Start Station 44900		+25 m	+50		+75 m	End Station
	1 1			<u> </u>	<u></u>	1 = 1
	US) m(S) (((5) (4)) ((3) ((5) ((5))	(45) (45) (45) (45)	n(s) (3 500)	M(S)
	US) (US) US		<u>L</u>	· (5)	4 L/ L(5)	11/165) (57)
				PCI-5.6 RCJ-6.2		
1 1	1 1 1	 +25 m	+50	1	 +75 m	

Highway	9/1	live	Direct	ion			From Stati	on <u>07</u>	wo		To Station	6	7 100	/
Surveyed By	NEC	C GUL			Date	Surveye	d Ma	2404	<u> </u>	Conditio	ns			
Start Station) ————	_	+25 m				+50·m				+75 m	<	E1 5 <i>+180</i>	nd Station
		<u> </u>		1		l								1 1
					-							,		
(c) ((s)	k				Di					45) -	4(5)(65)			
رري)	(C)	(5)	<u>((5)</u>	<u>U(5)</u> _		L(9	<u>5)</u>	(43)	_	7	((5)		<i>((</i> 5)	
((5)			L(5)		<i></i>	·			}		/[
					1 /12	SA.		L(5)	- Ja		-)L			
						170				./				
						Rust	TING M	.	1	PCI ?CI	-6.2			
1 1	1 1	l	 +25 m	1	1		 +50 m		1	1	+75 m		- 	1 1

Highway	7/h less		From Stat		To Station	61100
Surveye	d By NIC 6	Eu(ER	Date Surveyed	20/05	Conditions	
Start Sta	tion	+25 m	+50 m	/ '	+75 m	End Station
<u> </u>	<u> </u>		1]	<u>l </u>		
***		Craner Descens				<u> </u>
۷	(15) L(5)	1	m / m /	Story L	~1.j	cust m
I Company	Z Z M	\(\begin{align*} \text{\congruence} \congruen	ACCO.	The last of the la	100	(C) ()
	DETICUALLY FIGUR		Pertus m		CZ-5.3 CZ-6./	
1	1 1 1	 +25 m	 +50 m	1 1		

	211	,					m vo bor	. V .E.J .E.			
Highway	911	asos	Direction	n	F	From Station_	0+00		_ To Station	5+100	2
Surveyed By	NK	au	<u>L</u>	Date	Surveyed	May 2	105	Condition	ıs		
Start Station)		+25 m		+50 m				+75 m	SAGO End Station	
	11					1 1	<u> </u>]
		, ,									
	Y	ا ا	اد			1/	}			-	7
U/S)		(٤) د	-		1	(15)	(513	\mathrew{\pi}		1
1 - 1m	(5)	-(5)		,	4	(45)	(CS)	200			
ر الراب			T	H	1	(5)		.			·····
\L		, (.	L	1	\ <u>-</u>	الای ا	-	r(t)	2		FL-
ersil	L(S)	"		1			(5)	-		L (94)	
US	1		PATCH	. 2	July 1	ACM		-	TT	S	Ne A
· · ·	•		0 -	- (- ()		7	b 1				134 G
		i i	PC	7.5.0	Ru	iting m					
			RCZ	-61							
			1 1	1 1		1	1 I	<u> </u>	<u> </u>		ı 1
			+25 m			+50 m	•	•	+75 m	, ,	' 1

		IAVEI	ATEM DISTR	TOO MAPP	TIG SOKAF	X	
Highway	9th w	Direction		From Station	11000	To Station	61160
	NECELE	2	Date Surveye	ed Man 2	27/06 C	onditions	
Start Station 5 +300)	+25 m	•	+50 m			End Station
<u> </u>	<u> </u>		1 1		I		
	1						
	((9)						
	43					45	
	X		(_	42	(45)	,)	
	L/\\'			, ,	1)4	m ()	
1	1 7457	(G) L			365	Eury L	
- A		((4)	1 M	L(5)	n /L(6)		12 1
7	.)	113		(Madi	7	٤	PHUSO .
1	<u> </u>	((13) MB) (45)		1.10).)_	7	[my (15)
	(i	HATCHER	t-m	1		e / /	SM
		***************************************	, C.	\			TAME ARE
			PCZ	57			
			PCI.	6.1			
			12 6	O ' /			
1	1	1 1 1		1			
		+25 m	•	+50 m	, ,	+75 m	, , , , ,

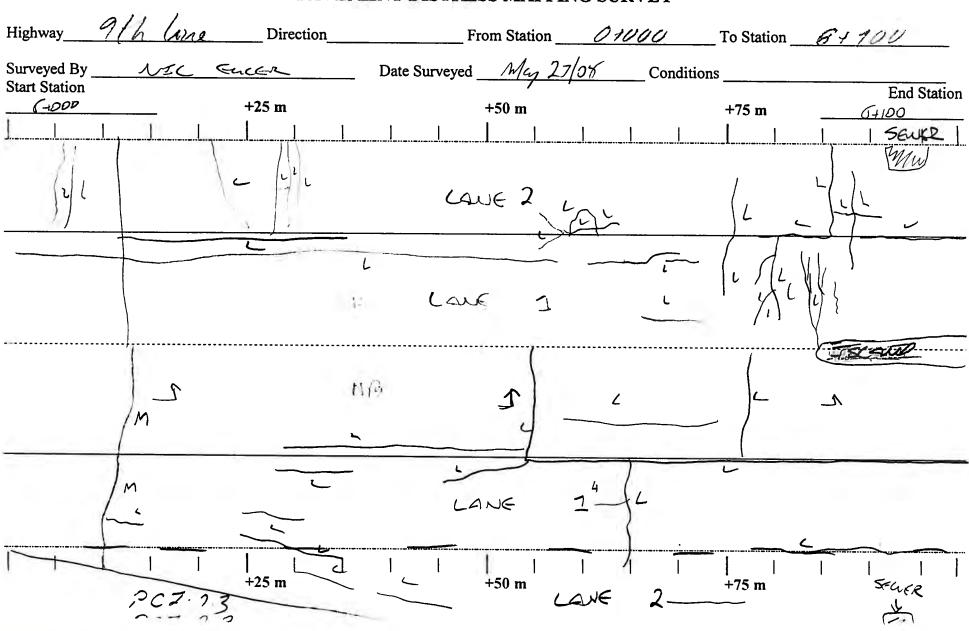

Highway	9/1.	line	Direction		From S	Station	1000	To Sta	ation	100	
Surveyed By Start Station	<i>N</i> 5C	FLICER	+25 m	Date Si	urveyed+50	My 27/05	Con	ditions	n 4	End :	Station
J	1 1	<u> </u>	1 1	<u> </u>	1 1		<u> </u>	1			11
		8									
·	بالمر ر	<u> </u>	د		7	1 115	45)				
(4) ug	C 1/4	THE PACE	(LS)	213	rite	دا	اد	m	درائد _	- for	((3)
					/	PCJ-6 QCJ-6	8				
1 1	I 1	1	+25 m		 +50	m	1	 +75 r	 n		

Highway	916	ling	Direction	n		From Station	on <u>0</u> 4	000	To Station	6.100	
Surveyed By Start Station	/	mge Eller		D	Date Surveyed My 27/25 Con-			Conditi	ons		10:
Start Station			+25 m			+50 m			+75 m	5+600 En	d Station
1		<u> </u>							1 1	<u> </u>	
	+	Jus L				<i>α</i> (.)(رها	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	mb us)
(19)	L					(110	**	المالي المالي	H(S)	((5) 4(5) m(5)	
				PCI	7 -	6.4					
1 1			 +25 m	l	1 1	 +50 m]		+75 m	1 1	

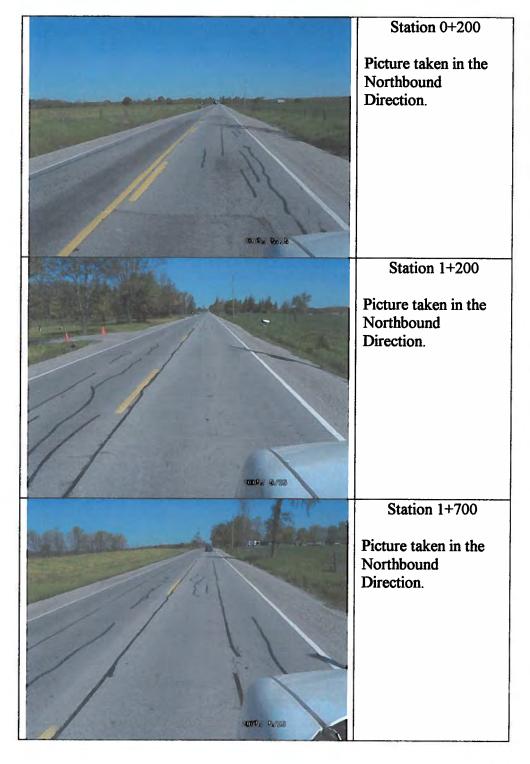
Highway 91h	line	Direction		From	n Station	010	100		Γο Station _	61100
Surveyed By	NIC ENCO	2	 Date Su	rveyed	May 2	7/22	Cor	nditions		
Start Station 5+600		+25 m		+	50 m	1			+75 m	End Station
1		1	 						1	

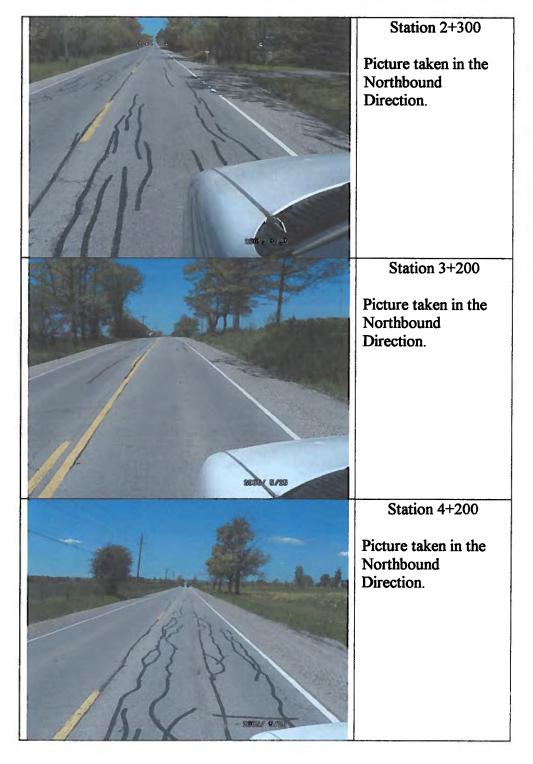
ARA Project	No	The way had	

Highway	9th line	Direction	Fro	om Station	1000	To Station	61100
Surveyed By		15 P	Date Surveyed _	May 27/2	6 Conditi	ons	
Start Station		+25 m		+50 m		+75 m	End Station
1	1 1	11		<u> </u>			
	LOTS OF SEALED ME NOT SEELED ME MAP CRA	DICON/HIGH					
		(4) (4)	((5)	y ust	(4)		1 2 45 L
(C(5)	me i		LIG WR	Pagest (US)	(A)	/ L L L L
~-	-		PC. RCZ	1-5.8			
1 1		 +25 m		 +50 m		 +75 m	1 1



Highway	Olh and	Direction	Fre	om Station	01000	To Station	51100			
Surveyed By	ATC GC	ER	Date Surveyed _	May 2	7/05 Conditi	ions				
Start Station		+25 m		+50 m		+75 m	End Station			
<u></u>		<u> </u>		<u> </u>	1 1	1 1				
					(M/S) L	4				
L	ele		46)		- (215)	((5)	1 4			
	(iii			US) US	(45) (45)		1/ v/c			
	1	1949-14-15 og 1957-14-15-15-15-15-15-15-15-15-15-15-15-15-15-	1		<u>((3)</u>	1(5)	<u></u>			
	in the		1/11	,	111	((3)	L			
	(G) fices				((5)		M			
			PCI	-6.6		CHONE OF				
			12cJ	7.2.		RNEMENT				
1 1	1 1 1	+25 m	1 1	 +50 m	1 1 1	+75 m				


Highway	914 h	ne = = = = = = = = = = = = = = = = = = =	Direction	n	Date Surveyed	rom Station_	27/04	Conditions	To Station	6+ 100
Start Statio	n		+25 m			+50 m			+75 m	End Station
_						CAUG	2 (58)	4	_	<i>—</i>
(Ym	<u> </u>	<u>ا</u>		CANG I	(SB)		SB	m /	
		\ \frac{1}{2}			4/1	Lucy				
							<u></u>	FIL (CANG	1 (NB)
Li	1 1	1	 +25 m	1	PC7.	+50 m	1 1	1 %	+75 m	



APPENDIX B PHOTOGRAPHS OF TYPICAL PAVEMENT AND ASSOCIATED FEATURES

APENIDX B Ninth Line Steeles Avenue to No. 10 Sideroad Photographs of Typical Pavement and Associated Features

APENIDX B Ninth Line Steeles Avenue to No. 10 Sideroad Photographs of Typical Pavement and Associated Features

APPENDIX C RUT DEPTH AND CROSS FALL RESULTS

APPENDIX C

Ninth Line

Steeles Avenue to No. 10 Sideroad Detailed Cross Fall and Rut Depth Results Northbound Lanes

		Road	Rut Depth (mm)			
Station	Lane	Cross Fall (mm)	Left Wheel Path	Right Wheel Path		
0+200	NB	70	7	10		
0+400	NB	65	3	5		
0+600	NB	55	5	7		
0+800	NB	60	5	3		
1+000	NB	65	5	0		
1+200	NB	40	7	3		
1+400	NB	35	10	12		
1+600	NB	65	3	10		
1+800	NB	65	7	5		
2+000	NB	55	5	0		
2+200	NB	35	12	10		
2+400	NB	65	5	3		
2+600	NB	30	7	7		
2+800	NB	40	10	12		
2+980	NB	60	20	5		
3+200	NB	40	20	15		
3+300	NB	40	12	5		
3+400	NB	40	10	28		
3+500	NB	40	7	7		
3+600	NB	35	15	7		
3+700	NB	20	7	5		
3+800	NB	45	3	5		
4+000	NB	45	20	5		
4+200	NB	50	20	10		
4+400	NB	40	10	10		
4+575	NB	60	15	45		
4+600	NB	40	10	10		
4+800	NB	30	25	17		
5+000	NB	55	20	10		
5+200	NB	45	10	7		
5+400	NB	65	10	20		
5+600	NB	60	10	7		
5+800	NB	50	7	7		
5+900	NB	60	7	3		

APPENDIX C

Ninth Line

Steeles Avenue to No. 10 Sideroad Detailed Cross Fall and Rut Depth Results Southbound Lanes

	1	Road	Rut Depth (mm)			
Station	Lane	Cross Fall (mm)	Left Wheel Path	Right Wheel Path		
0+050	SB	45	5	5		
0+300	SB	95	5	0		
0+500	SB	45	10	3		
0+700	SB	60	7	7		
0+900	SB	40	10	3		
1+100	SB	40	12	3		
1+100	SB	60	5	3		
1+300	SB	50	3	3		
1+500	SB	60	10	3		
1+900	SB	40	7	7		
2+100	SB	40 5		3		
2+300	SB	60	10	10		
2+500	SB	50	5	5		
2+700	SB	90	12	0		
2+900	SB	70	12	3		
4+100	SB	40	0	5		
4+300	SB	45	10	5		
4+500	SB	40	7	5		
4+700	SB	40	3	5		
4+900	SB	35	10	3		
5+100	SB	40	5	3		
5+300	SB	40	5	5		
5+500	SB	45	15	7		
5+700	SB	40	15	5		

APPENDIX D CORE LOG SUMMARY

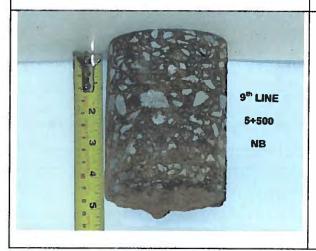
APPENDIX D Ninth Line Steeles Avenue to No. 10 Sideroad Detailed Core Log Summary

	Direction	Asphalt Thickness							
Station		Surface	Binder	Binder	Surface	Surface	Surface	Total	
		Course	Course	Course	Course	Treatment	Treatment	I Otai	
Steeles Avenue to No. 5 Sideroad									
0+050	SB	30	90					120	
0+200	NB	40	50	90				180	
0+300	SB	50	80			40		170	
0+400	NB	50	50		30	30	10	170	
0+500	SB	30	60		40	50		180	
0+600	NB	40	60			30		130	
0+700	SB	40			60	25		125	
0+800	NB	40	80			30	20	170	
0+900	SB	30	60			30		120	
1+000	NB	40	50	40		30	20	180	
1+100	SB	40	60			30		130	
1+200	NB	50	50			30	20	150	
1+300	SB	50	70			30		150	
1+400	NB	40	70		20	30		160	
1+500	SB	30	60	40		30		160	
1+600	NB	50	50		30	20		150	
1+700	SB	40	40			20		100	
1+800	NB	40	60	40		30		170	
1+900	SB	50	40			30		120	
2+000	NB	40	40	30		20	20	150	
2+100	SB	50	40			30		120	
2+200	NB	40	80		60	40		220	
2+300	SB	60	50			30		140	
2+400	NB	40	50	30		30		150	
2+500	SB	50	60			30		140	
2+600	NB	50	70			30		150	
2+700	SB	50	80			25		155	
2+800	NB	50	30			30		110	
2+900	SB	40	50	40		30		160	
2+980	NB	50	30			25		105	

APPENDIX D Ninth Line Steeles Avenue to No. 10 Sideroad Detailed Core Log Summary

				A	Asphalt Thio	kness		
Station	Direction	Surface Course	Binder Course	Binder Course	Surface Course	Surface Treatment	Surface Treatment	Total
			No. 5 Sic	leroad to N	o. 10 Sidero	ad		
3+200	NB	40	40		40	20		140
3+300	SB	50	50	50	60	20		230
3+400	NB	40	60			50		150
3+500	SB	40	70	60	30	40	30	270
3+600	NB	40	40		30	20		130
3+700	SB	50	70		30	20	30	200
3+800	NB	40	50			30		120
3+900	SB	50	60			30		140
4+000	NB	40	60			20		120
4+100	SB	50	60			30		140
4+200	NB	50	50			20	30	150
4+300	SB	50	50		40			140
4+400	NB	40	50			20	20	130
4+500	SB	60	40	70				170
4+600	NB	50	50	30		20	20	170
4+700	SB	40	60	40	40	30		210
4+800	NB	50	40		30	30		150
4+900	SB	60	50	50	·	40		200
5+000	NB	50	50		40	30		170
5+100	SB	50	60	50		30		190
5+200	NB	50	60	60				170
5+300	SB	50	50	30		20	20	170
5+400	NB	40	70		30	30		170
5+500	SB	40	60			30		130
5+600	NB	50	50			40	30	170
5+700	SB	50	50		50			150
5+800	NB	50	60			30	30	170

APPENDIX D Ninth Line Steeles Avenue to No. 10 Sideroad Typical Photograph of Core Samples


Core Photo #1 1+800 Northbound 1.0m Lt OEP

Туре	Core
	(mm)
Surface Course	40
Binder Course	60
Binder Course	40
Surface Treatment	30
Total	170

Core Photo #2 2+800 Northbound 1.0m Rt IEP

Type	Core
	(mm)
Surface Course	50
Binder Course	30
Surface Treatment	30
Total	110
Surface Treatment	30

Core Photo #3 5+500 Northbound 1.0m Rt IEP

1.UIII Kt 11	CP .
Туре	Core
	(mm)
Surface Course	40
Binder Course	60
Surface Treatment	30
Total	130

APPENDIX E BOREHOLE LOGS

LOG OF BOREHOLES Ninth Line Steeles Avenue to Sideroad No. 10

0+500 NB 2 m Rt CL D -0.1 0 - 165 Asph	1+635 SB 2 m Lt CL D -0.1 0 - 100 Asph
165 - 575 Br Cr Gr moist	100 - 220 Br Cr Gr moist
575 - 1.5 Br Cl(y) Si Till moist	220 - 500 Br Sa moist
	500 - 1.5 Br Cl(y) Si Till moist
1+000 SB 2 m Lt CL D -0.1 0 - 120 Asph	1.5 - 1.95 Br Cl(y) Si Till moist w @ 1.75m = 11.9 %
120 - 870 Br Cr Gr moist w @ 500mm = 4.22 %	N value @ 1.5 m = 18 Distressed Area
4.75 mm = 55 % 0.075 mm = 16 %	2+005 SB 2 m Lt CL D -0.3
870 - 1.5 Br Cl(y) Si Till wet w @ m = %	120 - 670 Br Cr Gr moist
1.5 - 1.95 Br Cl(y) Si Till wet w @ 1.7m = 22.17 4.75 mm = 100 % 0.075 mm = 71 % 5.0 µm = 29 %	670 - 1.5 Br Cl(y) Si Till moist
Unified Classification=CL Liquid Limit=31.3 Plastic Limit=17.8	2+500 NB 2 m Rt CL D -0.1 0 - 170 Asph
Plasticity Index=13.5 N value @ 1.5 m = 4	170 - 600 Br Cr Gr moist w @ 400mm = 3.44 % 4.75 mm = 65 %
1+500 NB 2 m Rt CL D -0.1 0 - 180 Asph	0.075 mm = 17 % 600 - 1.95 Br Cl(y) Si Till moist w@ 1.7m = 12.57
180 - 630 Br Cr Gr moist	4.75 mm = 93 % 0.075 mm = 59 %
630 - 1.5 Br Cl(y) Si Till moist	$5.0 \mu\text{m} = 21 \%$ N value 2@ 1.5 m = 25
	2+970 NB 2 m Rt CL D -0.1 0 - 105 Asph
	105 - 590 Br Cr Gr moist
	590 - 1.5 Br Cl(y) Si Till moist

Note: Borehole offsets are referenced from roadway centreline

LOG OF BOREHOLES

Ninth Line

Steeles Avenue to Sideroad No. 10

3+494 NB 2 m Rt CL 0 - 110 Asph	D -0.1	4+805 NI 0 - 150	B 2 m Rt CL Asph	D -0.1
110 - 450 Br Cr Gr	moist	150 - 460 I	Br Cr Gr	moist
450 - 1.5 Br Cl(y) Si Till	dry	460 - 1.95	Br Cl(y) Si Till w @ 1.75m =	moist 12.02
			N value @ 1.5 m = 2 Distressed Area	7
4+100 SB 2 m Lt CL 0 - 140 Asph	D -0.1	5+000 SB 0 - 150 /		D -0.1
140 - 480 Br Cr Gr	moist	150 - 520 1	Br Cr Gr	moist
480 - 1.5 Br Cl(y) Si Till	moist	520 - 1.5 I	Br Cl(y) Si Till	moist
4+500 NB 2 m Rt CL	D -0.1		•	
0 - 150 Asph	<i>D</i> -0.1	5+500 NE 0 - 150 A		D -0.1
150 - 250 Br Cr Gr	moist	150 - 450 E	Br Cr Gr	moist
250 - 340 Asph		450 - 1.5 E	Br Si(y) Cl	moist
340 - 440 Br Cr Gr	moist			
440 - 1.95 Br Cl(y) Si Till	moist		2.0 m Lt CL	D -0.1
N value @ 1.5 m = 3	5	0 - 150 A	Asph	
4+570 NB 2 m Rt CL 0 - 170 Asph	D -0.1	150 - 525 E	Br Cr Gr	moist
170 - 240 Br Cr Gr	moist	525 - 1.95 E	3r Si(y) Cl w @ 1.75m =	moist 11.67
240 - 510 Br Sa Tr Gr	moist	Liquid Lin	assification=CL-ML nit=20.8	
O	3.71 %	Plastic Lin Plasticity I		
4.75 mm = 0.075 mm =	82 % 19 %		N Value @ 1.65 m = Distressed Area	16
510 - 1.95 Br Cl(y) Si Till w @ 1.75m =	moist 11.67			
4.75 mm =	94 %			
0.075 mm = 5.0 μm =	56 % 20 %			
N value @ 1.5 m = 5 Distressed Area				

Note: Borehole offsets are referenced from roadway centreline

APPENDIX F LABORATORY TEST RESULTS

Table F.1
Ninth Line
Steeles Avenue to No. 10 Sideroad
Summary of Granular Laboratory Test Results

Station	Direction	Offset		Depth	Field	Field Percent Passing (%)		Water	Frost
(km)	Direction	(n	1)	(mm)	Classification	4.75 mm 75 μm		Content (%)	Susceptibility
1+000	SB	2	Lt	120-870	Cr Gr	55	16	4.2	LSFH
2+500	NB	2	Rt	170-600	Cr Gr	65	17	3.4	LSFH
4+570	NB	2	Rt	240-510	Br Sa Tr Gr	82	19	3.7	LSFH

Figure F.1

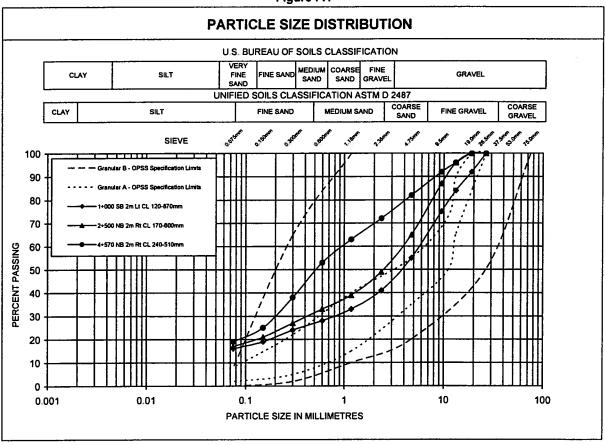
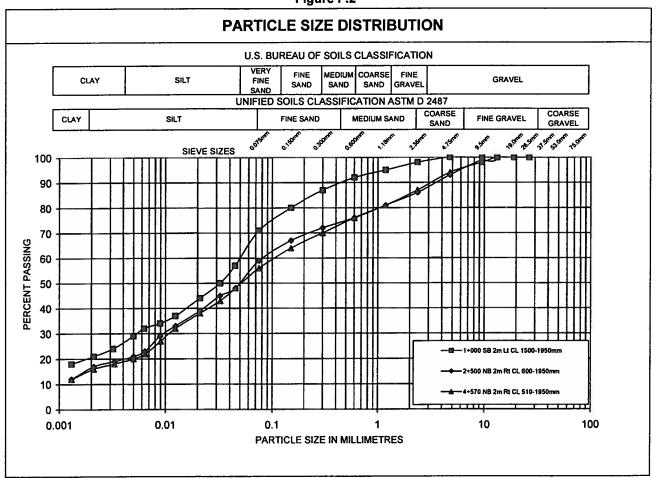



Table F.2 Ninth Line Steeles Avenue to No. 10 Sideroad Summary of Subgrade Laboratory Test Results

Station	Di	Offset Depth		Classification		Percent Passing (%)			Water	Plastic	city (%)	Frost	Soil Erodibility		
(km)	Direction	(m)	(mm)	Field	ASTM Unified	4.75 mm	75 µm	5 µm	Si&VFS	Content (%)	PI	PL	Susceptibility	Factor, K
1+000	SB	2	Lt	1500-1950	Br Cl(y) Si Till	CL	100	71	29	42	22.2	13.5	17.8	MSFH	0.25
2+500	NB	2	Rt	600-1950	Br Cl(y) Si Till		93	59	21	38	12.6	•	•	LSFH	0.23
4+570	NB	2	Rt	510-1950	Br Cl(y) Si Till	•	94	56	20	36	11.7	•	-	LSFH	0.22

Figure F.2

APPENDIX G FALLING WEIGHT DEFLECTOMETER TEST RESULTS

APPENDIX G Ninth Line

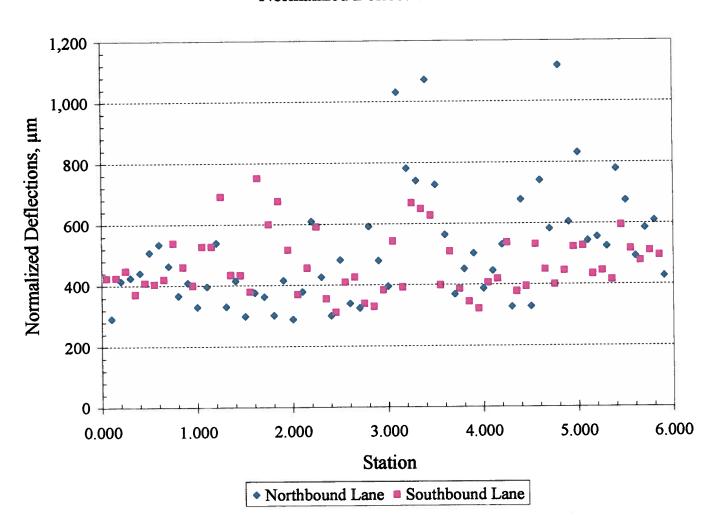
Steeles Avenue to No. 10 Sideroad Falling Weight Deflectometer Test Results

Ge	neral		FWD	Results			Design Req	uirments
Station		Do	M _R	Ep	SNeff	SNDes	SN	Asphalt
(km)	Direction	(μm)	(MPa)	(MPa)	(cm)	(cm)	Deficiency	Required (mm)
0.050	SB	425	33	434	10.1	12.70	2.6	62
0.100	NB	292	37	719	12.0	12.70	0.7	17
0.150	SB	426	30	452	10.3	12.70	2.4	58
0.200	NB	415	25	518	10.7	12.70	2.0	47
0.250	SB	449	27	440	10.2	12.70	2.5	61
0.300	NB	426	33	426	10.1	12.70	2.6	63
0.350	SB	372	31	544	10.9	12.70	1.8	43
0.400	NB	442	29	433	10.1	12.70	2.6	62
0.450	SB	409	30	483	10.5	12.70	2.2	53
0.500	NB	508	24	389	9.7	12.70	3.0	70
0.550	SB	405	31	477	10.4	12.70	2.3	54
0.600	NB	535	29	326	9.2	12.70	3.5	83
0.650	SB	421	32	445	10.2	12.70	2.5	60
0.700	NB	464	31	389	9.7	12.70	3.0	70
0.750	SB	539	23	359	9.5	12.70	3.2	76
0.800	NB	367	29	574	11.1	12.70	1.6	38
0.850	SB	461	31	395	9.8	12.70	2.9	69
0.900	NB	409	33	457	10.3	12.70	2.4	57
0.950	SB	400	35	454	10.3	12.70	2.4	58
1.000	NB	330	35	616	11.4	12.70	1.3	32
1.050	SB	528	31	321	9.1	12.70	3.6	85
1.100	NB	397	35	463	10.3	12.70	2.4	56
1.150	SB	528	25	358	9.5	12.70	3.2	77
1.200	NB	539	26	341	9.3	12.70	3.4	80
1.250	SB	691	24	247	8.4	12.70	4.3	103
1.300	NB	331	32	644	11.5	12.70	1.2	28
1.350	SB	435	30	437	10.1	12.70	2.6	61
1.400	NB	415	34	442	10.2	12.70	2.5	60
1.450	SB	434	31	431	10.1	12.70	2.6	62
1.500	NB	299	36	704	11.9	12.70	0.8	19
1.550	SB	380	31	527	10.8	12.70	1.9	46
1.600	NB	376	30	547	10.9	12.70	1.8	42
1.635	SB	752	21	232	8.2	12.70	4.5	107
1.700	NB	363	29	584	11.2	12.70	1.5	36
1.750	SB	600	27	284	8.8	12.70	3.9	93
1.800	NB	302	35	711	11.9	12.70	0.8	19
1.850	SB	676	23	257	8.5	12.70	4.2	100
1.900	NB	416	27	498	10.6	12.70	2.1	50
1.950	SB	516	29	342	9.3	12.70	3.4	80
2.000	NB	289	33	778	12.3	12.70	0.4	10
2.050	SB	370	33	529	10.8	12.70	1.9	45
2.100	NB	379	27	572	11.1	12.70	1.6	38

APPENDIX G Ninth Line

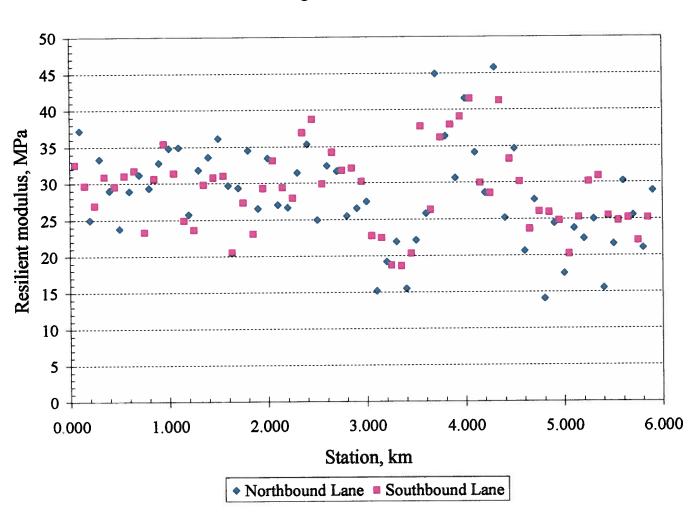
Steeles Avenue to No. 10 Sideroad Falling Weight Deflectometer Test Results

Ge	neral		FWD	Results	-		Design Rec	juirments
Station	Divertion	D _o	M_R	Ep	SNeff	SN _{Des}	SN	Asphalt
(km)	Direction	(µm)	(MPa)	(MPa)	(cm)	(cm)	Deficiency	Required (mm)
2.150	SB	457	29	408	9.9	12.70	2.8	67
2.200	NB	609	27	281	8.7	12.70	4.0	94
2.250	SB	592	28	287	8.8	12.70	3.9	93
2.300	NB	427	31	437	10.1	12.70	2.6	61
2.350	SB	356	37	530	10.8	12.70	1.9	45
2.400	NB	300	35	709	11.9	12.70	0.8	19
2.450	SB	312	39	633	11.5	12.70	1.2	29
2.500	NB	483	25	409	9.9	12.70	2.8	66
2.550	SB	410	30	477	10.4	12.70	2.3	54
2.600	NB	340	32	613	11.3	12.70	1.4	32
2.650	SB	427	34	419	10.0	12.70	2.7	64
2.700	NB	325	32	665	11.7	12.70	1.0	25
2.750	SB	340	32	619	11.4	12.70	1.3	31
2.800	NB	592	26	299	8.9	12.70	3.8	90
2.850	SB	330	32	646	11.5	12.70	1.2	28
2.900	NB	480	27	399	9.8	12.70	2.9	68
2.950	SB	384	30	525	10.8	12.70	1.9	46
3.000	NB	396	27	528	10.8	12.70	1.9	45
3.050	SB	544	23	357	9.5	12.70	3.2	77
3.100	NB	1031	15	168	7.4	12.70	5.3	127
3.150	SB	393	23	606	11.3	12.70	1.4	33
3.200	NB	782	19	226	8.1	12.70	4.6	109
3.250	SB	669	19	289	8.8	12.70	3.9	92
3.300	NB	741	22	231	8.2	12.70	4.5	107
3.350	SB	649	19	304	9.0	12.70	3.7	89
3.400	NB	1072	16	158	7.2	12.70	5.5	130
3.450	SB	628	20	305	9.0	12.70	3.7	88
3.500	NB	728	22	236	8.3	12.70	4.4	106
3.550	SB	399	38	443	10.2	12.70	2.5	60
3.600	NB	564	26	318	9.1	12.70	3.6	85
3.650	SB	510	26	367	9.6	12.70	3.1	75
3.700	NB	369	45	460	10.3	12.70	2.4	57
3.750	SB	387	36	473	10.4	12.70	2.3	55
3.800	NB	452	36	377	9.6	12.70	3.1	73
3.850	SB	345	38	549	10.9	12.70	1.8	42
3.900	NB	503	31	347	9.4	12.70	3.3	79
3.950	SB	322	39	600	11.3	12.70	1.4	34
4.000	NB	388	42	441	10.2	12.70	2.5	60
4.050	SB	407	42	413	10.0	12.70	2.7	65
4.100	NB	446	34	395	9.8	12.70	2.9	69
4.150	SB	420	30	459	10.3	12.70	2.4	57
4.200	NB	531	29	332	9.2	12.70	3.5	82

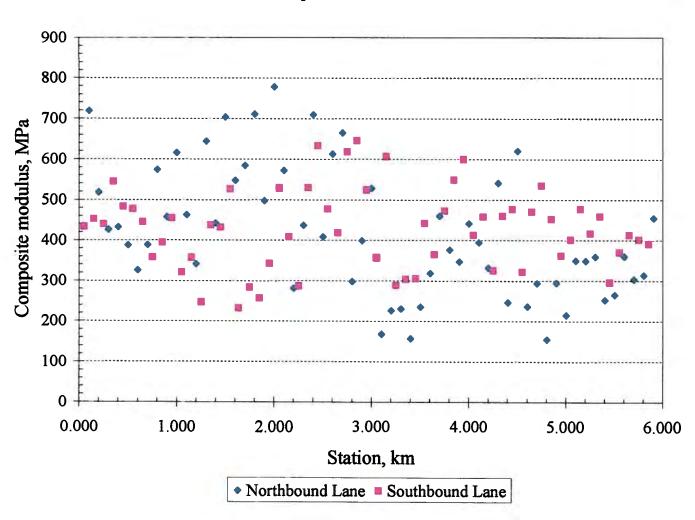

APPENDIX G Ninth Line

Steeles Avenue to No. 10 Sideroad Falling Weight Deflectometer Test Results

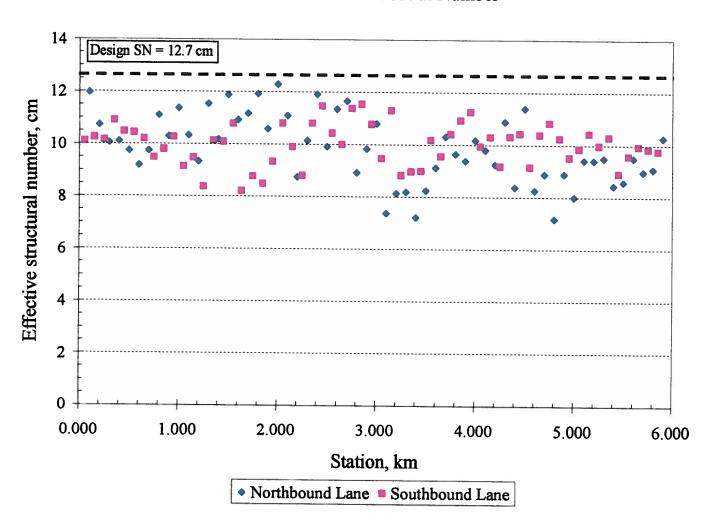
Ge	neral		FWD	Results		Design Requirments			
Station	Direction	Do	M _R	Ep	SNeff	SNDes	SN	Asphalt	
(km)	Direction	(µm)	(MPa)	(MPa)	(cm)	(cm)	Deficiency	Required (mm)	
4.250	SB	538	29	326	9.2	12.70	3.5	84	
4.300	NB	328	46	541	10.9	12.70	1.8	43	
4.350	SB	378	41	460	10.3	12.70	2.4	57	
4.400	NB	678	25	247	8.4	12.70	4.3	103	
4.450	SB	395	33	477	10.4	12.70	2.3	54	
4.500	NB	329	35	620	11.4	12.70	1.3	31	
4.550	SB	532	30	323	9.2	12.70	3.5	84	
4.600	NB	741	21	237	8.3	12.70	4.4	106	
4.650	SB	450	24	471	10.4	12.70	2.3	55	
4.700	NB	583	28	294	8.9	12.70	3.8	91	
4.750	SB	401	26	535	10.8	12.70	1.9	44	
4.800	NB	1117	14	155	7.2	12.70	5.5	131	
4.850	SB	446	26	453	10.3	12.70	2.4	58	
4.900	NB	605	24	295	8.9	12.70	3.8	91	
4.950	SB	523	25	363	9.5	12.70	3.2	75	
5.000	NB	832	18	215	8.0	12.70	4.7	112	
5.050	SB	527	20	402	9.9	12.70	2.8	68	
5.100	NB	544	24	350	9.4	12.70	3.3	78	
5.150	SB	435	25	478	10.4	12.70	2.3	54	
5.200	NB	556	22	349	9.4	12.70	3.3	78	
5.250	SB	446	30	418	10.0	12.70	2.7	65	
5.300	NB	525	25	359	9.5	12.70	3.2	76	
5.350	SB	416	31	460	10.3	12.70	2.4	57	
5.400	NB	779	16	253	8.4	12.70	4.3	101	
5.450	SB	594	25	297	8.9	12.70	3.8	90	
5.500	NB	675	22	266	8.6	12.70	4.1	98	
5.550	SB	517	25	370	9.6	12.70	3.1	74	
5.600	NB	493	30	360	9.5	12.70	3.2	76	
5.650	SB	478	25	413	10.0	12.70	2.7	65	
5.700	NB	585	26	304	9.0	12.70	3.7	89	
5.750	SB	511	22	402	9.9	12.70	2.8	68	
5.800	NB	609	21	314	9.1	12.70	3.6	86	
5.850	SB	495	25	392	9.8	12.70	2.9	70	
5.900	NB	428	29	455	10.3	12.70	2.4	58	


APPENDIX G Ninth Line Steeles Avenue to No. 10 Sideroad Falling Weight Deflectometer Test Results

Normalized Deflections to 40 kN.


APPENIDX G Ninth Line Steeles Avenue to No. 10 Sideroad Falling Weight Deflectometer Test Results

Subgrade Resilient Modulus


APPENIDX G Ninth Line Steeles Avenue to No. 10 Sideroad Falling Weight Deflectometer Test Results

Composite Pavement Modulus

APPENIDX G Ninth Line Steeles Avenue to No. 10 Sideroad Falling Weight Deflectometer Test Results

Effective Strucutral Number

