Proposed Burlington Quarry Expansion JART COMMENT SUMMARY TABLE – Natural Heritage

Please accept the following as feedback from the Burlington Quarry Joint Agency Review Team (JART). Fully addressing each comment below will help expedite the potential for resolutions of the consolidated JART objections and individual agency objections. Additional, new comments may be provided once a response has been prepared to the comments raised below and additional information provided.

	JART Comments (February 2021)	Reference	Source of Comment	Applicant Response (July 2021)
Rep	ort/Date: Level 1 and Level 2 Natural Environment Technical Report, April 2020	Αι	uthor: Savanta	
1.	Confirmation of the existence and extent of critical fish habitat within 240.0 metres of any identified key hydrologic feature should be provided though DFO (NEP, Part 2.7.5 & 2.7.6 (d))	General	Niagara Escarpment Commission	DFO has confirmed in the Letter of Advice dated J 23, 2021, and their accompanying email that the constructed golf course ponds and interconnectin channels are not considered to be fish habitat.
2.	 Further clarification should be provided related to assessed significant woodlands on the western expansion site (golf course). The technical report identifies woodlands 'D' & 'M' on the golf course lands as significant; with woodlands 'A' on the opposite side of Colling Road also being significant. If the technical report identifies these areas as significant woodlands, Part 2.7.3 of the NEP (2017) must be considered in the context of the future health of the feature. Currently the extraction plan proposes to isolate significant woodlands 'D' from surrounding features; NEC Staff are of the opinion this would not maintain or enhance the feature, or associated features through extraction. The impact of this isolation should be discussed in the report and should take into consideration the wording of Part 2.7.6 (d) & 2.9.3 (e). Hedgerows are identified in the ELC mapping; typically, hedgerows will be included in the connectivity/wildlife corridor considerations. Please include assessment of hedgerows within the scope of maintenance and enhancement of key natural heritage features and wildlife habitat. Amphibian movement corridors are considered an important function of significant wildlife habitat, they have been identified as being present impacts/mitigation should be considered in relation to SWH. 	General	Niagara Escarpment Commission	 As summarized in section 6.2.1, woodland D is relatively isolated and located on the golf course, adjacent to the existing quarry. While a portion of this woodland is native, the cultural woodland are non-native, with an abundance of Black Locust, ar undesirable tree species, and the FOD5/DIST area contains only a canopy layer, along with turf grass and paved golf cart paths in the ground layer (sub canopy and understory vegetation are absent). There is high potential to enhance this woodland both in species diversity and composition. The proposed rehabilitation plans will create a system that is better connected and functional than what currently exists in the golf course and adjacent quarry. Further details are provided in response # below. Hedgerows are not a component of woodlands or SWH and are not a KNHF; therefore, survey effort not recommended. The amphibian movement corridor will remain untouched. No direct impacts are anticipated due its location outside of the Study Area at the far eco of the 120 m adjacent lands. Potential hydrologica impacts and associated mitigation measures are provided in detail in the Wetland Characterization Summaries – wetland 13203 – appended to this response submission.
3.	In some areas buffers to significant woodlands have been proposed <30.0 metres in width despite lands being available to achieve 30.0 metres. 30.0 metres is a generally accepted standard for protection from an extraction use, please provide further justification for these reductions (relevance to significant woodlands and wetlands) (Part 2.7.6 (c) & 2.7.7)	General	Niagara Escarpment Commission	With the exception of the buffer area adjacent to pine plantation along the east side of the south extension, the buffers in areas that are less than a will be revised on the site plans. In the West Extension, there will be a 30 m setback from the e

	JART Response
ed June he cting	
rse, n of area is t, an rrea rass sub-	
nd tem vhat t se #9	
s or fort is	
due to r edge gical re tion is	
t to the h an 30 m	
he edge	

	Reduced setbacks to the FOD7-4 community is of specific concern.			of the Weir Pond to the edge of the berm and a 3 buffer from the edge of the FOD7-4 to the propos limit of extraction and/or the edge of the berm. Ir the South Extension, there will be a 30 m setback from the FOD7-4 to the edge of the berm.
4.	Fulsome assessment of potential endangered species habitat on the golf course lands has not been completed. Golf course ponds were not surveyed for presence of Jefferson salamander. Connectivity between these ponds, and potential salamander corridors are in scope for the study. The presence of predatory fish in the northernmost pond does not justify excluding the more southern ponds from assessment (Part 2.7.6 (d)).	General	Niagara Escarpment Commission	 We respectfully disagree with the comment that a fulsome assessment of potential endangered spect habitat on the golf course lands has not been completed. All potential salamander breeding has was assessed and trapped as required. Discussion with the MECP confirm that the golf course irrigat ponds are not habitat for Jefferson Salamander are did not need to be surveyed. We are continuing to work with MECP for all SAR related matters and a adhering to their survey recommendations and protocols. As a point of clarification to the presence of predatory fish, Largemouth Bass was visually observed in all golf course irrigation ponds in September 2019, not just the northernmost one.
5.	Only one Turtle basking station was implemented on the southern expansion lands. Clarification sought as to why wet areas farther south were not included in the turtle assessment.	General	Niagara Escarpment Commission	Turtle basking surveys are used to help determined presence of turtle overwintering habitat. The exter of the Study Area was surveyed for presence of deeper, pooling water wetland characteristics, an where these features were identified, they were further assessed by completing turtle basking surveys. Such features were limited to just the on the Adjacent Lands of the South Extension.
6.	Amphibian assessment is noted in close proximity to wetland 13200; clarification is sought as to why no amphibian call station was implemented in the feature.	General	Niagara Escarpment Commission	Wetland 13200 did not contain water and therefor was not considered a suitable feature to survey for amphibian breeding.
7.	Overall impacts on the hydroperiod for the assessed wetlands should be further assessed taking into account various phases of quarry operation and rehabilitation.	General	Niagara Escarpment Commission	More details are provided in the attached Wetlan Characterization Summaries.
8.	 It is identified that wetlands 13200 & 13201 will likely be impacted due to a change in catchment area resulting from extraction. A broader review of impacts should be provided that considers the connectivity of these wetlands (and 13202) as well as the cumulative impact on key natural and hydrologic features demonstrating connectivity within 240.0 metres. (Part 2.2.1, 2.7.3, 2.7.6 (d), 2.9.3(d&e)). Outlets for these areas should be confirmed. Maintenance and enhancement of key hydrologic features considered through this report, including wetlands, should be incorporated into the proposed rehabilitation and after-use plans (Part 2.9.3 & 2.9.11 (b)). 	General	Niagara Escarpment Commission	More details are provided in the attached Wetlan Characterization Summaries.

l a 30 m oposed m. In oack	
hat a species	
g habitat sions rigation er and ng to nd are nd	
ne.	
mine the extent of s, and ere	
e one on	
erefore ey for	
tland	
tland	

9.	 Broadly, the report needs to discuss the impacts of fragmentation on the significant woodlands and wetlands in more depth, and should discuss how this fragmentation may, or may not be addressed through mitigation or rehabilitation. Scope of consideration for impacts to key natural heritage and hydrologic features extends to connected features within 240.0 metres of the individual feature being assessed. A landscape approach within the site as well as broader capture and discussion of connected features off-site should be incorporated into the report. (Part 2.7.6 (d)). 	General	Niagara Escarpment Commission	The proposed Extension Areas are sited within an active golf course and agricultural area. There is a Regional and Provincial NHS that runs north south however, the area of the proposed expansion doe not appear to negatively affect the redundancy of these smaller branches of the RNHS. The major are of the NHS run along the Medad Valley, which is w of the proposed West Extension, as well as along the Mount Nemo Plateau and Grindstone Creek Complecated east of the proposed South Extension. The proposed Extension areas are located between the two RNHS branches and are not impeding or removing any of the features that make up these to branches; the Extension areas are well outside of these two large systems. Based on the Region's NHS mapping, there are sort smaller systems that lie parallel to, and between, these two major systems; however, these smaller systems do not connect to the larger NHS, north of the Study Area. These smaller branches of the over NHS do not provide connectivity to begin with, and therefore, the removal or disturbance of golf cour features and their potential for enhancement and future connectivity opportunities can only add to a limited contribution being made to the smaller NHS.
10.	An acknowledgement/assessment of Section 2.2 of the PPS (2020) – Water, does not appear in Section 2.1.1 of the Report. NEC Staff are of the opinion that Section 2.2 of the PPS contains a number of policies linked to natural heritage that should be assessed and incorporate findings from the Hydrologic and Surface Water reports.	General	Niagara Escarpment Commission	 Section 2.2 of the PPS identifies the following wat related policies: "Planning authorities shall protect, improve or restore the <i>quality and quantity of water</i> by: a) using the <i>watershed</i> as the ecologically meaning scale for integrated and long-term planning, which can be a foundation for considering cumulative impacts of development; b) minimizing potential <i>negative impacts</i>, includin cross-jurisdictional and cross-<i>watershed</i> impacts; c) evaluating and preparing for the <i>impacts of a changing climate</i> to water resource systems at the watershed level; d) identifying water resource systems consisting o ground water features, hydrologic functions, natu heritage features and areas, and surface water features including shoreline areas, which are necessary for the ecological and hydrological intego of the <i>watershed</i>; e) maintaining linkages and related functions, natu ground water features, hydrologic functions, natu

n an is a outh; does cy of or areas i is west	
ong the omplex, . The n these	
ese two e of e some	
en, aller th of overall a, and	
course and d to the r NHS.	
water- r	
aningful vhich re	
uding cts; a t the	
ng of natural Pr	
ntegrity among	
natural	

11.	Additional assessment of downstream impacts to Brook Trout populations related to Willoughby creek is being requested due to the proposed change in water levels and the proposal to utilize perpetual pumping as a mitigation measure to maintain water levels in key hydrologic features.	General	Niagara Escarpment Commission	 Improve of restore sensitive surface water features sensitive ground water features, and their hydrole functions." The water policies that are relevant to natural heritage are indirectly addressed throughout the NETR, specifically in the sections regarding fish are fish habitat, given the importance of water qualit and quantity to maintaining fish and fish habitat. Relevant water policies are also indirectly address in other technical reports (i.e., Surface Water Assessment and Hydrogeological and Hydrological Impact Assessment Report)." The overall policy analysis is found in the Planning Report, which includes a review of Section 2.2 of PPS. DFO has reviewed the documentation and issued Letter of Advice, dated June 23, 2021. One of the requirements is to "maintain an appropriate depta and flow (i.e., base flow and seasonal flow of water and flow (i.e., base flow and seasonal flow of water and flow (i.e., base flow and seasonal flow flow flow flow flow flow flow flo

and
e and
and Diogic
water ation
9
t
L
ted in
<i>isitive</i> and
ted,
oment
t, ures,
ologic
e
and
lity t.
essed
cal
ing
of the
of the

				for the protection of fish and fish habitat. This will addressed though the provisions of the AMP to ensure the pumping regime maintains base flow an seasonal flow of water. More details are provided in the attached Watercourse Characterization Summaries. DFO's guidance and conditions were provided after the Summary tables were prepared and circulated. Nelson is happy to work through the tables with JA to ensure that all DFO conditions and mitigation measures are included in the AMP and that all threshold and trigger values are updated, if needed based on DFO recommendations.
12.	The Level 1 and Level 2 NETR describes the current fisheries inventories conducted within the existing quarry (Burlington Quarry) and proposed expansion lands and provides an assessment based on the proposed changes associated with extraction and future operations on those lands. Discussion is limited to within 120.0 metres of the proposed quarry expansion lands. Supporting studies, such as the Surface Water Assessment, as well as hydrogeology submitted as part of the application discuss potential fisheries impacts to surrounding areas beyond 120.0 metres. The aquatic impacts provided in the 2020 NETR do not appear to be integrated with surface and groundwater reports and impacts to fisheries from these studies are not well understood.	General	Matrix Solutions Inc.	The application includes protection of surface wate features beyond 120 m which also protects any associated fish habitat. DFO is the regulatory authority and is satisfied that application will not result in HADD subject to its Letter of Advice, dated June 23, 2021. More details are provided in the attached Watercourse Characterization Summaries. DFO's guidance and conditions were provided after the Summary tables were prepared and circulated. Nelson is happy to work through the tables with JA to ensure that all DFO conditions and mitigation measures are included in the AMP and that all threshold and trigger values are updated, if needed based on DFO recommendations.
13.	The inventories presented in the NETR describe the existing fisheries as consisting primarily of warm water species such as Largemouth Bass, which are commonly stocked in warm water ponds, as well as tolerant warm water fish communities typically found in intermittent tributaries. Given that the existing land uses consisted of a golf course and quarry operations, these results are not surprising for the most part, as the golf course has been in operation since the early 1960s and the lands have undergone ongoing disturbances. Since the existing quarry has been in operation, fisheries impacts have existed due to changes in drainage patterns from extraction activities. As the initial placement of the quarry has irreversibly changed the fish habitat conditions within the headwaters, it is more relevant to focus on the effect of the proposed new quarry expansions on the surrounding fish habitat. The 2020 NETR does not include discussion of the cumulative impacts to the surrounding water bodies that have been described in historical studies as being important. The cumulative effect on the surrounding aquatic habitats from the incremental quarry footprint expansion should be included in the discussion.	General	Matrix Solutions Inc.	 We agree that the existing land uses in the study a (e.g., quarry, golf course, residential, transportation have irreversibly changed the natural pre-existing and fish habitat conditions. We also agree that the NETR should focus on the effects of the proposed new quarry on surrounding fish habitat. We interpret the second paragraph of this comment to be similar to other comments regarding the request to expand the discussion regarding potent impacts to Willoughby Creek, which has been done other rows in this table. Additional information on flows in Willoughby Creek will be provided in the AMP. The water resources report does, in fact, clearly delineate the "cumulative effects" of all existing an proposed excavations in the water level maps and

s will be to ow and	
O's the d. ith JART on l eeded,	
water	
not dated	
O's the d. ith JART on l eeded,	
udy area tation) ting fish t the osed	
nment e	
otential done in on on the	
rly ng and and	

			hydrographs presented for each development
			scenario phase. The results were presented in terms
			of absolute water levels and streamflows, not just in
			terms of change, so the cumulative impacts were fully
			taken into consideration. The water resources report
			presents incremental drawdowns from a fully
			transient 10-year baseline, and both average and
			minimum remaining available drawdown in the
			aquifers. As part of the report, extensive use of
			observations of change in groundwater levels due to
			excavation within the quarry footprint was utilized
			(See Section 6.11.3).
			This work resulted in a recommendation to revise the
			rehabilitation plan for the existing quarry to mitigate
			impacts from the existing approved quarry. As JART
			is aware the existing approved rehabilitation plan for
			the Burlington Quarry requires dewatering to stop
			and the site to naturally flood to a lake with no off-
			site discharge. As part of the Burlington Quarry
			Extension application, Nelson has agreed to modify
			the existing quarry rehabilitation plan to maintain off-
			site pumping to maintain existing conditions for off-
			site fish habitat and other water based key natural
			heritage features which rely on water being
			discharged from the existing quarry.
14.	The Level 1 and 2 NETR also states that although that ponds and drainage features within the	General Matrix S	
14.	The Level 1 and 2 NETR also states that although that ponds and drainage features within the existing quarry and proposed expansion lands contain fish, these systems are not really fish	General Matrix Solution	
14.			olutions Contrary to this comment, the NETR does not
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish		Plutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community		Plutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the		Plutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR:
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish		olutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime,		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing		Inductions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these		Indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat,
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		Indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these		Plutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception of Largemouth Bass that were captured in the
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		Plutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception of Largemouth Bass that were captured in the
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception of Largemouth Bass that were captured in the Weir Pond. It is our opinion that Largemouth
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		abutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception of Largemouth Bass that were captured in the Weir Pond. It is our opinion that Largemouth Bass are only present in this area as a result
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception of Largemouth Bass that were captured in the Weir Pond. It is our opinion that Largemouth Bass are only present in this area as a result of the construction of the golf course
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception of Largemouth Bass that were captured in the Weir Pond. It is our opinion that Largemouth Bass are only present in this area as a result of the construction of the golf course drainage feature and therefore, the presence of bass in the Weir Pond, which is part of the
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception of Largemouth Bass that were captured in the Weir Pond. It is our opinion that Largemouth Bass are only present in this area as a result of the construction of the golf course drainage feature and therefore, the presence of bass in the Weir Pond, which is part of the commercially constructed golf course water
14.	existing quarry and proposed expansion lands contain fish, these systems are not really fish habitat due to their anthropogenic origin and their isolation from other features, and as a result support no recreational fishery. Given the extent of quarrying, the fish community within the quarry footprint is expected to consist of species that can persist within the changing aquatic habitat conditions that are artificially maintained. The NETR describes the ponds and drainage features as having a hydrologic connection to fish bearing waters in the surrounding watercourses immediately outside of the proposed quarry extension lands. As there are linkages to fish habitat downstream of these areas, it is not clear where does fish habitat begin and end, and if alterations within the quarry in terms of flow, thermal regime, water quality or quantity will affect the downstream fish bearing waters. A table describing the rationale for fish habitat designations, supported by <i>Fisheries Act</i> definitions for these habitats should be included. Consistency with the application of fish habitat designations		Dutions Contrary to this comment, the NETR does not indicate that ponds and drainage features within the existing quarry contain fish habitat. Our interpretation of the limit of what does and does not constitute fish habitat is as follows, as discussed in Section 6.6 of the NETR: • The portion of the Unnamed Tributary of Willoughby Creek between the existing quarry discharge from Sump 0100 and the Colling Road culvert is indirect fish habitat, given that no fish were captured during sampling in this reach in 2019, with exception of Largemouth Bass that were captured in the Weir Pond. It is our opinion that Largemouth Bass are only present in this area as a result of the construction of the golf course drainage feature and therefore, the presence of bass in the Weir Pond, which is part of the

				 provide important functions that contribute to downstream fish bearing waters, inclue flow conveyance (from the quarry dischara and organic material inputs. The constructed golf course drainage features (ponds and interconnecting channels) are not considered to be fish habitat for the reasons outlined in section 6.6.1 of the NETR, as confirmed by DFO in their June 23, 2021, letter. The reach of the Unnamed Tributary of Willoughby Creek downstream from Colli Road has assumed to be direct fish habitat (i.e., could support direct use by fish), giv that no studies have been completed on private property to confirm the presence fish. The West Arm of the West Branch of the Mount Nemo Tributary is direct fish habita downstream from Sideroad 2. The East Arm of the West Branch of the Mount Nemo Tributary is indirect fish habita direct habitat downstream from the buried karst reach and direct habitat downstream from that poir H2 is indirect fish habitat.
				the constructed golf course ponds and interconnecting channels are not considered to be fish habitat.
15.	Drainage and surface outflows of the existing quarry operations extend beyond the quarry footprints and are maintained through pumping operations, which are recommended to continue in perpetuity, long after the license for extraction has been surrendered. As long-term plans for the quarry contemplates changes to drainage conditions, along with the changes associated with climate change, understanding the effects on the surrounding fisheries habitat within the Niagara Escarpment is a key consideration in the proposed quarry expansion. The rationale for continued pumping operations should be supported by more detailed information on how fish habitats and linkages are to be maintained. Discussion on the existing flow regime and the form and function of watercourses and linkages should be included to determine how future changes with pumping and drainage will impact these watercourses. Hydrograph information and hydroperiods in relation to the surrounding fish habitat should also be included in the discussion.	General	Matrix Solutions Inc.	Continued pumping after the operational period R ceased has been identified in the NETR as a key mitigation measure to prevent long term impacts fish and fish habitat in Willoughby Creek and the West Arm of the West Branch of the Mount Neme Tributary of Grindstone Creek (as well as further downstream reaches). Pumping from the existing quarry sumps 0100 and 0200 has been occurring since construction of the original quarry and fish communities in these watercourses, as well as the habitat within the watercourses (i.e., stream form and associated function, such as channel size and biophysical processes such as erosion and sedimentation) are expected to be accustomed to and reliant upon, the pumped discharge. Eliminat of pumped discharge would be expected to have negative impacts on the form and function of the watercourses as they revert back to pre-quarry

bute luding harge)	
on in	
lling itat iven n ce of	
e oitat	
abitat nd pint.	
1, that be	
d has	
ts on e mo r ng g h	
:he rm nd	
to, ation e nese	

				pumping hydrological regime (recognizing that the
				rehabilitated quarry will be remaining), which, in case of the West Arm of the West Branch, would intermittent and in the case of Willoughby Creek would involve substantially less flow downstrean from the current discharge outlet at the mouth of Unnamed Tributary.
				The comment has requested more detailed information on "how fish habitats and linkages a be maintained". Essentially, the proposed pumpi regime will continue the current flow rates suppl by pumping indefinitely to avoid the substantial change in hydrology that would occur if pumping were to cease after operations are done (as permitted by the current approvals for the existin quarry). Pumping will continue indefinitely to the current outlet locations and at the same general discharge rate regime as currently occurring and be occurring through the operational scenario. T has been modelled in Rehabilitation Scenario 1 in integrated stream flow model in the Hydrogeolog and Hydrologic Impact Assessment Report.
				Hydrological changes in Willoughby Creek and th West Arm of the West Branch are predicted to be minimal relative to existing conditions. Further, to predicted impacts on stream flows outlined in Rehabilitation Scenario 2 depict much more substantial changes in flow relative to current conditions and would be expected to have substa- impacts on fish and fish habitat in these watercourses.
16.	With respect to the quarry expansion application, the applicant has assessed the fisheries habitat within 120.0 metres of the proposed expansion area. Other studies that relate to fish habitat that are submitted as part of the quarry application discuss impacts beyond 120.0 metres of the proposed quarry expansion area. To have a better understanding of the impacts to fisheries resources, the applicant needs to integrate the 2020 NETR with surface and groundwater studies which extend beyond 120.0 metres. Impacts to fisheries resources needs to be described in relation to future drainage scenarios associated with the changing nature of the quarrying activities over time, as well as the ultimate rehabilitation scenarios involving the creation of landforms, lakes, and changes associated with climate. The following provides a summary of the issues and concerns as they relate to fisheries.	General	Matrix Solutions Inc.	Comment noted. Responses are provided to subsequent comments in the rows below.
17.	The fish information available in the downstream reaches such as in Willoughby Creek are based on older baseline data (2006) and no further recent information regarding the fish communities in these areas have been made available. The paucity of recent fish data is reflected by the limited study area, no sampling or surveys in private property, and of active sampling gear such as seining, electrofishing methods and visual observations.	General	Matrix Solutions Inc.	Comment noted. The assessment of impacts on f and fish habitat is based on the predictions of str flow and groundwater discharge from the integra model (as documented in detail in the supporting surface water and groundwater technical reports with knowledge of the fish species that have bee

the n the d be k, m of the	
are to bing blied I	
ting ne Il d will This in the ogical	
he be the	
tantial	
fish tream rated ng ts) en	

				confirmed in Willoughby Creek in past studies. Although changes in relative abundance and biom of fish within watercourses are expected to chang over time in natural scenarios, it is reasonable to assume that generally the same species are prese as have been confirmed during previous studies, given the lack of available access to complete curr fish community studies on Willoughby Creek whic predominantly held in private property. Habitat lift history requirements of the species known to be present are well documented in the literature and from those requirements, an assessment of poten impacts on fish and fish habitat can be completed based on the predicted changes in habitat (e.g., stream flow and groundwater discharge). It is not necessary to have recent fish community data to complete an impact assessment based on the min changes in streamflow that are predicted to occur particularly when the assessment is primarily base on the presence of Brook Trout and associated habitat, as this species is predicted to be the most sensitive to environmental change of those species known to be present in Willoughby Creek. Section 2.2.9 of the NETR included a summary of Conservation Halton's fish sampling data from stations on Willoughby Creek in 2012. In addition, data collected in support of the original quarry expansion application, as documented in the 2004 Level II Natural Environment Technical Report remains a relevant component of the background knowledge that has supported the impact assessment.
18.	Predicted impacts to downstream watercourses are discerned from the surface water report which can only be based on older baseline data by collected by others, such as records from 2006. As the data has been collected over 14 years ago, changes that have occurred over time regarding the fish community and habitat changes are not accounted for in predictions related to surface water impacts.	General	Matrix Solutions Inc.	Predicted impacts can be assessed based on the fi species that have previously been confirmed in th watercourse (i.e., through previous studies conducted for the original quarry application or by Conservation Halton as part of their Long-term Environmental Monitoring Program) and the know habitat preferences of those species. Also, of key importance is the minimal actual predicted chang habitat (as documented through the surface and groundwater assessment reports and further anal of changes in water depth, wetted cross-sectional area, wetted width). Based on the minimal habita change predicted, Savanta is of the opinion that m recent fish community data for Willoughby Creek would not change the assessment of potential impacts. In our opinion, the general composition of

•	
oiomass	
ange	
to	
esent,	
es,	
current	
which is	
at life	
be	
and	
otential	
ted	
5.,	
not	
to	
minor	
ccur,	
based	
t	
nost	
ecies	
of	
ion,	
/	
2004	
und	
unu	
ne fish	
n the	
or by	
า	
nown	
key	
ange in	
nd	
analysis	
onal	
bitat	
at more	
eek	
ECK	
on of	

				the fish community (in terms of species present) is unlikely to have undergone any substantial change over time that would change how the impact assessment is completed.
19.	The 2020 NETR discusses what is impacted within the existing quarry and extension footprints, it does not provide a more fulsome picture of what happens to the downstream watercourses and particularly the Willoughby Creek system. The applicant should provide more discussion on specific effects to fish habitat as it relates to the receiving waters affected by future drainage and alterations to hydrology and hydrogeology from future expansion. The surface water assessment report provides statements which affirms the sensitivity of Willoughby Creek to changes in baseflow, and the primary concern is that this feature, as well as the other watercourse will be maintained through pumping. Should pumping be subjected to unexpected shutdowns or malfunctions, it is unclear what these effects would manifest to fish habitat. For example, if fish populations are reliant on this flow to successfully spawn and rear their young, what happens during the coldest winters and summer drought conditions is of concern as a sudden withdrawal of flow in the upper reaches may result in fish mortality.	General	Matrix Solutions Inc.	See response to Comments 15, 17 and 18. If the agencies are concerned that any potential impacts of continued pumping outweigh the impa of ceasing pumping once quarry operations are completed (which is permitted by the current qua approvals) then the proponent is willing to conside this approach.
20.	As extraction proceeds to its later stages and progressive rehabilitation takes place, it is unclear how this impacts fish habitat. It is not fully explained how the quality and quantity of discharge water will be maintained. It is anticipated that there will be a lowering of local groundwater and surface water levels from quarry operations and quarry dewatering. It would be good to understand how water quantities will be balanced and water quality will be maintained at various stages during blasting and quarry operations. Furthermore, it is uncertain if ground water conduit flow paths will be interrupted during quarrying operations.	General	Matrix Solutions Inc.	Changes in water quantity through the P3456 and Rehabilitation scenarios have been assessed in the integrated flow model. This has accounted for the predicted lowering of localized groundwater table vicinity of the quarry as well as predicted increase some phases as a result of shifting the groundwate volume to the surface water level (i.e., through discharge of intercepted groundwater through sur 0100 into the Unnamed Tributary of Willoughby Creek). Discharge of water will be consistent with current operations and potential impacts to water quantity and quality will be addressed through the provisions of the AMP and MECP approvals. More details are provided in the attached Watercourse Characterization Summaries.
21.	There may be contaminants introduced into water bodies from blasting and quarry operations that can affect fish habitat. As blasting will be used for extraction, what is the potential for contaminants to be released or the event of a pipeline rupture from blasting (from the Enbridge Pipeline in Colling Road)?	General	Matrix Solutions Inc.	 There will be no difference in the potential for changes in water quality as a result of blasting the quarry extension than there has been for the life of the existing quarry. Appropriate mitigation to prevent impacts on the pipeline will be in place during all quarry blasting activities as per the Blast Impact Analysis (Exploted 2020). This report also recommends monitoring we blasting is occurring in proximity to the pipeline.
22.	Effects from pumping and lake creation, including shutdown of the pumps, malfunctions or spills at the quarry should be included in the discussion. Furthermore, temperature impacts from the creation of the lake, and other potential effects such as exotic species invasion/blue green algae should also be included in the discussion.	General	Matrix Solutions Inc.	The AMP includes appropriate mitigation and monitoring measures to ensure the effects from pumping and lake creation will not negatively imp the surrounding environment. The AMP includes monitoring, mitigation and reporting requirement

ent) is nange	
tial impacts re t quarry onsider	
and in the r the table in reases in dwater gh th sump by with water th the	
r g the life of	
the ting blotech ing when ne.	
l om v impact udes ments	

				during operations and lakefilling. If there are additional requirements that the agencies would I included in the AMP please provide these for Nelson's consideration.
23.	 Future Gaps to be Addressed: The setting for the quary extension takes place within the Niagara Escarpment Protection Area where the management focus is directed to maintaining the key natural heritage features and key hydrologic features for the movement of native plants and animals across the landscape. The natural feature of concern is in Willoughby Creek, where a remnant Brook Trout population exists. This remnant population presumably still occurs within a short distance within the Willoughby Creek Tributary kept separated from Bronte Creek through a dam from more aggressive migratory salmonid species. This current population is dependent on the existence of baseflows and groundwater discharges that occur in Willoughby Creek. During the previous quarry submission, the Joint Agency Review Team (JART) had requested that discussion of each watercourse should include a detailed description of each of the following: (a) locations of groundwater upwellings (and their significance to fisheries), species composition, distribution, relative abundance, and life history of the fish inhabiting the creek. (b) JART also requested identification of critical or sensitive habitat with reference to species distributions. (c) Considering the pumping which will be used to maintain the current baseflows to the Willoughby Creek and other tributaries, this strategy needs to be further understood with respect to future risks to the fish habitat downstream. For example, if a passive means of supplying water to these downstream systems is possible, this may be a safer alternative rather than relying on pumps that may be susceptible to mechanical failure and regular monitoring to ensure proper function. (d) Some of the information requirements that are relevant to the understanding of the potential impacts of the proposed extension raised by JART include: predicted flow rates for groundwater discharge for the tributaries effects of groundwater and su	General	Matrix Solutions Inc.	 DFO has issued a Letter of Advice, dated June 23, 2021, identifying those measures required to previse harmful alteration, disruption or destruction of fish habitat. One of the requirements is to "maint an appropriate depth and flow (i.e., base flow and seasonal flow of water) for the protection of fish a fish habitat. This will be addressed though the provisions of the AMP to ensure the pumping regimaintains base flow and seasonal flow of water. DFO's guidance and conditions were provided after the Summary tables were prepared and circulated Nelson is happy to work through the tables with J. to ensure that all DFO conditions and mitigation measures are included in the AMP and that all threshold and trigger values are updated, if needed based on DFO recommendations. More details are provided in the attached Watercourse Characterization Summaries.

ould like	
e 23, prevent ion of naintain v and fish and le g regime ter.	
d after lated. rith JART ion	
ll eeded,	

	 effect of mitigation/pumping of water into the ground and the impact on watercourses 			
	In addition to these, the applicant should discuss how the progression of quarrying (in various stages) impacts the water quality that is discharged to downstream systems.			
24		General	North-South Environmental Inc.	This application is significantly different than the previous application. The extraction area is smalle which results in less groundwater drawdown and there is greater separation distance between the extraction area and off-site salamander breeding ponds. These ponds and the lack of potential imp have been extensively studied in the integrated groundwater and surface water model. More details regarding these features are provide the attached Wetland Characterization Summarie
25		General	North-South Environmental Inc.	As a point of clarification to the presence of predatory fish, Largemouth Bass was visually observed in all golf course irrigation ponds in September 2019, including the three smaller ones All potential salamander breeding habitat was assessed and trapped as required. Discussions wit the MECP confirm that the golf course irrigation ponds are not habitat for Jefferson Salamander ar did not need to be surveyed. We are continuing to work with MECP for all SAR related matters and a adhering to their survey recommendations and protocols.
26	 Additional surveys should also be conducted for: a. Blanding's Turtle, according to Provincial Blanding's Turtle protocols, b. turtle nesting areas, and c. snakes, according to the protocols for Milksnake. 	General	North-South Environmental Inc.	 Blanding's Turtle survey effort was discussed with MECP and addressed in the MECP response letter after completing Blanding's Turtle surveys, as per MECP direction, in 2021. Neither Blanding's Turtle nor its habitat were observed and are considered absent from the Study Area. As stated in section 4.2.6, turtle nesting surveys w not completed in 2019 due to the lack of suitable microhabitat conditions. Further mitigation measures have been included i updated site plans. Exclusionary fencing adjacent

the maller and the img impact ed	
vided in haries.	
ones.	
s s with on er and ng to nd are nd	
with etter per urtle ered	
ys were able	
ded in cent to	

				the extraction areas will be installed, as per discussions with MECP, to prevent negative impact It is unclear which Milksnake protocols are being referred to. However, available occurrence data (determined in the desktop review of the NETR 20 sections 2.2.3 and 2.2.5) did not identify SAR snak in the Study Area or surrounding area. It is understood that snakes are a cryptic species and occurrence data is limited; however, as described the NETR, habitat assessment surveys and visual encounter surveys during suitable weather condit did not identify SAR snakes or individual or group of snakes large enough to indicate significant wild habitat in the 14 areas that were searched specifi for snake presence.
27.	Weather conditions were omitted from the table summarizing field investigations. Though there are general notes about weather conditions in the text describing the field methods, the weather conditions should be shown for each date for amphibian, reptile and bird surveys.	General	North-South Environmental Inc.	In addition to the general notes about weather conditions in the methodology section, full weath details are recorded for each survey and provided the data sheets in Appendix C of the NETR.
28.	The significant Woodlands analysis resulted in several woodlands (E, F and G) identified as Key Natural Heritage Features in the Regional Natural Heritage System being evaluated as non- significant. More discussion should be provided to explain the difference between the Region's and Nelson's analysis of these features. The discussion should include the rationale behind removing from the NHS both the features and the intervening restoration areas that provided a connected north-south linkage between these woodlands.	General	North-South Environmental Inc.	Section 6.2.2 of the NETR (2020) contains completed details on the analysis of wooded and woodland features through application of the Regional OP (2018). Wooded features E, F and G (among other did not meet the minimum size threshold (0.5 ha) and therefore, did not meet the Regional definition Woodland. Only Woodlands can be assessed for significance, and therefore, due to these areas not meeting the Regional definition of Woodland, the were not assessed for significance. In addition, section 9 of the NETR (2020) speaks to the Regional NHS; more specifically, it includes language from section 116.1 of the OP, which stat that the boundaries of the NHS may be refined, we additions, deletions and/or boundary adjustment through several processes, including completion of EIA. The technical requirements of an EIA have been rethrough this process, and therefore this data show be considered when reviewing the Regional NHS. Finally, the RNHS was created through a very high level desktop exercise with little ability to zoom in and observe a closer look of features. These are highly disturbed patches on a highly active and regularly used golf course. These areas should not have been included in the RNHS.

pacts.	
ng ta (as 2020, nakes	
nd bed in lal nditions bupings wildlife ecifically	
r ather ded on	
plete nd P	
thers) ha), hition of or 5 not they	
ks to s states d, with ents on of an	
en met hould HS.	
nigh- m in re d not	

				There is a large NHS south of the golf course that consists of the Lake Medad Valley, and there is a large NHS east and north of the existing quarry operation that consists of the Mount Nemo Platea Creating an arm of the NHS to/through a golf cour and active quarry operation does not add to the resiliency of the NHS. Improving the resiliency sho be identified in those larger, contiguous features provide greater connection opportunities.
29.	The function of woodlands E and F, particularly as stepping stones that link Woodland D to adjacent features, should be discussed. This is particularly important for Woodland E, which appears to be less than 20.0 metres from Woodland D on the basis of on-line aerial photography, and would therefore meet the criterion for inclusion as a continuous part of woodland D, as stated in Section 6.2.1 (last paragraph on page 50). Since Woodland E meets the criteria for Significant Wildlife Habitat, its contributing function to Woodland D should be assessed.	General	North-South Environmental Inc.	Section 6.2.1 of the NETR (2020) includes the information that wooded features were considered contiguous unit if they were <20 m apart. On-site surveys determined that wooded feature E is >20 from Woodland D and, therefore, is not included contiguous part of Woodland D. Not only is wood feature E <0.5 ha and >20 m from another wooded feature, it is a highly disturbed area that has no understory development due to golf course maintenance, and the ground cover consists of tu grass or sparse cover of Garlic Mustard, Herb Rob and exposed soil. It also includes paved golf cart paths throughout. Full details have been provided Table 2 of the NETR (2020).
30.	There is almost no discussion of impacts other than surface water on Woodland D: the area of woodlands that will be retained between the existing quarry and the western extension. This area will become fragmented as it will be surrounded by existing and proposed quarry land. There is a strong north-south emphasis in the Regional Natural Heritage System through the extension lands, and this linkage will be eliminated throughout the extraction. The phasing of the extraction and the placement of the infiltration pond do not mitigate fragmentation. In addition, a note on the Operational Plan regarding the western edge of the existing quarry states that this edge is "subject to separate Site Plan Amendment to reduce setback to 0 m", which would isolate the woodland completely. Clarity is required to describe exactly what changes are proposed to the existing plan, when they will occur, and to assess the cumulative impacts of the increased setback and the extension.	General	North-South Environmental Inc.	 Please see attached Wetland Characterization Summaries for details on Wetland 13200. The proposed Extension Areas are sited within an active golf course and agricultural area. There is a Regional and Provincial NHS that does run north- south; however, the area of the proposed expansi does not appear to negatively affect the redundar of these smaller branches of the RNHS. The major areas of the NHS run along the Medad Valley, whi is west of the proposed West Extension, as well as along the Mount Nemo Plateau and Grindstone C Complex, located east of the proposed South Extension. The proposed Extension areas are local between these two RNHS branches and are not impeding or removing any of the features that ma up these two branches; the Extension areas are w outside of these two large systems. Based on the Region's NHS mapping, there are so smaller systems that lie parallel to, and between, these two major systems; however, these smaller systems do not connect to the larger NHS, north of the Study Area. These smaller branches of the over NHS do not provide connectivity to begin with, an

hat s a y ateau. course he should res that	
dered a site >20 m led as a ooded oded o	
of turf Robert art ided in	
n an is a th- ansion ndancy ajor which ell as ne Creek ocated	
ocated ot t make re well	
e some en, aller th of overall a, and	

				therefore, the removal or disturbance of golf cour features and their potential for enhancement and future connectivity opportunities can only add to t limited contribution being made to the smaller NH
31.	Fragmentation will in effect create a literal island with no physical connection. Impacts of fragmentation should be described, and appropriate mitigation proposed so sufficient corridors are provided to allow movement of wildlife. Provincial and Regional policies require that the test of no negative impact be met. These two policies will not be met if there is no physical linkage/connection with the woodland to the south. According to the Niagara Escarpment Plan, diversity and connectivity between key natural heritage features must be maintained and/or enhanced. The Regional Official Plan Guidelines' Aggregate Resources Reference Manual also notes that it should be demonstrated that the long-term ecological function and biodiversity of the natural heritage system can be maintained, restored or where possible improved. While the rehabilitation plan shows that the southern linkage will be restored in the final Rehabilitation plan, the time frame to restoring this linkage is unclear. Section 4 of the Final Rehabilitation and Monitoring Study (page 14) appears to indicate that it could be more than 30 years before this linkage is restored.	General	North-South Environmental Inc.	The proposed Extension Areas are sited within an active golf course and agricultural area. There is a Regional and Provincial NHS that does run north-south; however, the area of the proposed expansi does not appear to negatively affect the redundant of these smaller branches of the RNHS. The major areas of the NHS run along the Medad Valley, while is outside and west of the proposed West Extension areas of the ROMEN. The proposed West Extension as well as along the Mount Nemo Plateau and Grindstone Creek Complex, located outside and ear of the proposed South Extension. The proposed Extension areas are located between these two RN branches and are not impeding or removing any of the features that make up these two branches; the Extension areas are well outside of these two larger systems. Based on the Region's NHS mapping, there are sor smaller systems that lie parallel to, and between, these two major systems; however, these smaller systems do not connect to the larger NHS, north of the Study Area. These smaller branches of the ove NHS do not provide connectivity to begin with, and therefore, the removal or disturbance of golf cour features and their potential for enhancement and future connectivity opportunities can only add to the limited contribution being made to the smaller NH.
32.	Exposure to wind and high light levels in Woodland D will likely increase. The population of Large Toothwort (Cardamine maxima), a Provincially rare plant species with a status of S3, is particularly adapted to cool, moist, sheltered forests and would likely be affected by the increase in exposure as it is on the eastern side of Woodland D. The two wetlands within Woodland D that are collectively numbered 13200 (the wetlands between the existing quarry and western extension, which will become physically isolated) are discussed only to say that since the catchment will be removed, mitigation such as discharge of quarry water will have to be used to maintain these wetlands. There should be further discussion of impacts, including isolation, fragmentation of surrounding habitat, noise, drying winds and light, etc., in addition to impacts of pumping quarry water.	General	North-South Environmental Inc.	As summarized in section 6.2.1, woodland D is relatively isolated and located on the golf course, adjacent to the existing quarry. While a portion of this woodland is native, the cultural woodland are non-native, with an abundance of Black Locust, an undesirable tree species, and the FOD5/DIST area contains only a canopy layer, along with turf grass and paved golf cart paths in the ground layer (sub- canopy and understory vegetation are absent). This feature is highly disturbed. Both the catchmen area and corridor will be re-established as part of Rehabilitation Plan. There is high potential to

course and d to the er NHS.	
n an is a rth- bansion ndancy ajor which ension, nd east ed vo RNHS ny of s; the large	
e some een, aller rth of e overall n, and course and d to the er NHS.	
evised rea and s.	
s rse, on of d area is t, an area grass (sub-).	
nment t of the	

				 enhance this woodland both in species diversity ar composition. The proposed rehabilitation plans with create a system that is better connected and functional than what currently exists in the golf course and adjacent quarry. If there are additional specific mitigation measured please provide them for Nelson's consideration for inclusion in the AMP.
33.	The discussion of wetlands should include Wetland 13203, which is the only wetland identified that provides Significant Wildlife Habitat for breeding amphibians, as well as habitat for painted turtle.	General	North-South Environmental Inc.	inclusion in the AMP. Wetland 13203 was evaluated by MNRF and determined to be non-significant and is also relian on pumping from the existing quarry. Full details a provided in the Wetland Characterization Summar
34.	There is no discussion of potential cumulative impacts of the existing quarry and the extensions (only a very brief mention of cumulative impacts).	General	North-South Environmental Inc.	See response to Comment 13.
35.	Discussion of mitigation is incomplete: there should be a discussion about the mitigation of impacts in the short term (in addition to impacts related to erosion and sediment control) as extraction progresses (as required by the Aggregate Resources References Manual) – impacts of the quarry will not be addressed by the rehabilitation for many years.	General	North-South Environmental Inc.	Additional mitigation discussion is provided in the Wetland Characterization Summaries and AMP.
36.	Mitigation should include a discussion of Wetland 13203.	General	North-South Environmental Inc.	Full details are provided in the Wetland Characterization Summaries.
37.	All studies should be coordinated and integrated. In particular, the findings of the Hydrogeologic and Hydrologic Impact Assessment, Surface Water Assessment and Level 1 and 2 Natural Environment Technical Report should inform each other and should be reviewed for consistency	General	Conservation Halton	The water resources and natural environment teal worked very closely on the assessment of the application. To assist the agencies the attached wetland and watercourse characterization summata tables have been prepared to integrate all of the findings from the various technical reports. DFO's guidance and conditions were provided after the Summary tables were prepared and circulated Nelson is happy to work through the tables with JA to ensure that all DFO conditions and mitigation measures are included in the AMP and that all threshold and trigger values are updated, if needed based on DFO recommendations.
38.	 Not all of the natural heritage features that have the potential to be impacted are identified in the report. For example: PSWs that are within the zone of influence of the proposed quarry but outside of the 120.0 metres adjacent lands are discussed only at a high level, though potential exists for impact as noted in the Hydrogeological and Hydrological Impact Assessment Report and the Surface Water Assessment. Significant Wildlife Habitat (SWH) discussions did not include all of the identified SWH in the study area (e.g., FOD7-4, seeps and springs, amphibian movement corridors, etc.). 	General	Conservation Halton	Wetland Characterization Summaries provide furth details. The FOD7-4 and seeps and springs are discussed in more detail in this submission. The amphibian movement corridor will remain untouched. No dir impacts are anticipated due to its location outside the Study Area at the far edge of the 120 m adjace lands. Potential hydrological impacts and associate mitigation measures are provided in detail in the

ty and ns will	
lf	
sures, on for	
eliant ails are nmaries.	
the P.	
team	
ed nmary :he	
after ated. ith JART on	
eded,	
further	
ed in	
o direct side of djacent ciated the	

	 The extent of fish habitat on the site and within the zone of influence should be confirmed by DFO. Connectivity across the landscape should be considered in more broader terms. Recommend revising the report to discuss all of the natural features that have the potential to be impacted by the proposed quarry and mitigation measures developed as appropriate. 			 Wetland Characterization Summaries – wetland 13203 – appended to this response submission. DFO has confirmed in its letter dated June 23, 202 that the constructed golf course ponds and interconnecting channels are not considered to be fish habitat. Connectivity across the landscape and the natural heritage system has been previously addressed in submission.
39.	Please include a more detailed discussion on net gain as per Halton Region's Aggregate Resources Reference Manual. Currently direction is to refer to the Site Plan and AMP, which does not give enough detail to ensure that net gain is achieved.	General	Conservation Halton	Limited natural heritage features are proposed for removal and substantial natural heritage features proposed for creation and enhancement. For example, woodland cover will have a net gain of 2 ha. Wetland cover will have a net gain of 3.6 ha. T native diversity and composition of habitat will increase greatly from that which is golf course and agriculture. We disagree that the site plans do not provide sufficient detail for the creation of these habitats. In addition, MNRF has to be satisfied that these habitats are created prior to the surrender of the license.
40.	 Savanta states: "An assessment of the quality and extent of natural heritage features found on, and adjacent to, the Subject Lands and the potential impacts to these features from the proposed aggregate application will be undertaken in association with the following legislation and policies." It should be clear that the significance of each feature will be evaluated according to the criteria provided by the Province and Region. Two pieces of legislation should be added to the list of policy and legislation in this section: the Migratory Birds Convention Act and Fish and Wildlife Conservation Act. 	Section 2.1. Natural Heritage Policy Overview	North-South Environmental Inc.	Comment noted.
41.	Recommend expanding the applicable PPS policies to include those in the Policy 2.2 Water, given that some of these speak to natural heritage features and areas, and the connection to the water system.	Page 9 Section 2.1.1. Provincial Policy Statement	Conservation Halton	See response to Comment 10.
42.	Policy 110 (7.2) should be specifically discussed in this section, as it addresses the requirement for a systems-based approach to the assessment of impacts as follows: "In accordance with Section 118(3)d), apply the following systems based approach in the assessment of the impact of a new or expanded mineral aggregate operation on the Region's Natural Heritage System"	Section 2.1.3. Halton Regional Official Plan	North-South Environmental Inc.	Policy 110 (7.2) has been considered in the preparation of the rehabilitation plan which outlin the short-, medium- and long- term natural herita features that will be created to enhance the Regio Natural Heritage System compared to existing conditions. The NETR report addresses how the Regional Natural Heritage System will be enhance both in terms of size, diversity and function. The detailed policy analysis is included in the Planning Report.

nd n.	
2021,	
to be	
ural d in this	
d for ures are of 28 na. The II e and o not ese d that der of	
utlines eritage egional g he anced The ning	

43.	 The paragraph in Savanta's report in Section 2.1.6 indicates the following: "Some projects may be eligible for exemption from the DFO review process, as specified under Step 3 of the DFO Fish and Fish Habitat Protection Program review process (DFO 2019b; e.g., artificial waterbodies with no hydrological connection to occupied fish habitat)." In the Fish Habitat Discussion section in 7.2.4, it is mentioned that "There is no direct or 	Section 2.1.6. Federal <i>Fisheries</i> <i>Act</i>	Matrix Solutions Inc.	DFO has confirmed in letter dated June 23, 2021, the constructed golf course ponds and interconnecting channels are not considered to be fish habitat.
	indirect fish habitat within the proposed Limit of Extraction within either the South or West Extension areas. Therefore, no direct encroachment into any watercourse providing fish habitat will occur and no direct impacts on fish habitat are anticipated within the Limit of Extraction, during any phase of the Project."			
	Since there is a hydrological connection by way of the outflows to direct and indirect habitat, it would seem that the irrigation ponds within the golf course have been ruled out as not fish habitat. This would suggest that the <i>Fisheries Act</i> does not apply to harmful alterations to these ponds. Unless the ponds are self-contained, pollutants could potentially be released into the discharges flowing out of these ponds to direct and indirect fish habitat. It is unclear how the irrigation ponds would not be considered fish habitat if they are hydrologically connected to fisheries habitat and impacts from alterations to these ponds could have a downstream impact.			
44.	The background data collection should have included Citizen Science databases such as eBird and iNaturalist.		Both e-Bird and iNaturalist sources are considered citizen science databases that collect, archive and share species observations. As the observations an	
	The report notes that in the NHIC background search, four 1.0 square kilometre "squares" were examined. In fact, six squares are needed to encompass the site: 17NJ 8805, 8905, 9005, 9105, 9104 and 9004. If the search is broadened to include the immediately surrounding habitat (as is the usual approach), approximately 12 squares should have been selected. This larger study area is justified because the locations of significant species are often not known exactly, and many wildlife species are mobile enough to roam more widely within the landscape than where they were reported.			 identifications can be submitted by anyone, and the records are not officially vetted, the data obtained from these tools should not be used as a clear indicator of species presence. Species may be filted out based on habitat and targeted survey efforts. The following SAR were identified in the citizen science databases: Bald Eagle (special concern – e observation near the cliffs of the escarph near Mount Nemo; preferred habitat ab within Study Area) Barn Swallow (threatened – e observation, as well as a confirm observation within the Study Area
	This section should be summarized by a more inclusive table listing all the SAR that have been noted by an extensive review of background sources in the general area, with their habitat requirements. This should have directed Savanta's survey methodology and focus. In addition, several Species at Risk were left out of the analysis. The following additional species, noted in the two Ontario Reptile and Amphibian Atlas squares that encompass the site, were omitted from the sources mentioned:			
	Ontario Herpetofaunal Atlas:			discussed in the NETR 2020) - Golden Eagle (endangered – eBird observa
	 Western Chorus Frog (latest record 2019) – Threatened Federally, Not at Risk Provincially. Density of a Twetter (latest record 2017) – Threatened Drevinsially and Federally. 			near the cliffs of the escarpment near Mo Nemo; preferred habitat absent within St Area)
	 Blanding's Turtle (latest record 2017) – Threatened Provincially and Federally Midland Painted Turtle (latest record 2018) – Special Concern Federally 			- Blanding's Turtle (threatened – iNatur
	 Map Turtle (latest record 2018) – Special Concern Provincially and Federally Milksnake (latest record 2019) – Special Concern Federally, Not At Risk Provincially. 			observation 3.5 km from Study A preferred habitat absent within Study Are - Northern Map Turtle (special concer iNaturalist observation within 1 km of St

2021, that	
l to be	
idered	
e and	
ons and	
and the	
tained	
ar afiltarad	
e filtered	
forts.	
zen	
– eBird	
carpment at absent	
at absent	
– eBird	
confirmed	
Area and	
area ana	
oservation	
ear Mount	
thin Study	
Study	
Naturalist	
dy Area;	
dy Area)	
oncern –	
of Study	
i oi stuuy	

				 Area; preferred habitat and food so absent within Study Area) American White Pelican (threatened iNaturalist observation within 1 km of 2 Area; preferred habitat absent within 2 Area. Species range limited to Norr Ontario; observation likely a migrant) Lilliput mussel (threatened – iNatur observation within 1 km of 5 tudy preferred habitat and host fish species al within Study Area) Based on the habitat assessments and field surver program discussed in the 2020 NETR, the conclust remain unchanged.
45.	This section provides a listing of the natural features within the defined Study Area and the Broader Landscape. The first paragraph in this section states that Savanta has relied, in part, on supporting background information from government agencies and previous site surveys/investigations to provide additional insight into the overall character of these Subject Lands. The second paragraph describes how Savanta was involved in the previous application and states that "given the period of time that has passed, changes in policies and the changes in both the footprint and field conditions, we have not relied on it but have considered the field data and information obtained during that process to enhance the background data collection review and establishment of the field program." The lack of reference to previous historical work from 2004 and 2006 limits the understanding of the fisheries context regarding quarry operations and surrounding fish habitat. The next sections describing the fish habitat in the 2020 NETR are therefore very limited, whereas the fisheries information from the previous work by Stantec is extensive.	Section 2.2. Background Data Collection	Matrix Solutions Inc.	 Comments on fish habitat have been discussed extensively above. DFO is the regulatory agency responsible for fish habitat and issued a letter of advice dated June 23, 2021. Nelson will impleme the recommendations of DFO to protect fish hab More details are provided in the attached Watercourse Characterization Summaries. DFO's guidance and conditions were provided af the Summary tables were prepared and circulate Nelson is happy to work through the tables with to ensure that all DFO conditions and mitigation measures are included in the AMP and that all threshold and trigger values are updated, if need based on DFO recommendations.
46.	 Features on or within the Study Area (bottom of Page 15 and top of page 16) should have included a discussion of the Mount Nemo Plateau. This is a landscape feature that is not mapped per se as an ecological feature – however, it has been identified as an important area for wildlife connectivity and it was identified as a significant recharge zone by the previous study team. Previous findings of groundwater connection with the wetlands in the previous hearing should be addressed. 	Section 2.2.1. Natural Features Desktop Summary	North-South Environmental Inc.	The function of the Mount Nemo Plateau as a recharge function is addressed in the water reso report and discussion regarding the important ar for wildlife connectivity on the Mount Nemo Plat are discussed above.
47.	Discussion of the fisheries context is found in Section 2.2.9 Conservation Halton Long-Term Environmental Monitoring Program Data, where characterization of the Grindstone Creek Watershed and Bronte Creek Watershed from Conservation Halton in 2002 was used to describe fish habitat. The fish habitat character from 2002 and fish species data in 2012 provided in this section from Conservation Halton provides a very limited background information despite the wealth of more detailed fisheries information contained in historical reports, which provide an indication of baseline conditions.	Section 2.2.9. Conservation Halton Long-Term Environmental Monitoring Program Data	Matrix Solutions Inc.	See previous responses regarding fish habitat. Contrary to this comment, as described in NETR Section 5.3.2, starting on Page 43, fish communit sampling was completed on the West Arm of the West Branch of the Mount Nemo Tributary. The also references the results of previous fish community surveys completed in the West Arm of

source	
ed – Study Study orthern	
turalist Area; absent	
vey usions	
y of ent bitat.	
ifter ed. n JART n eded,	
ources areas ateau	
ity ie e NETR	
of	

	This section confirms no fish community sampling is known to have been conducted in the unnamed tributary of Willoughby Creek downstream from the Subject Lands. Furthermore, no fish sampling has been completed on the West Branch of the Mount Nemo Tributary of Grindstone Creek. The Mount Nemo Tributary has been characterized as intermittent.			the West Branch by Stantec as well as surveys by MNRF in the East Arm of the West Branch.
48.	This section should have included a description of the Ecoregion and Ecodistrict context of the site.	Section 3. Physiographic Conditions	North-South Environmental Inc.	Comment noted.
49.	In addition to considering individual Coefficients of Conservatism, Floristic Quality Analysis (FQA) should be included to provide an assessment of vegetation quality in each community as a whole.	Section 4. Field Investigations and Methods - Section 4.1.2	North-South Environmental Inc.	The NETR discusses plant species that have a hig value and their associated communities. At this p regarding FQA, it is our understanding that based values have not been established formally in Ont (i.e., none that have been peer reviewed and published). Without formal baseline values, relat comparisons of communities are not reliable and would not add value to the current assessment a results. The NETR assesses floristic quality for the Study Area as a whole by using the CC values, an therefore, the vegetation data has been sufficient assessed and applies appropriate mitigation measures.
50.	A sampling plot radius of 5.0 metres is smaller than that generally accepted for sampling of woodlands (e.g. the sampling method for determining whether there are enough trees with cavities to meet the threshold for bat maternity colony habitat is 12.0 metres). This small sampling radius could have influenced the assessment of Significant Woodlands, if the small radius was used in the smaller woodlands as noted. A description of how the location of sampling plots were selected should be provided. It would be easy to unconsciously select areas with fewer trees for sampling if plots were selected in the field.	Section 4. Field Investigations and Methods - Section 4.1.4	North-South Environmental Inc.	Woodland stem density surveys and bat maternic colony surveys have differing objectives and sho not be compared with respect to plot size. The la is targeting larger trees capable of supporting ba maternity roosts and therefore requires larger pl Woodland stem density surveys target all trees measurable at DBH – since many of the trees observed in the 5m plot communities were smal diameter, a smaller plot size was deemed appropriate.
				5m radius plots were only used in two of the five vegetation communities assessed; the remaining three consisted of 10m radius (two communities 15m radius (one community). In these instances, rationale for using the 5m radius plots was based size of the overall feature and visibility within the (i.e., polygon CUT1-1), and observed variability w the community (e.g., varying density of stems in overall community, varying species, and/or varyi maturity; i.e., polygon CUT1b). The issue of visibi in this case, relates to density of shrub species, w an abundance of Staghorn Sumac, Common Buckthorn, and Multiflora Rose made it difficult count stems reliably in larger plots. Since 10% community coverage was generally the target, it meant that smaller communities would require f large-diameter plots to achieve this target. For th two communities, only one 10m plot would be

у	
gh CC point, eline ntario	
ative ad and he nd ently	
nity ould latter oat plots.	
all	
ve ng es) and s, ed on he plot within n the ying bility, where	
t to	
it fewer these	

				 necessary to exceed that target. For polygon CUT: it was determined on site that a single plot appea unlikely to sufficiently address the variability with the overall community. Determination of plot location consisted first of desktop imagery interpretation – selecting location that appeared to capture community variability, which was then adjusted on site (if necessary) to ensure the pre-planned plots could be safely accessed and that any variability within the community was proportionately represented.
51.	 The golf course ponds should have been included in salamander surveys (Figure 4a, Appendix A) and aquatic turtle surveys. Though these are human-made, there is the potential that one or more of them may provide habitat for SAR, including Jefferson's Salamanders (The retained consultant has personally observed this and other Ambystoma species in human-made ponds). There is no detail on time or weather during amphibian, bird, turtle and snake surveys, to permit a full assessment of whether wildlife survey methods were appropriate. Appropriate weather conditions (generally relatively warm, with no precipitation and low winds) are essential for reptile, amphibian and bird surveys. Inappropriate weather conditions can lead to the false conclusion that the species is not present. Surveys did not conform to the MNRF protocols for Blanding's Turtle, for which five visits are required prior to June, in highly specific weather conditions. 	Section 4.2. Wildlife Surveys	North-South Environmental Inc.	 All potential salamander breeding habitat was assessed and trapped as required. Discussions with the MECP confirm that the golf course irrigation ponds are not habitat for Jefferson Salamander and did not need to be surveyed. We are continuing to work with MECP for all SAR related matters and a adhering to their survey recommendations and protocols. In addition to the general notes about weather conditions in the methodology section, full weath details are recorded for each survey and provided the data sheets in Appendix C of the NETR. Blanding's Turtle survey effort was discussed with MECP and addressed in the MECP response letter after completing Blanding's Turtle surveys, as per MECP direction, in 2021. No Blanding's Turtle or in habitat were observed and are considered absent from the Study Area.
52.	It is not clear that MNRF/MECP were involved in selection of sampling sites; only that they were consulted regarding survey protocols. This should be clarified. Conservation Halton should also have been consulted regarding survey locations and methods. As noted above, the retained consultant has had experience with Jefferson's Salamanders and other Ambystoma species use of human-made ponds, so golf course ponds should have been included in trapping.	Section 4.2.2. Salamander Habitat Assessment and Hydro-period Monitoring Methodology	North-South Environmental Inc.	All potential salamander breeding habitat was assessed and trapped as required. Discussions wit the MECP confirm that the golf course irrigation ponds are not habitat for Jefferson Salamander ar did not need to be surveyed. We are continuing to work with MECP for all SAR related matters and a adhering to their survey recommendations and protocols.
53.	It is not clear whether tail-tip samples were obtained for genetic testing.	Section 4.2.3. Salamander Minnow Trapping Survey Methodology	North-South Environmental Inc.	Table 6 includes full details of the 2019 trapping results. No salamanders were caught during the trapping surveys; therefore, no tail-tip samples we obtained.

JT1b, eared thin tions ', o	
with and g to I are	
ther ed on	
ith er er r its ent	
with and g to l are	
y were	

	This section states: "Survey protocols were created in consideration of MNRF (2012) and Toronto Zoo (Caverhill et al. 2011) turtle survey methods." This is imprecise language as it is	Section 4.2.6.	North-South	In addition to the general notes about weather
		Turtle Basking	Environmental	conditions in the methodology section, full weath
	unclear what "consideration" means: whether MNRF protocols were followed, or whether	Habitat and	Inc.	details are recorded for each survey and provided
	they were just given "consideration". If a variation in the protocols was followed this must be	Nesting Surveys		the data sheets in Appendix C of the NETR.
	fully described. Clear times and weather conditions for each visit have not been provided.			T I 2010
	The Manufacture of the University of the University of the section			The 2019 spring season had a cool and wet start,
	The final paragraph in this section notes that turtle nesting surveys were not completed due			providing limited 'ideal condition' days for survey
	to absence of suitable habitat. However, turtles are frequently observed to nest on lawns			for reptile species. Although reptile surveys do ha
	(personal experience of the author), and turtles frequently nest at long distances from their			'ideal condition' temperatures and general condit
	basking habitat. Turtle nesting surveys should have been conducted at the appropriate time			guidelines, these are not always the set standard.
	of year.			Other considerations in determining suitable wea
				conditions include past weather patterns (i.e.,
	There is no indication that methods for surveying non-basking turtles were used. As noted			weather leading up to the day of survey) and rept
	above, Blanding's Turtle (Threatened) have been noted within the Ontario Amphibian and			behaviour in the local landscape (information
	Reptile Atlas "squares" in the vicinity of the site in addition to Midland Painted Turtle			obtained from the provincially recognized Reptile
	(Recently evaluated as Special Concern) and Snapping Turtle (Special Concern). Blanding's			Course on Beausoleil Island, 2017).
	Turtles bask less often than other turtle species, and must be surveyed particularly early in			
	the year, in ideal weather conditions, as detailed by Blanding's Turtle survey protocols (MNRF			Turtle basking surveys are considered appropriate
	2013).			between ice-off and mid-June. Surveys should occ
				between 6 and 25 degrees during sunny or partly
				cloudy conditions and be above 15 degrees in full
				cloudy, but not stormy, conditions. These condition
				were all satisfied when completing the turtle bask
				surveys in 2019. One of the more important
				considerations when deciding to commence turtle
				basking surveys is to ensure that the air temperat
				is warmer than the water temperature, along wit
				the previous and current weather conditions.
				April 22: Survey was completed in partial
				overcast/partially sunny conditions (with a mix of
				and cloud presence – cloud presence was the high
				in the morning and decreasing into the afternoon
				after a weekend with cool, rainy weather. The
				previous two days prior to the basking surveys
				included a partially sunny day, even with
				temperatures below 15 degrees Celsius, resulting
				more active basking observations in the surround
				geographic area. Additionally, the air temperature
				was higher than the water temperature, further
				supporting basking conditions.
				May 10: The two days prior to the survey were co
				and the day prior was rainy. The morning of May
				was the warmest portion of the day (hovering at 2
				degrees) with a mix of sun and cloud conditions.
				Additionally, the air temperature was higher than
				water temperature, further supporting basking

ther ed on			
t, eying have dition ^r d. eather			
ptile			
ile			
ate occur :ly ully itions asking			
rtle rature vith			
of sun ighest on)			
ng in nding ure r			
cool, ny 10 nt 17 s. an the			

					 June 11: This survey date falls within the ice-off a mid-June timing window and meets the ideal conditions previously specified. Additionally, the and cool spring conditions in 2019 support an ea June survey date due to a delayed spring season. The potential basking features that were surveyed are primarily characterized by open irrigation pothat are mowed to the feature edge and provide limited basking opportunities, given the sloped ed lack of basking habitat (e.g., rocks, logs) and ope water conditions with no vegetation to create vis barriers from predators. The features are deep a generally hold water cooler than the air temperad Based on the above, this SWH type is still considerabsent. As indicated in section 4.2.6, suitable nesting mid habitat characteristics included open, sunny aread looser sand and gravel mineral soils adjacent to undisturbed shallow weedy areas of marsh habita Such habitat conditions were absent from the Study Area.
5	5.	Times and weather conditions for snake surveys are important, but have not been provided for each survey. It is noted that visual encounter surveys were conducted on mild spring mornings, but the following sentence says they were conducted between 8:00 AM and 5:00 PM, which means not all were conducted in the morning.	Section 4.2.7. Snake Habitat and Visual Encounter Methodology	North-South Environmental Inc.	In addition to the general notes about weather conditions in the methodology section, full weat details are recorded for each survey and provide the data sheets in Appendix C of the NETR.
		The first sentence notes that survey methods are based on MNRF species at risk protocols, but the final sentence on the first paragraph of this section notes that specific protocols were not applied as no threatened or endangered snakes have been recorded in the area based on the species desktop summary. Milksnake (a species of Federal Special Concern) has been recorded in this area by the Ontario Herpetofaunal Atlas, so the MNRF protocol for Milksnake surveys (which are often used to guide surveys for non-SAR species generally) could have been followed.			The 2019 spring season had a cool and wet start, providing limited 'ideal condition' days for survey for reptile species. Although reptile surveys do h 'ideal condition' temperatures and general cond guidelines, these are not always the set standard Other considerations in determining suitable we conditions include past weather patterns (i.e., weather leading up to the day of survey) and rep behaviour in the local landscape (information obtained from the provincially recognized Reptile Course on Beausoleil Island, 2017).

and	
e wet arly 1.	
ved onds e edges, en risual and rature.	
dered	
icro- eas of	
itat. tudy d due	
ith er er r its ent	
ther ed on	
t, eying have dition rd. eather	
ptile	
ile	

				Snake visual encounter surveys are considered
				appropriate between April and September (though
				spring emergence is ideal between April and leaf-
				out). It is also recommended that surveys should
				occur between 10 and 30 degrees during sunny or
				partly cloudy conditions, and above 15 degrees in
				fully cloudy, but not stormy, conditions. These
				conditions were all satisfied when completing the
				visual encounter surveys in 2019. In addition to the
				weather condition parameters that are
				recommended during the survey, the weather
				conditions and pattern from the previous days
				leading up to the survey date are also of importance.
				leading up to the survey date are also of importance.
				April 22: Survey was completed in partial
				overcast/partially sunny conditions (with a mix of sun
				and cloud presence – cloud presence was the highest
				in the morning and decreasing into the afternoon)
				after a weekend with cool, rainy weather. The
				previous two days prior to the basking surveys
				included a partially sunny day, even with
				temperatures below 15 degrees Celsius, resulting in
				more observations in the surrounding geographic
				area. Additionally, the majority of the snake surveys
				were completed in the afternoon with cloud cover
				between 40-60%, providing suitable sunny
				conditions.
				May 10: The two days prior to the survey were cool,
				and the day prior was rainy. The morning of May 10
				was the warmest portion of the day (hovering at 17
				degrees) with a mix of sun and cloud conditions, and
				the afternoon was mostly sunny.
				June 11: This survey was completed within the
				suitable timing window (April to leaf-out) and during
				suitable weather conditions. Due to the cool and
				delayed start of spring in 2019, leaf emergence
				occurred into early June.
				occurred into early Julie.
				Based on the above, this SWH type is still considered
				absent.
56.	It is stated that the MNRF Guidelines for Bobolink and Eastern Meadowlark point counts were	Section 4.2.8.	North-South	Historical communication with MNRF confirmed that
50.	followed. These guidelines state that 3 surveys should be conducted, in the early, mid and late	Breeding Bird	Environmental	two surveys are sufficient if the species was observed
	season. A third survey date for these species is not listed.	Surveys	Inc.	during survey rounds one or two. Bobolink was
	season. A third survey date for these species is not listed.	Juiveys		observed on the Camisle Golf Course, adjacent to the
				proposed South Extension; therefore, a third survey
				was not required due to confirming presence with first two rounds
				first two rounds.

			Nametri Caratt	
57.	It is noted in this section that survey methods targeted habitat for Little Brown Myotis, Northern Myotis and Tri-colored Bat, but that surveys were conducted in leaf-off condition, focusing on tree cavity assessment. However, surveys for Tri-colored bat habitat must be conducted in leaf-on condition, as Tri-colored Bats nest in leaf clusters.	Section 4.2.9. Bat Habitat Assessment Survey Methodology	North-South Environmental Inc.	As noted in section 4.2.9, survey methods applied the 2019 bat habitat assessment surveys include a combination of protocols established by the MNR (MNR 2011 and MNRF 2017), discussions with ME and professional experience. Bat habitat survey guidance from the province has been in flux since release of the MNR 2011 document due to the incorporation of on-going bat research, and there discussions with provincial authorities is the preferred approach to establishing survey method MECP guidance for assessing forest/woodland habitats for maternity roosting bats does not recommend surveys for leaf clusters. Tri-coloured Bats are known to prefer leaf clusters, with data showing a preference for dead leaf clusters in particular, though cavity and peeling bark roosts f also been identified as roosting habitat for this species. All FO/SW ELC communities (eight were identified were considered potential habitat for SAR bats (tr cavities, peeling bark and leaf clusters are typicall present in all FO/SW communities, so none of the habitats were overlooked). Of these eight communities, three of them fell within the propose limit of extraction and were further surveyed usin acoustic methods to determine species presence.
58.	It is noted on page 29 that "any calls with a positive identification were manually vetted by a wildlife ecologist with training in bat species identification by sonagram." Calls noted as "NoID" should also be vetted by an ecologist with training, as Myotis sp. calls are frequently recorded without identification to species. The three Myotis species that occur in southern Ontario (as well as the Tricoloured Bat Perimyotis subflavus) have very similar calls that cannot always be identified by auto-ID algorithms, but all Myotis and Perimyotis species are considered Endangered.	Section 4.2.10. Bat Acoustic Survey Methodology	North-South Environmental Inc.	Correct. To help emphasize the effort applied to t assessment of bat acoustic recordings please note following clarification to the bat acoustic survey methodology. Due to the challenge in identifying some high frequency calls, wildlife ecologists trair in bat species frequency identification individually assessed the high frequency calls to ensure that the auto-ID results were accurate. If a call could not b identified beyond <i>Myotis</i> sp., it was left as <i>Myotis</i> and included in the SAR results.
59.	Typically, an assessment of potential HDF is done prior to going on site using orthoimage interpretation or ArcHydro analysis to look for drainage features that have a catchment of 2.5 hectares or larger. The report should describe how this was completed.	Section 4.3.1. Headwater Drainage Feature Assessment	North-South Environmental Inc.	Aerial photo interpretation was completed to ide potential HDFs that may need to be looked at and results of a November 2018 site reconnaissance w considered prior to completion of HDFA Round 1. However, the entire proposed West Extension Subject Lands and South Extension Licensed Boundary and all areas within 120 m were walked during HDFA Round 1 to identify potential HDFs. Therefore, it was not necessary to rely on arc-hyd

lied for	
de a	
INRF	
MECP	
ey €y	
nce the	
e	
nerefore	
thods.	
I	
ured	
ita	
sts have	
s	
ified)	
s (tree	
ically	
these	
oposed	
using	
nce.	
to the	
note the	
ey	
ing	
rained	
ually	
at the	
ot be	
<i>otis</i> sp.	
identify	
and the	
ce were	
d 1.	
1	
المعا	
lked	
Fs.	
hydro	

				mapping to identify features, as this was done through field investigation.
60.	Please discuss how the delay in the Headwater Drainage Feature (HDF) Assessment timing impacted the results of the assessment and provide additional mitigation as necessary. For example, the first round of the HDF Assessment was completed on April 18, 2019 with a temperature of 22.0 degrees, which is outside of the spring freshet of that year. The second round was completed outside of its typical period (June 3, 3019 vs Late April – May) and the last round was at the very end of the window as well (August 26, 2019 vs July-August).	Page 29 Section 4.3.1. Headwater Drainage Feature Assessment	Conservation Halton	 Round 1 in 2019 was just beyond the typical wind identified by the HDFA Guideline (late March – mi April) and while not at the peak of the freshet, the timing was sufficient to identify HDFs on the landscape. OSAP (Section 4: Module 11) notes tha round 1 should be completed after the spring fresh Mid to late spring 2019 was very wet and as a rest of waiting to get a period of at least 48 hours with rain (and preferably 72 hours as noted in OSAP Section 4: Module 11), delay until early June was required to achieve appropriate baseflow condition per guidelines. The OSAP (Section 4: Module 11) indicates sample event 3 is conducted in July to mid-September following at least 3 days with no flow generating precipitation event. The round 3 survey on August 2019, meets these requirements. The intent of Ro 3 is to identify permanent flowing or wetted feature during summer baseflow, and this was achieved.
61.	This section describes the fish community sampling that was completed on June 17 and 24, 2019. Backpack electrofishing (using a Halltech HT-2000 electrofishing unit) and seine netting (using a 30.5-metre long by 1.83-metre high, small mesh seine net) were used in combination to survey all habitats present. The other excavated golf course ponds were steep-sided and too deep to wade; therefore, visual observations of fish presence were recorded. As fish sampling methods are known to be selective to fish, discussion of biases associated with these methods should have been included in this section as the methodology used for fish sampling is biased to larger fish. No attempt was made for example, to use minnow traps in areas that are too deep to wade to obtain an understanding of smaller bodied fish species. Visual fish observations yield limited information and accuracy of fish identification is based on the experience of the observer. At the very least, the mesh size of the netting should have also been indicated as well as catch per unit effort to understand the relative abundance of fish. If the objective of the fish sampling was to demonstrate an understanding of the fish community, including the presence/absence and types of fish inhabiting various watercourses in the study area, a discussion on gear selection and deployment should have been included. The presence or absence of fish is a useful indicator in determining a particular pond's potential to support other species such as the Jefferson Salamander.	Section 4.3.3 Fish Community	Matrix Solutions Inc.	 We note these comments relate to the anthropogenic ponds on the golf course, which has been confirmed as not being fish habitat by DFO. In note the following: Although catch per unit effort was not specifically noted in the report or the resultable (Table 14) it can be readily calculated based on the reported numbers and efforr (electrofishing seconds). However, in our opinion, little relevant information can be garnered from a calculation of catch per uneffort that cannot already be readily discerned from looking at the raw results. Electrofishing within the interconnecting channels between ponds is considered to a completely effective method to sampler fish community in those areas. DFO has confirmed (via email on June 23, 2021, which accompanied the Letter of Advice) that the ponds and interconnecting channels on the golf course are not considered fish habitat.

ndow mid- the	
hat reshet.	
esult ith no	
as itions,	
ple	
g ust 26, Round atures d.	
has D. We	
esults ited fort ur be r unit	
ts. Ig to be le the	
3,	
ting	

- It is acknowledged that deep water sam was not completed in the anthropogeni ponds. However, we suggest that the vi assessment methodology was very effe in identifying the species of fish that we observed, given that Largemouth Bass, including YOY, juveniles and adults are identifiable to species and viewing cond during the survey were excellent. It is o opinion that there was no opportunity inaccurately identify those fish that wer visually observed in the ponds. Further, active sampling that was completed in ponds and interconnecting channel only identified the presence of Largemouth thereby validating the visual observatio only one species.
- We cannot discount the possibility that • species could potentially be present in anthropogenic ponds in areas that were sampled. It is well documented that fish invade ponds through a number of mea transport including human induced stoc accidental release, birds and migration downstream watercourses. Therefore, possible that if other gear was utilized, additional fish species could potentially been captured. However, regardless of whether or not other species were pres the anthropogenic ponds on the golf co our opinion of whether or not these point are characterized as fish habitat under Fisheries Act would not change for the reasons outlined in Section 6.6.1 of the Again, DFO has confirmed in letter date June 23, 2021 that the constructed golf course ponds and interconnecting chan are not considered to be fish habitat.
- Further to this, regardless of the fish composition of the ponds, in our opinio inarguable that the ponds and interconnecting channels do not provide important ecological function for the na fish community in Willoughby Creek. As expanded upon in the NETR, it is our op that removal of the ponds and irrigation channels would have a net benefit for the natural watercourse downstream. There in our opinion, any further studies in the ponds are not warranted, since the long

npling	
ic	
isual	
ctive	
ere	
readily	
ditions	
ur	
to	
re	
the	
the	
y	
, Bass,	
ns of	
113 01	
other	
the	
e not	
n can	
ans of	
cking, from	
from	
is	
have	
have	
ent in	
urse,	
nds the	
uie	
NETD	
NETR.	
ed	
nels	
11612	
n it ic	
on, it is	
0.20	
e an	
atural	
) Jiniar	
oinion	
ns ha	
he	
efore,	
ese	
g-term	

				 management remains the same (i.e., removal). Based on our experience in sim areas, fish from man-made ponds such as are not typically permitted to be transferr back to the natural environment elsewhe given the potential for diseases and contaminants. Largemouth Bass have been visually confirmed in all of the Golf Course ponds this has been considered in the assessme potential to provide Jefferson Salamande habitat.
62.	Giant Swallowtail (S3) was not included in the mapping of significant species on Figures 7a and 7b. It was omitted because its host plant, Prickly Ash, was not observed within the areas where the butterfly was observed. However, nectaring habitat is important for butterfly species and this species should have been added to the mapping in order to inform mitigation.	Section 5.2.1. Insects	North-South Environmental Inc.	Giant Swallowtail observations were made of two individuals moving through the golf course. Therefore, lack of habitat and behaviour of obser species concluded that habitat for this species is considered absent from the Study Area. However pollinator plant species are recognized as an important component to open areas, and therefor as noted in the Site Plans, appropriate seed mixes be applied following Conservation Halton guideling
63.	Please provide the number of surveys, location of sites and dates of the egg mass surveys.	Page 35 Section 5.2.4. Egg Mass Survey Results	Conservation Halton	Egg mass observations were being reported on various message forums for the Burlington and Milton areas in early April. Therefore, as provided section 4.2.4 and Table 1, egg mass surveys were completed at features V1, V2, V3 and V4 on April 2019.
64.	The report indicates that no amphibians were heard calling from ACC11 however wetland 13037 (PSW12) is identified as an amphibian breeding area in the MNRF Grindstone Creek Headwaters PSW evaluation. Recommend referencing the evaluation and discussing in the report.	Page 36 Section 5.2.5. Amphibian Call Count Survey Results	Conservation Halton	The Grindstone Creek Headwaters Wetland Comp Wetland Evaluation Report (MNRF 2007) does no identify wetland 13037 (PSW12) as amphibian breeding habitat; however, it does indicate so for PSW11, which is what I'm assuming is meant in th comment. The data for this report is dated 2007. of 2019, amphibians were not heard calling from feature, nor was any amphibian captured during salamander trapping surveys in 2019.
65.	 It should be noted that Midland Painted Turtle's S4 status does not indicate "common and secure" as stated on page 36. The S4 status definition, according to NatureServe Conservation Status Ranks (which are used by NHIC) is: "Apparently Secure— At a fairly low risk of extirpation in the jurisdiction due to an extensive range and/or many populations or occurrences, but with possible cause for some concern as a result of local recent declines, threats, or other factors." In addition, Midland Painted Turtle has recently been evaluated by the Committee on the Status of Species at Risk in Canada (COSEWIC, 2018) as a Species at Risk in Canada with a status of Special Concern, indicating a greater level of concern about its status. 	Section 5.2.6. Turtle Basking Habitat and Nesting Survey Results	North-South Environmental Inc.	Golf course sand traps and active agricultural field are not considered suitable turtle nesting habitat would therefore not be considered candidate hab requiring further assessment. These areas are not suitable for nesting due to disturbances associated with frequent sand trap raking (e.g., multiple times daily) and disturbance associated with agricultural activities or shading f planted crop vegetation that will prevent the

similar n as this ferred vhere,	
nds and ment of nder	
two	
served is ver,	
efore, ixes will elines.	
n d ded in ere oril 10,	
omplex not for n this 07. As om this ng	
fields tat and habitat	
ap nces ng from	

	On page 27, it was stated that turtle nesting surveys were not completed due to absence of suitable habitat, so this section should not refer to nesting survey results. It is possible that both turtles observed on the golf course (Snapping Turtle and Midland Painted Turtle) nest on the golf course or in the southern extension study area and surveys should be conducted for nesting habitat. The finding of a Snapping Turtle walking on land from one irrigation pond to another on June 11, 2019 (and described as an observation of a turtle "moving through the area"), is within the nesting window for this species and this was just as likely to have been an observation of a turtle searching for nesting habitat. Locations of turtle observations should have been shown on Figure 7a (Significant Wildlife Habitat and Species at Risk Observations).			successful incubation and hatching of any eggs, should any be laid in these areas. The EcoRegion Schedule (MNR 2015) does not explicitly state that the species of Special Concern must be on the SARO List; however, it is a docume that is an extension and guidance for the SWH Technical Guide (MNR 2000), and it does state tha the information within the schedule will require periodic updating to keep pace with changes to wildlife species status in the Species at Risk in Ont (SARO) list, or as new scientific information pertain to wildlife habitats becomes available. The SWH EcoRegion Schedule is also a provincial guidance document; therefore, if a species does not have a provincial status of Special Concern, it should not considered as Special Concern for the purposes of SWH.
66.	Headwater Drainage Features are discussed in a separate report by a member of the Study Team.	Section 5.3.1. Headwater Drainage Feature and Aquatic Habitat Results	Matrix Solutions Inc.	Acknowledged.
67.	Please note that the identified H2 is a regulated watercourse under Ontario Regulation 162/06 and not a headwater drainage feature as discussed in the report. Please revise the table accordingly.	Page 39 Section 5.3.1. Headwater Drainage Feature and Aquatic Habitat Results	Conservation Halton	In our experience elsewhere in Halton Region, H2 would appear to meet the criteria to be considere headwater drainage feature. The feature consists headwater wetland (which per the TRCA/CVC HDF Guidelines is considered to be a headwater draina feature) and a short interconnecting channel. This first order feature, is intermittently flowing and ha drainage area less than 50 ha (which has been use as a general guideline threshold to differentiate H from watercourses in other areas of Halton). Base on this, we suggest H2 does meet typical criteria to be an HDF and not a watercourse. We would appreciate further clarification from Conservation Halton as to what criteria has been used to designate H2 as a watercourse and not an HDF and explanation as to how this is consistent w approaches taken elsewhere in Halton Region. In our opinion, whether or not it is classified as a watercourse or HDF does not have any implication for the assessment of potential impacts in the NET nor any other project related implications.

S,	
t cern ument d e that re ontario ertaining /H nce ve a not be es of	
, H2 dered a sists of a HDFA rainage This is a nd has a n used te HDFs Based ria to	
n een ot an ent with	
ations NETR,	

68.	The information provided in this section describes the watersheds associated with the West Extension and the South Extension of the Burlington Quarry. West Extension primarily affects the outflow to the Willoughby Creek Tributary and an unnamed tributary that comes from the Medad Valley which are both in the Bronte Creek Watershed. The South Extension primarily affects the outflow to the Mount Nemo Tributary, which is part of the Grindstone Creek Watershed. The degree to which fish assessment is discussed is not only limited to within 120.0 metres, but the fish sampling is limited to areas where Savanta has been given land access, and where they have been able to sample. This not only provides a limited fish species list but also a much smaller sampling study area. As the reach of Willoughby Creek north of Colling Road was not sampled or visited due to private ownership, characterization of fish habitat and fish presence was inferred from past reports. Given the magnitude of the proposed West Extension and implications on the downstream reaches, information regarding downstream effects is sparse. It is not surprising that only very few fish species are observed and reported in this section. As access has presumably been granted to others such as Worthington to directly observe karsts within the Willoughby Tributary, the applicant should explain if landowner consent to enter private property for the purposes of sampling and investigation was attempted. The baseline aquatic habitat for these receiving stream systems are described in historical ecological reports (e.g., 2004 and 2006 electrofishing surveys). The significance of the Willoughby tributary in terms of fisheries is highlighted within these historical reports. These reports, completed by Stantec as 2004 Level 2 NETR (Stantec 2004) and 2006 Level 2 NETR (Stantec 2006) discuss natural features within a 5.0 kilometre radius of the study area, and was focused on identifying ecological links to environments not immediately adjacent to the Subject Lands. Thes	Section 5.3.2. Fish and Fish Habitat Assessment Results	Matrix Solutions Inc.	See previous responses regarding fish habitat. More details are provided in the attached Watercourse Characterization Summaries.
69.	This section discusses how the presence/absence of natural heritage features as defined in the PPS (MMAH 2020) within the Study Area is assessed. The NHRM (MNR 2010), NEP (2017), Halton Region OP (2018) and City of Burlington OP, which provide technical guidance for implementing the natural heritage policies of the PPS, were referenced to assess the potential significance of natural areas and associated functions. Under Subsection 6.6 however, the discussion on Fish Habitat is only limited to what waterbodies are considered fish habitat under the <i>Fisheries Act</i> . Key pieces of policy information such as (a) identification of the connections and linkages between natural heritage features and areas, surface water features and groundwater features; and (b) how the diversity and connectivity of the natural features in an area and the long-term ecological function and biodiversity of the natural heritage system can be maintained, restored or where possible improved as they pertain to fish habitat is omitted from this discussion.	Section 6. Natural Heritage Feature Assessment	Matrix Solutions Inc.	The purpose of this section was to identify where direct and indirect fish habitat was present. Reference to potential significance assessment is relevant to other types of natural heritage feature and areas (i.e., Significant Woodlands, Significant Wildlife Habitat), but in our opinion, there is no similar "significance" assessment for fish habitat under the PPS; it either is or is not fish habitat for purposes of this assessment. That is not to say that some fish habitat is not more significant (outside the PPS context of significant natural features and are Therefore, it is not clear how the requested contec consistent with the intent of this section of the report. Any discussion on points a) and b) as identified in the comment, would appear more appropriate for the impact assessment section of report and it is not clear what value they would act to this section, nor how it would be consistent with the other sections in this report (which focus on determining the presence/absence of significant

•	
here	
at ic	
nt is atures	
cant	
no	
itat t for the	
y that	
side the	
d areas).	
ontent is	
ne	
re noftha	
n of the Ild add	
it with	
on	
ant	

				natural features and areas as defined in the natur heritage policies of the PPS).
70.	Once the additional hydroperiod information for the wetlands is complete, please revise and include an ecological interpretation of the data in this report. The data should be assessed from a dry, wet and average climate conditions perspective to ensure that proposed changes do not exacerbate natural dry conditions.	Page 46 Section 6.1.2. Significant Wetlands – 120 m Adjacent Lands	Conservation Halton	More details are provided in the attached Wetlan Characterization Summaries.
71.	The MNRF Grindstone Creek Headwaters PSW Evaluation notes that the larger wetland of the 13037 (PSW12) is seepage-fed and contains a seep that can be seen discharging to the surface, whereas the report indicates that this wetland is precipitation and surface runoff fed with groundwater contribution to be less than 2.0%. Recommend referencing the evaluation and discussing in the report.	Page 46 Section 6.1.2. Significant Wetlands – 120 m Adjacent Lands	Conservation Halton	More details are provided in the attached Wetlan Characterization Summaries.
72.	All of the PSWs within the zone of influence of the quarry should be discussed in this report, regardless if they are within the 120.0 metres adjacent lands. There are number of PSWs in the Grindstone Creek PSW Complex that may be impacted by the quarry that are not discussed in the report.	Page 46 Section 6.1.2. Significant Wetlands – 120 m Adjacent Lands	Conservation Halton	The Wetland Characterization Summaries (attache provide feature characteristics, impact assessmen by each Phase and mitigation measures.
73.	Please confirm the source of water input for the SAS1 inclusion within the MAM2-2/SWT2-2.	Page 49 Section 6.1.3. Other Wetlands within the 120 m Adjacent Lands	Conservation Halton	The SAS1 inclusion is an online pond on the West of the West Branch of the Mount Nemo Tributary The source of water for this is primarily quarry discharge from Sump 0200.
74.	This section should include a detailed discussion of why the analysis came to a different conclusion regarding the significance of woodlands E, F and G from the Regional Natural Heritage System's analysis. The potential functions of these woodlands to provide connectivity (i.e., stepping stone function) of Woodland D to adjacent features should be discussed. Review of aerial photography for this area indicates that Woodland E is less than 20.0 metres from Woodland D, and should be investigated as a continuous part of Woodland D, as it is noted in Section 6.2.1 that woodlands within 20.0 metres should be treated as a continuous unit.	Section 6.2. Significant and Other Woodlands	North-South Environmental Inc.	Wooded features E, F, G do not meet the definition Woodland under the ROP (2018), (0.48 ha; 0.22 ha 0.48 ha, respectively) and are all greater than 20 m apart. Therefore, these are not features, nor show they be considered 'stepping stones' due to their and distance apart from each other.
75.	 The significance and role of Woodland E relating to the RNHS should be expanded upon. Provide further analysis to confirm the functions and contributions of Woodland E for: SWH (Eastern Wood-Pewee Habitat, Bat Maternity Roost Habitat); Separation distance from Woodland D; Overall connectivity/ linkage opportunities within the RNHS; and Overall significance. It is recommended that detailed avoidance rationale be provided to reflect the role Woodland E plays within the larger RNHS and all associated impacts. 	Page 53 Section 6.2.2. Halton Region Official Plan	Conservation Halton	Wooded feature E is described in detail in Table 2 the report. It is an area that is <0.5 ha made up of mid-age to mature canopy trees mostly of Sugar Maple. There is no subcanopy or understorey. The ground cover consists of maintained turf grass, Ga Mustard and some Herb-Robert, all of which is mowed regularly. Paved golf cart paths also make part of the ground cover in this small stand of tree serving as an aesthetic feature for the golf course is small and isolated (<20 m from other treed area High bat activity may serve more of an indicator th this polygon is situated in the flight path of bats moving between the Medad Valley and the open water areas of the active quarry for foraging purposes.
76.	This section notes that species of conservation concern include "species listed as S1 to S3 or SH by SRANKS and those listed on the Species at Risk in Ontario List as Special Concern."	Section 6.4. Significant Wildlife Habitat	North-South Environmental Inc.	The EcoRegion Schedule (MNR 2015) does not explicitly state that the species of Special Concern must be on the SARO List; however, it is a docume

atural	
tland	
tland	
ached) ments	
/est Arm tary. y	
nition of 22 ha; 20 m should neir size	
ole 2 of p of gar . The s, Garlic s hake up trees, urse. It areas). for that ts ben	
t cern ument	

	 However, neither the Natural Heritage Reference Manual nor the Ecoregion Schedules state that the species of Special Concern must be on the Species at Risk in Ontario List. As noted in Section 7.4.2.2, Midland Painted Turtle has been evaluated as a Species at Risk in Canada by COSEWIC, and should have been discussed here; its location should also be shown on Figure 7b. The location of the Snapping Turtle (a Species of Special Concern) should have been shown on Figure 7a. This species should have been discussed, as it can rely on human-made habitat. While human-made habitat is excluded from some SWH (such as turtle overwintering habitat) it is not excluded as SWH for species of conservation concern. 			that is an extension and guidance for the SWH Technical Guide (MNR 2000), and it does state that the information within the schedule will require periodic updating to keep pace with changes to wildlife species status in the Species at Risk in Ont (SARO) list, or as new scientific information pertai to wildlife habitats becomes available. SWH EcoRegion Schedule is also a provincial guidance document; therefore, if a species does not have a provincial status of Special Concern, it should not considered as Special Concern for the purposes of SWH.
77.	The FOD7-4 community is rare in the Province and is therefore confirmed SWH, regardless of its frequency in Halton Region. The report should provide the full 30.0 metre buffer for this woodland, an impact assessment for this feature and mitigation measures developed as necessary.	Page 57 Section 6.4.1. SWH Assessment Summary, Table 19	Conservation Halton	A 30 m setback will be applied for this feature, and the site plans will be revised to identify this buffer and the mitigation measures to protect and enhar this feature.
78.	The Grindstone Creek Headwaters PSW Evaluation notes that a number of the wetlands adjacent to the proposed south extraction support amphibian breeding. Further discussion on the potential use of these wetlands by amphibians and potential SWH should be provided. Recommend referencing the evaluation and discussing in the report.	Page 57 Section 6.4.1. SWH Assessment Summary	Conservation Halton	The Grindstone Creek Headwaters Wetland Comp Wetland Evaluation Report (MNRF 2007) is dated 2007. The existing surface water and ground water reports state that there will be no impacts to the features, once mitigation measures have been applied. Further details are also provided in the attached Wetland Characterization Summaries.
79.	This subsection starts with providing a definition of what is fish habitat. The paragraph goes on to state that "definition of fish habitat includes direct fish habitat (i.e., habitat that may be occupied by fish on a permanent or periodic basis) and indirect fish habitat (i.e., habitat that would not be used directly by fish, but that may be important for downstream direct fish habitat)." The rest of this section goes on to say that there is no fish habitat in the proposed limit of extraction. The reasons provided for not considering these areas as fish habitat should include justification to explain why these habitats do not fit the definition of fish habitat.	Section 6.6. Fish Habitat	Matrix Solutions Inc.	DFO has confirmed in letter dated June 23, 2021, the constructed golf course ponds and interconnecting channels are not considered to be fish habitat.
80.	The rest of this section goes on to assign fish habitat categories based on their support function to fisheries. As the basis for fish habitat designations appear to be related to hydrologic connections rather than the fish occupancy, as well as origin, and whether the fish population is considered "natural" to the area, this needs to be rationalized back to the <i>Fisheries Act</i> (i.e., the basis under the <i>Act</i> that these habitat classifications are warranted).	Section 6.6. Fish Habitat	Matrix Solutions Inc.	DFO has confirmed in letter dated June 23, 2021, the constructed golf course ponds and interconnecting channels are not considered to be fish habitat.
81.	Confirmation from DFO is needed on the status of fish habitat on the site. Until this is confirmed, it is premature to state that no fish habitat is present.	Page 59 Section 6.6. Fish Habitat	Conservation Halton	DFO has confirmed in letter dated June 23, 2021, the constructed golf course ponds and interconnecting channels are not considered to be fish habitat.
82.	Recommend additional impact assessment as it pertains to fish habitat outside of the project footprint, given the potential impact to the water inputs to the offsite watercourses. Until such time that this occurs or direction from DFO is received, a precautionary approach should be taken.	Page 59 Section 6.6. Fish Habitat	Conservation Halton	DFO has provided a Letter of Advice, dated June 2 2021, indicating that in their opinion no harmful alteration, disruption or destruction (HADD) of fis habitat will occur provided the recommendations the letter of advice are followed.

that re Ontario ertaining ice ve a not be es of	
, and uffer nhance	
omplex ted vater the n ne s.	
21, that to be	
21, that to be	
21, that to be	
ne 23, ful f fish ions in	

83.	As noted in Section 7.2 above, there are additional species that are listed in the background review sources that should be discussed in this section. Of these, there is the potential for two of these species to occur in the study area: Blanding's Turtle Jefferson Salamander In addition, Snapping Turtle should be added to the discussion of SAR within the Limit of Extraction.	Section 6.7. Habitat of Endangered and Threatened Species	North-South Environmental Inc.	Jefferson Salamander is discussed in Sections 6.7 7.2.5. Blanding's Turtle survey effort was discussed with MECP and addressed in the MECP response lette after completing Blanding's Turtle surveys, as per MECP direction, in 2021. No Blanding's Turtle or habitat were observed and are considered absen from the Study Area. Snapping Turtle is a species of special concern (Se and therefore is not discussed within Habitat of Endangered or Threatened Species.
84.	Recommend consultation with MECP regarding Species at Risk for this project to determine if the surveys and associated survey efforts are acceptable and to determine the current regulation limits for those identified. Any feedback from MECP should be provided to JART.	Page 62 Section 6.7. Habitat of Endangered and Threatened Species	Conservation Halton	Species at risk discussions are on-going with MEC Of note, MECP confirmed that the golf course irrigation ponds are not habitat for Jefferson Salamander and did not need to be surveyed. We continuing to work with MECP for all SAR related matters and are adhering to their survey recommendations and protocols.
85.	Recommend that the general mitigation measures discuss the potential impacts associated with blasting. Currently, blasting is discussed for wetlands, but as there are other natural heritage features present, this should be expanded to a general list.	Page 66 Section 7.1. General Mitigation Measures	Conservation Halton	As per the Memorandum titled <i>Blast Vibration an</i> <i>Water Overpressure at Adjacent Waterbodies</i> (Explotech 2021), mitigation has been recommer to prevent negative impacts on fish and fish habi adjacent waterbodies during blasting activities. Specifically, maximum recommended explosive for per delay have been provided for varying separat distances from fish habitat. During the spawning season, maximum vibration limits of 13 mm/s at closest spawning habitat have been recommendation. Vibration monitoring has also recommended to confirm compliance with DFO I for ground vibration.
86.	Without having access to the approved Spills Action Centre report for the existing quarry, it is challenging to know if what is contained in it is appropriate for the proposed expansion. Recommend including this detail in the application.	Page 67 Section 7.1.2. Accidental Spills	Conservation Halton	The Spill Contingency and Pollution Prevention P attached.
87.	This section discusses the Level 2 evaluation of the potential impacts due to the quarry development and operation. The Level 2 assessment also includes recommendations regarding any mitigation and/or enhancement measures, as well as rehabilitation plans. The discussion pertaining to fish habitat is in Subsection 7.2.4 where the discussion pertaining to fish habitat impacts are simplified.	Section 7. Level 2 Impact Assessment	Matrix Solutions Inc.	Comment noted – responses to other comments address this general statement.
88.	The location of the berm adjacent to the weir pond should be changed to 30.0 metres from the wetland, rather than 14.0 metres as currently proposed, to ensure the hydrologic and ecologic function of this pond is not impacted.	Page 68 Section 7.2.1. Wetlands	Conservation Halton	A 30 m setback will be applied to this feature, an site plans will be revised to identify this buffer ar the mitigation measures to protect and enhance feature.

.7 and	
ith	
er	
er	
r its	
ent	
SC)	
F	
ECP.	
Ve are	
ed are	
u	
and	
ended	
oitat in	
loads	
ation	
g	
t the	
o been	
limits	
Plan is	
ts	
nd the	
ind the and	
e this	
e uns	

89.	For indirect water quality impacts, recommend including turbidity in the assessment.	Page 68 Section 7.2.1. Wetlands	Conservation Halton	See water resources report. This report addresses the water quality of discharged water.
90.	More information has been requested with respect to the water balance assessment for the wetlands adjacent to the extraction areas. Please refer to comments on the Surface Water Assessment and the Level 1 and 2 Hydrogeologic and Hydrologic Impact Assessment. The Natural Environment Report should be revised to provide an ecological interpretation of those changes, as applicable.	Page 68 Section 7.2.1. Wetlands	Conservation Halton	More details are provided in the attached Wetland Characterization Summaries.
91.	All of the wetlands that have the potential to be impacted by the quarry application should be discussed in this report. The zone of influence of the quarry is identified as 800.0 metres away and there is potential impact in those PSWs between 120.0 metres to 800.0 metres from the quarry. The Natural Environment Report should be revised to discuss all of the potential features impacted and mitigation measures discussed to ensure they are not impacted. This will ensure that all of the connections and linkages between the NHF, surface water features and groundwater features are identified.	Page 68 Section 7.2.1. Wetlands	Conservation Halton	More details are provided in the attached Wetland Characterization Summaries.
92.	Please provide the details of the monitoring collected in the spring 2020 wetlands 13200, 13201 and 13202.	Page 69 Section 7.2.1. Wetlands	Conservation Halton	More details are provided in the attached Wetland Characterization Summaries. Additional data that being collected will assist in the development of the AMP in consultation with the agencies.
93.	Is it suggested that the catchment areas of the wetlands to the east of the extraction will be maintained, however as noted in the Surface Water Assessment drawings DP-1 and DP-2, it appears that there will be changes to the catchment areas of the wetlands. Please confirm and revise as necessary.	Page 70 Section 7.2.1. Wetlands	Conservation Halton	More details are provided in the attached Wetland Characterization Summaries.
94.	Please include a discussion on the potential impacts of reduced groundwater flows on the wetlands. For example, will less saturated soils lead to a great drawdown in water levels? Will there be impacts to the temperature of these wetlands from less groundwater and will this impact amphibian breeding?	Page 70 Section 7.2.1. Wetlands	Conservation Halton	More details are provided in the attached Wetland Characterization Summaries.
95.	In the Hydrogeological Report, Wetland 21 (13201) is considered to be compromised due to the road and culvert, and its water budget is not considered representative of future conditions. Please confirm how changes to this wetland will be assessed and mitigated, especially as this wetland is adjacent to a rare vegetation community.	Page 70 Section 7.2.1. Wetlands	Conservation Halton	More details are provided in the attached Wetland Characterization Summaries.
96.	This section discusses indirect impacts to this wetland, but the discussion is restricted to the hydroperiod. This wetland (and the surrounding woodlands) will become isolated from the surrounding landscape; they will be surrounded by the existing quarry to the east, and the quarry extension to the north, west and south. The removal of stepping-stone connections provided by Woodlands E and F will exacerbate the isolation of Woodland D containing the wetlands. Connections to the west will be severed. The remaining patch of natural habitat will be perched above the quarry floor on all sides. The impacts of fragmentation on this wetland should be discussed. Impacts to wetland unit within this area would likely include a more rapid rate of drying in wetland and woodland soils, as well as increased temperature extremes because of increased ambient sunlight. This would likely affect Significant Woodlands and Significant Wildlife Habitat (Eastern Wood-pewee and Large Toothwort) as well as the wetland environment. A 15.0 metre buffer would likely not mitigate this impact, as physical edge effects can be seen at a distance of greater than 15.0 metres from the edge. Additional mitigation (in addition to the 15.0 metre buffer) and monitoring for this impact should be discussed.	Section 7.2.1. Wetlands (Specifically Units SWD3-2a (Wetland 13200))	North-South Environmental Inc.	As summarized in section 6.2.1, woodland D is relatively isolated and located on the golf course, adjacent to the existing quarry. While a portion of this woodland is native, the cultural woodland are non-native, with an abundance of Black Locust, an undesirable tree species, and the FOD5/DIST area contains only a canopy layer, along with turf grass and paved golf cart paths in the ground layer (sub- canopy and understory vegetation are absent). Th is high potential to enhance this woodland both in species diversity and composition. The proposed rehabilitation plans will create a system that is bet connected and functional that what currently exist in the golf course and adjacent quarry.

97.	As discussed with wetlands, the woodlands within the West Extension will be physically isolated and fragmented by the cumulative effect of the surrounding quarries, especially since the woodlands will become perched above the quarry floors. Woodland D, in particular, will be subject to high levels of drying winds, increased albed from the surrounding quarries, and their function will decline. In turn, these impacts will likely lead to declines in insect populations that are important as prey species. Connections to the Medad Valley (identified as a Regional linkage) to the west are severed, and this connection would be highly important to animal movement through the landscape and persistence of meta-populations within Woodland D.	Section 7.2.2. Woodlands	North-South Environmental Inc.	As summarized in section 6.2.1, woodland D is relatively isolated and located on the golf course, adjacent to the existing quarry. While a portion of this woodland is native, the cultural woodland ar non-native, with an abundance of Black Locust, a undesirable tree species, and the FOD5/DIST area contains only a canopy layer, along with turf gras and paved golf cart paths in the ground layer (sul canopy and understory vegetation are absent). Ti is high potential to enhance this woodland both i species diversity and composition. The proposed rehabilitation plans will create a system that is be connected and functional that what currently exi in the golf course and adjacent quarry. The proposed Extension Areas are sited within ar active golf course and agricultural area. There is a Regional and Provincial NHS that does run north- south; however, the area of the proposed expans does not appear to negatively affect the redunda of these smaller branches of the RNHS. The majo areas of the NHS run along the Medad Valley, wh is west of the proposed West Extension, as well a along the Mount Nemo Plateau and Grindstone C Complex, located east of the proposed South Extension. The proposed Extension areas are loca between these two RNHS branches and are not impeding or removing any of the features that m up these two branches; the Extension areas are v outside of these two large systems. Based on the Region's NHS mapping, there are so smaller systems that lie parallel to, and between, these two major systems; however, these smaller systems do not connect to the larger NHS, north the Study Area. These smaller branches of the ov NHS do not provide connectivity to begin with, at therefore, the removal or disturbance of golf cou features and their potential for enhancement and future connectivity opportunities can only add to limited contribution being made to the smaller N
98.	The report indicates that bat maternity colonies in the study are not unique in the subject lands or even the landscape. The Significant Wildlife Habitat Mitigation Support Tool (2014), Index 12, states that Bat Maternity Colonies are critical to the survival of local bat populations and the loss of any site has significant impacts on bat populations. Recommend that this discussion be revised to reflect Provincial policy and direction as it pertains to this type of SWH.	Page 72 Section 7.2.3. Significant Wildlife Habitat	Conservation Halton	The Significant Wildlife Habitat Mitigation Sup Tool (SWHMiST; OMNR 2014) was created as a g for planners to better understand the function habitat, potential impacts and possible mitigate techniques. It is a tool that can be considered mitigation purposes after significant wildlife ha

	1		
ee, of area is an ea ass ub- There n in d better xists			
an s a h- nsion dancy jor vhich l as e Creek			
cated make well			
some n, ler h of overall and ourse nd to the NHS.			
upport a guide ons of igation red for habitat			

has been confirmed. It is not a tool that mitiga candidate features.

The management options listed within the SW are based on the best available information at the of its publication (e.g., 2014) and are not me limit the use of other relevant mitigation inform. Therefore, other resources can, and shoul consulted when assessing appropriate and fermitigation measures. This will help ensure that measures provided are consistent with corpractices and policies.

The SWHMiST also states that suitable maternit are limited and that the loss of any site has sign impacts on bat populations. The behavioural act the bats when the recordings were collected inc foraging behaviours. This polygon is surround irrigation ponds on the golf course and open w the existing quarry. Foraging opportunitie abundant in the area, and this polygon is likely si in a flight path of foraging bats.

There is a total of 0.48 ha of bat maternity habitat within polygon E. There is more than 6 FOD and SWD within the 120 m Adjacent northeast and southeast of the Limit of Extra There is an even larger tract of NHS that is immeadjacent to the 120 m Adjacent Lands, that co the Medad Lake Valley, a significant valleylar wetland complex.

It is not anticipated that the removal of 0.48 highly disturbed habitat will have a negative imp maternity colonies due to the large contiguous of candidate habitat surrounding the Study Area

Recommended mitigation measures include selection, minimization of affected habitat (stat is a satisfactory mitigation option), timing, h restoration and preservation of bat foraging h are all included in the SWHMiST. Each of measures is addressed and will be achieved.

ates for	
VHMiST	
he time	
eant to	
mation.	
uld, be	
feasible	
at those	
current	
ity sites	
nificant	
tivity of	
dicated	
nded by	
water in	
ies are	
situated	
colony	
6 ha of	
t Lands	
raction.	
ediately	
contains	
and and	
8 ha of	
pact on	
is tracts	
ea.	
de site	
ates this	
habitat	
habitat	
f these	

99.	The Rare Vegetation Community FOD7-4 is not discussed in this section. As this is a confirmed	Page 72	Conservation	As noted in previous responses, the site plans will
	SWH in the study area (confirmed in Table 19 as well) and as it may be impacted by the proposed quarry, this SWH should be discussed.	Section 7.2.3. Significant Wildlife Habitat, Table 19	Halton	revised to include a 30 m setback to this feature a include mitigation measures to protect and enhar this feature.
100.	FOD7-4 is not fully protected as it extends out past where the buffer is located. This SWH should be protected with a 30.0 metres just as the rest of the natural features are. Please revise.	Page 72 Section 7.2.3. Significant Wildlife Habitat. Figure 8a	Conservation Halton	In the West Extension, there will be a 30 m setbac from the edge of the FOD7-4 to the proposed limit extraction, as well as to the edge of the berm. In t South Extension, there will be a 30 m setback from the FOD7-4 to the edge of the berm.
101.	In addition to the SWH discussed, Amphibian Movement Corridors should be discussed as this is identified in Table 19 as present.	Page 74 Section 7.2.3. Significant Wildlife Habitat	Conservation Halton	The amphibian movement corridor will remain untouched. No direct impacts are anticipated due its location outside of the Study Area at the far ed of the 120 m adjacent lands. Potential hydrologica impacts and associated mitigation measures are provided in detail in the Wetland Characterization Summaries – wetland 13203 – appended to this response submission.
102.	Fish Habitat, the potential direct and indirect impacts of the proposed development, including during the temporary construction phase, the long-term operations phase and the post-operations rehabilitation phase, are assessed based on direct impacts and indirect impacts. Direct are deemed non-existent in the proposed Limit of Extraction within either the South or West Extension areas as there is no fish habitat present there. Indirect impacts are dealt with as being minimal due to minimal construction work and lack of intrusion outside of the extraction area and continuing to pump quarry water to supplement flow as recommended by the Surface Water Assessment Report (Tatham 2020). The basis for flow supplementation in terms of volume, water quality and quantity should be explained in terms of its effects on fish habitat downstream of the quarry extension areas. In 2006 Level 2 NETR Report (Stantec 2006) Willoughby Creek has been described in previous reports as "the watercourse of greatest ecological sensitivity" as this Bronte Creek tributary was noted to support critical brook trout spawning and rearing habitat, as noted with the presence of juvenile brook trout captured during 2003 surveys. The Level 2 Natural Environment Technical Report notes that Brook Trout are reliant on groundwater for virtually all portions of their life cycle: spawning, incubation, nursery refugia, and thermal refugia during summer. The loss of groundwater discharge to this system would represent a negative effect. The basis for the maintenance of the quarry water in terms of how flow regime quantity and water quality will be maintained is lacking in this section. In the 2004 Level 2 NETR (Stantec 2004), fisheries inventory of the station (Station 1) reports a healthy population of juvenile Brook Trout in the reaches of Britannia Road and Cedar Springs Road Intersection and 80.0 metres downstream, which is located approximately 1.2 kilometres from the confluence of the Willoughby unnamed tributary to the mainstem of Willoughby Creek.	Section 7.2.4 Fish Habitat	Matrix Solutions Inc.	DFO has provided a Letter of Advice, dated June 2 2021, indicating that in their opinion no HADD of habitat will occur provided the recommendations the letter of advice are followed. See additional details in the Watercourse Characterization summ DFO's guidance and conditions were provided after the Summary tables were prepared and circulated Nelson is happy to work through the tables with J to ensure that all DFO conditions and mitigation measures are included in the AMP and that all threshold and trigger values are updated, if needed based on DFO recommendations.

s will be ure and nhance	
etback l limit of l In the from	
in due to ar edge ogical are ation his	
ine 23, D of fish cions in hal ummary. d after lated. rith JART ion II eeded,	

	(Bronte Creek, Urban Creeks and Supplemental Monitoring conducted by Conservation Halton 2012).			
103.	The proposed settling pond outlet at the bank of the West Arm watercourse and associated longer term sump should be assessed in further detail so that the outlet does not impact the natural features present. Mitigation measures should be developed to limit impact, such as the use of a flow spreader to reduce bank erosion.	Page 76 Section 7.2.4. Fish Habitat	Conservation Halton	Tatham has completed a preliminary design for th outlet of the temporary settling pond/longer term sump in the south extension. As suggested by Conservation Halton, the proposed outlet consists a stone core wetland pocket set back approximate m from the average annual high-water mark of the West Arm of the West Branch. The wetland pocket will have a level spreader around the perimeter to promote dispersed discharge when flows exceed to storage/infiltration capacity of the structure. This negate the need for any direct conveyance structure or channel that would directly impact the watercourse and riparian vegetation. The wetland pocket will consist of a 450-mm thick base layer or 100 to 300 mm riverstone. The voids in the riverst will be filled with topsoil and planted with suitable native wetland vegetation species. The proposed design of the outfall prevents direct impacts on fis habitat in the watercourse as there is no requirem for any in-water work. Alterations to riparian vegetation between the wetland pocket and the watercourse will be minimized to the extent possi with activities of the contractor generally restricted to the landward side of the outfall. An erosion and sedimentation control plan shall be prepared and implemented throughout construction. All areas temporarily disturbed during installation of the outfall will be restored with suitable native vegetation species following construction. ESC measures will remain in place until the disturbed a around the outfall is sufficiently revegetated. Post construction monitoring will be completed to veri that the outfall is performing as intended and that unanticipated impacts are observed during monitor (e.g., unexpected erosion downstream from the outfall) remedial measures will be implemented.
104.	Please confirm winter target numbers for baseflow upstream of Colling Road, as only spring, summer and fall are provided.	Page 77 Section 7.2.4. Fish Habitat	Conservation Halton	This will be addressed though the provisions of the AMP to ensure the pumping regime maintains bas flow and seasonal flow of water.
105.	The potential impact of a 3.0% reduction in groundwater in the creeks and wetlands as it relates to temperature changes has not been provided. Even a small reduction can alter the ecological function of these features and this should be assessed in the report. In addition, consider temperature changes from the proposed mitigation pond.	Page 80 Section 7.2.4. Fish Habitat	Conservation Halton	Given that groundwater discharge only occurs on a seasonal basis and that these wetlands and downstream creeks that are being referenced in th comment (East Arm of the West Branch of the Mo Nemo Tributary and the Unnamed Tributary of Lal Medad) are typically dry from late spring through

or the erm	
sists of nately 5 f the ocket er to ed the This will ucture	
and er of erstone able sed n fish rement	
he ossible ficted and and as e	
ed area Post- verify that no t of nitoring ne ed.	
f the base	
on a	
in this Mount f Lake ugh	

106	Please discuss and quantify how the 4.0-6.0% reduction in runoff volume compares to a dry	Page 80	Conservation	summer, which corresponds to the time period when resident fish communities are typically most sensitive to water temperature increases. Therefore, the potential effect of water temperature changes on fish is expected to be mitigated by the intermittent nature of the wetlands and watercourses.More details are provided in the attached
	year and the potential impacts of this on the creeks and wetlands.	Section 7.2.4. Fish Habitat	Halton	Watercourse Characterization Summaries and will also be provided and discussed in the AMP.
107.	There is a disagreement about the justification provided with respect to the connectivity of the area. While the proposed expansion lands are currently in a non-natural state, there are limited barriers to obstruct the movement of species across the landscape. The connectivity that these lands currently provide would be lost based on the proposal. The diversity and connectivity of the overall Mount Nemo Plateau should be considered to ensure that the proposal does not restrict wildlife movement.	Page 80 Section 7.2.4. Fish Habitat	Conservation Halton	As summarized in section 6.2.1, woodland D is relatively isolated and located on the golf course, adjacent to the existing quarry. While a portion of this woodland is native, the cultural woodland area is non-native, with an abundance of Black Locust, an undesirable tree species, and the FODS/DIST area contains only a canopy layer, along with turf grass and paved golf cart paths in the ground layer (sub- canopy and understory vegetation are absent). There is high potential to enhance this woodland both in species diversity and composition. The proposed rehabilitation plans will create a system that is better connected and functional that what currently exists in the golf course and adjacent quarry. The proposed Extension Areas are sited within an active golf course and adjacent quarry. The proposed Extension Areas are sited within an active golf course and adjacent quarry. The proposed Extension Areas are sited within an active golf course and agricultural area. There is a Regional and Provincial INHS that does run north- south; however, the area of the proposed expansion does not appear to negatively affect the redundancy of these smaller branches of the RNHS. The major areas of the NHS run along the Medad Valley, which is west of the proposed Extension areas are located between these two RNHS branches and are not impeding or removing any of the features that make up these two branches; the Extension areas are located between these two RNHS branches and are not impeding or removing any of the features that make up these two branches; the Extension areas are well outside of these two large systems. Based on the Region's NHS mapping, there are some smaller systems that lie parallel to, and between, these two major systems; however, these smaller systems do not connect to the larger NHS, north of the Study Area. These smaller branches of the overall NHS do not provide connectivity to begin with, and therefore, the removal or disturbance of golf course features and their potential for enhancement and

				future connectivity opportunities can only add to t limited contribution being made to the smaller NH
108.	A reduced buffer to some Significant Woodlands is proposed, however justification for this reduction is not included. As these woodlands are also supporting other natural features and functions, and as the site can accommodate full 30.0 metre buffers, this reduction is not supported.	Page 82 Section 8. Niagara Escarpment Plan	Conservation Halton	In the West Extension, there will be a 30 m setbac from the edge of the FOD7-4 to the proposed limit extraction, as well as to the edge of the berm. In the South Extension, there will be a 30 m setback from the FOD7-4 to the edge of the berm.
109.	As SWH is a Key Natural Heritage Feature, the vegetation protection zone should be 30.0 metres from these features. Please revise.	Page 82 Section 8. Niagara Escarpment Plan	Conservation Halton	In the West Extension, there will be a 30 m setbac from the edge of the FOD7-4 to the proposed limit extraction, as well as to the edge of the berm. In the South Extension, there will be a 30 m setback from the FOD7-4 to the edge of the berm.
110.	The only mitigation proposed for the loss of a unit of Significant Wildlife Habitat (Woodland E) is compensation through the rehabilitation plan. As noted in Halton's EIS guidelines, section 3.7.2., "It is important to note that compensation for feature removal or anticipated negative impacts is not acceptable under the ROP." Thus, removal of this woodland would result in negative impacts to the Natural Heritage System. Avoidance is preferred over compensation. As noted previously, the function of Woodland E to provide linkage and other benefits to the Natural Heritage System should be further examined, particularly as this woodland is considered part of the Regional NHS and is in very close proximity to Woodland D. In Google imagery, the closest distance between Woodland D and Woodland E appears to be approximately 10.0-15.0 metres (i.e. it is not greater than the 20.0 metres considered to be the threshold for considering Woodland E separately), and so the function of Woodland E as a potential part of Woodland D should also be examined. The role of Woodland E in contributing to Eastern Wood-pewee and bat maternity roost habitat (for example in terms of numbers of nest sites, habitat area, foraging habitat, etc., as well as the potential importance of this area in the future when the connections to the north and south are removed) should also be considered in more detail. The rationale for avoidance of, rather than compensation for, impacts should be considered.	Section 9. Regional Official Plan	North-South Environmental Inc.	Wooded feature E is described in detail in Table 2 the report. It is an area that is <0.5 ha made up of mid-age to mature canopy trees mostly of Sugar Maple. There is no subcanopy or understorey. The ground cover consists of maintained turf grass, Ga Mustard and some Herb-Robert, all of which is mowed regularly. Paved golf cart paths also make part of the ground cover in this small stand of tree serving as an aesthetic feature for the golf course. is small and isolated (<20 m from other treed area High bat activity may serve more of an indicator th this polygon is situated in the flight path of bats moving between the Medad Valley and the open water areas of the active quarry for foraging purposes.
111.	Please expand the SWH section to include the rare vegetation community FOD7-4 identified in the Level 1 Report. Discussion on how will be protected and any additional mitigation measures should be provided in addition to the SWH included in this section.	Page 84 Section 9. Regional Official Plan	Conservation Halton	As noted in previous responses, the site plans will revised to include a 30 m setback to this feature a include mitigation measures to protect and enhan this feature.
112.	Cumulative impacts discussed in the report are limited. Recommend that this section be expanded upon to provide more detail and discussion on what the cumulative impacts of the proposed quarry might be. For example, the existing quarry began in the 1950s and has impacted the natural environment since then. If the existing quarry is continued to be used, rather than rehabilitated as originally planned, then this would result in longer, cumulative impacts on the area.	Page 86 Section 10. Regional Official Plan Guidelines – Aggregate Resources Reference Manual	Conservation Halton	See response to Comment 13.
113.	This section notes (Paragraph 1) that: "despite that no direct or indirect impacts will occur to Jefferson Salamanders or their habitat, habitat creation and enhancement opportunities have been identified for this species." It is proposed to restore 4.0 hectares of agricultural land between the eastern woodland south of the quarry, where Jefferson Salamander has been noted breeding, to an adjacent woodland to the west, where Jefferson Salamander has not	Section 11.2. Jefferson Salamander Habitat Creation	North-South Environmental Inc.	Restoration details and implementation will be determined with MECP and the Registration proce

d to the r NHS.	
tback limit of In the from	
tback limit of In the from	
le 2 of p of gar . The s, Garlic s hake up trees, urse. It areas). or that ts ben	
will be re and hance	
e rocess.	
	·

		1		
	been observed despite repeated surveys in several years, and despite apparently suitable habitat.	and Enhancement Opportunities		
	The objective of the habitat creation is stated in paragraph 3 of this section: "This would enhance JESA habitat by providing increased coverage of summer refuge and overwintering habitat and improve connectivity between the two existing woodlands The design of this restoration could also increase opportunity for JESA breeding by incorporating pit and mound construction techniques."			
	Though it is not stated in the NETR, it is clearer in the Progressive and Final Rehabilitation and Monitoring Study that the proposed restoration is to address Section 110 of the Regional Official Plan, especially C:			
	C) Priorities for restorations or enhancements to the Greenbelt and/or Regional Natural Heritage Systems through post-extraction rehabilitation shall be based on the following in descending order of priority:			
	 [i] restoration to the original features and functions on the areas directly affected by the extractive operations, [ii] enhancements to the Greenbelt and/or Regional Natural Heritage Systems by adding features and functions on the balance of the site, [iii] enhancements to the Greenbelt and/or Regional Natural Heritage Systems by adding features and functions in areas immediately surrounding the site, [iii] enhancements to the that part of the Greenbelt and/or Regional Natural Heritage Systems by adding features and functions in areas immediately surrounding the site, 			
	 [iv] enhancements to that part of the Greenbelt and/or Regional Natural Heritage Systems in the general vicinity of the site, and [v] enhancements to other parts of the Greenbelt and/or Regional Natural Heritage Systems in Halton. 			
	D) Restorations or enhancements shall proceed immediately after extraction in a timely fashion.			
114.	 Comments on the proposed restoration and enhancement are as follows: This proposal is speculative, without even rudimentary detail to support feasibility. There is no certainty that created ponds would provide a sufficient hydroperiod and water quality for Jefferson Salamander to breed. There are no goals or objectives that drive the restoration, so no assurance that the restoration would create persistently suitable habitat for the long term. 	Section 11.2	North-South Environmental Inc.	Restoration details and implementation will be determined with MECP and the Registration proce
115.	 Comments on the proposed restoration and enhancement are as follows: Jefferson Salamander has a high fidelity to its habitat, and is a notable habitat specialist. If Jefferson Salamanders are not present in the western woodland, there is no basis to speculate that they would use the restored habitat. The western woodland may not be suitable for Jefferson Salamander. There are many habitat needs that must be met for this species that have not been explored, such as the presence of breeding ponds with suitable hydro period and water quality, small mammal burrows to provide overwintering habitat, invertebrate prey populations, and downed woody debris to provide refuge for post-breeding adults and transforming juveniles. 	Section 11.2	North-South Environmental Inc.	Restoration details and implementation will be determined with MECP and the Registration proce

ocess.	
ocess.	

116.	Comments on the proposed restoration and enhancement are as follows:	Section 11.2	North-South Environmental	Restoration details and implementation will be determined with MECP and the Registration proce
	 Salamander breeding and overwintering habitat is associated with mature woodlands, with their associated attributes of deep shade, leaf litter, high soil humidity, small mammal populations to provide burrows and abundant ground dwelling invertebrates to provide prey. It would take decades for the restored area to provide sufficient 		Inc.	
	shade, humidity and hibernation sites to become suitable for Jefferson Salamander. If the quarry extensions had impacts on groundwater, the restoration site (even if it were feasible) would likely be too late to restore sufficient habitat to ensure Jefferson Salamander survival in this area.			
117.	Comments on the proposed restoration and enhancement are as follows:	Section 11.2	North-South Environmental	Restoration details and implementation will be determined with MECP and the Registration proce
	 Jefferson Salamander movements are difficult to predict without movement studies. There is no evidence to show that salamanders would move in this western direction so that it could function as a linkage. More detailed studies of salamander movements and habitat needs should be conducted. 		Inc.	
118.	 Comments on the proposed restoration and enhancement are as follows: The potential for creating an ecological sink should be considered. The western woodland and restoration site would be within 120.0 metres of the southern extension boundary, with the potential that these could be affected by the quarry. 	Section 11.2	North-South Environmental Inc.	It is unclear what features are noted and what is being asked.
119.	Comments on the proposed restoration and enhancement are as follows:	Section 11.2	North-South Environmental	Restoration details and implementation will be determined with MECP and the Registration proce
	 This proposal does not address the primary recommendation in the Jefferson Salamander Recovery Strategy (2018): The short-term recovery approaches should focus on the protection of existing populations of the Jefferson Salamander and Unisexual Ambystoma (Jefferson Salamander dependent population) by minimizing further loss or degradation of known habitat or potential recovery habitat. Recovery approaches should also focus on verifying, documenting, and monitoring the distribution and habitats used by extant, historic, and potential subpopulations. Developing and evaluating mitigation and restoration techniques, actively conducting research, and developing long-term management activities should also be prioritized to ensure the recommended recovery goal will be achieved. 		Inc.	
120.	There is no evidence that this proposed restoration would enhance habitat for Jefferson Salamander. The restored area would likely function as a small patch of disturbed forest habitat. Sufficient baseline detail should be supplied to show that it is at least potentially feasible. Goals and objectives should be provided to guide the restoration. Even as a preliminary suggestion, the restoration should be proposed according to "SMART" principles: the restoration goals should be "specific, measurable, agreed-upon, realistic and timebound".	Section 11.2	North-South Environmental Inc.	Restoration details and implementation will be determined with MECP and the Registration proce
121.	Recommend including the smaller portion of wetland 13037 on the ELC map. It is currently not identified.	Figure 3b	Conservation Halton	This is included in the Wetland Characterization Summary Tables.
122.	Please discuss why amphibian monitoring was not conducted in the SWS3-2a/b communities in the western expansion area and the SWS/MAM2-2 associated with the West Arm. Table 2 notes that surface water in SWS3-3b was usually present in the spring as well as July and September. Should suitable habitat be present, then recommend that amphibian monitoring occur.	Figure 4a and Table 2	Conservation Halton	There is no SWS3-2a/b; however, it is assumed that this comment is intended for SWD3-2a/b. Therefor wetland 13200 (SWD3-2a) did not contain water, a therefore was not considered a suitable feature to survey for amphibian breeding. Wetland 13201 (SWD3-2b) did contain water and therefore amphibian call count stations ACC8 and ACC9 (Figure 4a) were surveyed in 2019.

e process.	
e process.	
t is	
e process.	
e process.	
on	
d that erefore, ter, and ire to 01	
(Figure	

123.	Recommend that all of the hedgerows in the proposed extraction areas be assessed for potential bat habitat.	Figure 5a and Figure 5b	Conservation Halton	Section 5.2.9 notes that the 7E Criteria Schedule (MNR 2015) indicates that candidate bat maternit colony habitat is limited to FOD, FOM and SWD an SWM communities that contain a minimum densit of >10 habitat trees with a dbh > 25 cm per hectar Recent and on-going correspondence with MECP indicates that only FO and SW communities (no minimum density requirements) are potential roosting habitat. Therefore, hedgerows were not surveyed based on current provincial guidance at time of study.
124.	Please clarify why the FOD5-6 south of the proposed south extraction area was not assessed for bats. If suitable habitat is present, recommend that this assessment occur.	Figure 5b	Conservation Halton	This area is assumed candidate habitat for bat roosting habitat, and FOD5-6 is already protected based on the setback and mitigation measures sho on the site plans.
125.	Seeps were identified by the MNRF PSW evaluation in wetland 13037. This SWH should be considered as candidate and additional surveys done to determine the presence of these seeps.	Table 19	Conservation Halton	See additional details in the Wetland Characteriza Summaries. There will be no negative impacts to ecological features and functions of this wetland.
126.	Recommend that additional targeted surveys be undertaken to assess the potential for turtle habitat. It is noted that turtles have been known to use irrigation ponds and as there were limitations to being able to sample some of the deeper irrigation ponds, habitat may be present.	Table 19	Conservation Halton	 A total of six turtle basking stations were establish to survey five features within the Study Area, including the irrigation ponds (see Figure 4a from report). In addition, Blanding's Turtle survey effort was discussed with MECP and addressed in the MECP response letter after completing Blanding's Turtle surveys, as per MECP direction, in 2021. No Blanding's Turtle or its habitat were observed and considered absent from the Study Area.
127.	The table notes that monarchs were not observed during the insect surveys, however the CUM field sheets note four individuals on Sept 11 and 19. Recommend that host and feeding pollinating plant species be considered when developing restoration plans.	Table 19 and Field Sheets	Conservation Halton	Pollinator plant species are recognized as an important component to open areas, and therefor as noted in the Site Plans, appropriate seed mixes be applied following Conservation Halton guidelin
128.	The ELC field notes are not complete as soils were not competed. Please discuss how this may impact the classification of the vegetation communities.	Field Sheets	Conservation Halton	The ELC communities range from dry-fresh to frest moist, to wetland – showing community type variability was captured. Soil moisture was based species composition, which effectively informed th accurate classification of vegetation communities. Outside of hydrology, influences associated with s texture (e.g., sand vs. clay) or influences associate with parent material (e.g., depth to sedimentary bedrock) would also be reflected in the species composition. While soil data can be useful to sup above-ground observations, it is not anticipated th

ıle	
ernity	
D and	
ensity	
ectare.	
СР	
10	
not	
e at the	
ted	
s shown	
5 5110 0011	
erization	
s to the	
nd.	
blished	
om	
S	
ECP	
ırtle	
and are	
refore,	
ixes will	
lelines.	
cincs.	
fresh-	
II esii-	
ised on	
ed the	
ties.	
ith soil	
iated	
ary	
s,	
support	
ed that	

	the absence of this data will have a significant influence on overall classification.	
--	---	--

JART Response Table 1 – July 2021

Attachment 1 – Wetland Characterization

Wetland Characterization Summaries Proposed Burlington Quarry Extension, Nelson Aggregates Co.

Prepared for:

March 2021 Version 1.0

March 2021

Nelson Aggregate Co. 2433 No. 2 Sideroad Burlington, Ontario L7P 0G8

Attention: Mr. Quinn Moyer, President

RE: Burlington Quarry Wetland Characterization Summaries

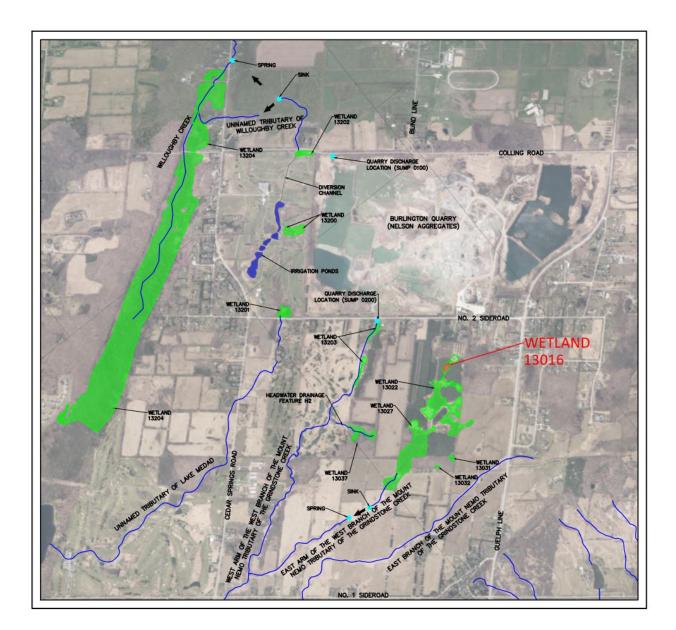
Dear Mr. Moyer,

Earthfx Incorporated, Savanta Inc. and Tatham Engineering Limited are pleased to provide Nelson Aggregates Co. with the enclosed wetland characterization summaries in support of the Proposed Burlington Quarry Extension. The wetland characterization summaries have been prepared in response to comments received by the Ministry of Natural Resources and Forestry.

The wetland characterization summaries have been prepared to summarize the wetland information provided in the Level 1 and Level 2 Hydrogeological Impact Assessment, Level 1 and Level 2 Natural Environment Technical Report, and Surface Water Assessment. The hope is the wetland characterization summaries will aid in the review of the reports and expedite the review process.

Regards,

Dirk Kassenaar, M.Sc., P.Eng. President, Eartfx Incorporated


Shannon Catton, MSc. Branch Manager & Senior Ecologist, Savanta Inc.

1 and 1mm

Daniel Twigger, B.Sc.Eng., P.Eng. Senior Engineer, Group Leader, Tatham Engineering Limited

Table of Contents

WETLAND 13016	1
WETLAND 13022	16
WETLAND 13027	40
WETLAND 13031	67
WETLAND 13032	77
WETLAND 13037	86
WETLAND 13203	104
WETLAND 13202	120
WETLAND 13200	127
WETLAND 13201	137
WETLAND 13204	150

WETLAND 13016

Legend

- 120 m Adjacent Lands
- Subject Lands
- | Existing Subcatchment Boundary (Tatham Engineering, 2020)
- Proposed Subcatchment Boundary Operations and Post-Rehabilitation (Tatham Engineering, 2020
- Wetland (Savanta, 2020)
- Ecological Land Classification (Savanta, 2019 & 2020)
- Provincially Significant Wetland (LIO/MNRF, 2020)
- MECP Jefferson Salamander Regulated Habitat

Current Instrumentation

- Groundwater Monitoring Station (EarthFx)
- Mini Piezometer (Tatham Engineering)
- Staff Gauge & Surface Water Monitoring Station (Tatham Engineering)

Previous Instrumentation

A Mini Piezometer (Golder)

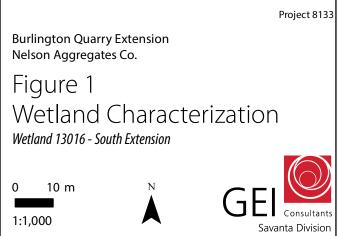
ELC Legend

CUM1, Mineral Cultural Meadow

CUP3-2, White Pine Coniferous Plantation

CUP3-13*, White Spruce Coniferous Plantation

CUT1-1, Sumac Cultural Thicket CUW1, Mineral Cultural Woodland


HR, Hedgerow

MAM2-2, Reed-canary Grass Mineral Meadow Marsh RES, Residential

SWD2-2, Green Ash Mineral Deciduous Swamp

NOTES: 1. Coordinate System: NAD 1983 UTM Zone 17N.

Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021.
 Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

report_figures\2021 01 21 natural feature tech summary\8133_rpt_wetland_char_mapbook.mxd Date Sav**Page**b<mark>2</mark>uary 11, 202

Wetland 13016

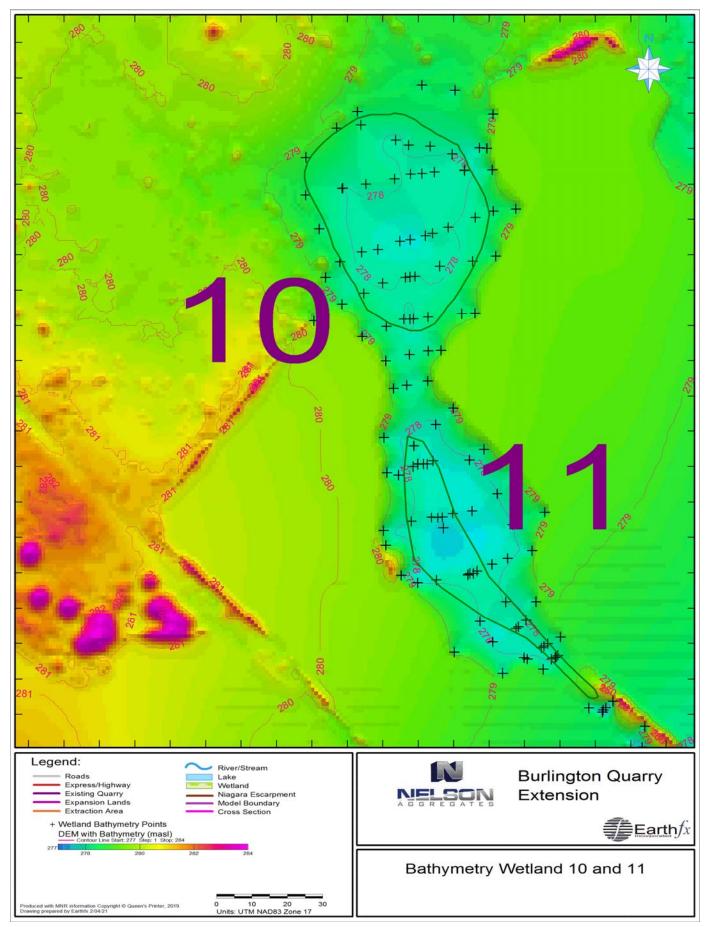
Wetland Characteristics	Description		Reference		
wetland Characteristics	Description	Figure / Graph	Report	Section / Page	
Wetland IDs:	MNRF - 67567121 (OGF ID 67657140)				
	Earthfx - 11				
	Tatham - 13016				
	Savanta - 13016				
	Golder (Background) - 13016				
Wetland Area (ha):	LIO/MNRF - 0.28				
	Savanta - 0.22				
Watershed:	Grindstone Creek Watershed				
Sub-Watershed:	East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek				
Located in Proposed Limit of Extraction:	No				
Located in Proposed License Boundary:	No				
Catchment Area (ha):	1.48		SWA (Tatham, April 2020)	Drawing DP-1	
Catchment ID:	S118		SWA (Tatham, April 2020)	Drawing DP-1	
Closed or Connected System:	On-line (connected to downstream wetland; cascading)				
Condition:	Natural				
Bathymetry:	A bathymetry survey of Wetland 13016 was completed by Tatham Engineering Limited and incorporated into the integrated model (see Earthfx Section 18.3, p.381). Wetland lakes were assigned to Layer 1 of the integrated model by adjusting the base of Layer 1 to correspond with the interpolated bottom elevation. Care was taken to ensure that the lowest elevation observed in the wetland was honored in the assigned elevations.	Figure 1	HHIAR (Earthfx, April 2020)	18.3 (page 381)	
Outlet:	Downstream wetland (MNRF - OGF ID 67567143; Earthfx - 12; Tatham - 13018; Savanta - 13022; Golder {Background} - 13018)				
Hydroperiod:	Spring hydroperiod (date wetland dries out) - May 16 th - July 22 nd	Graph 1	SWA (Tatham,	2.2.4, 3 and Appendix	
	Fall hydroperiod (start of hydroperiod) - November 15 th - February 18 th		April 2020)	F	
Surface Water Monitoring:	ID: SW13A (Tatham)	Graph 1	SWA (Tatham,	2.2.4, 3 and Appendix	
	Installation Date: October 2, 2014		April 2020)	F	
	Data Collection: Continuous water level and temperature and manual monthly water level measurements				
	Coordinates of Monitoring Station: Easting 591177.323, Northing 4805244.509				

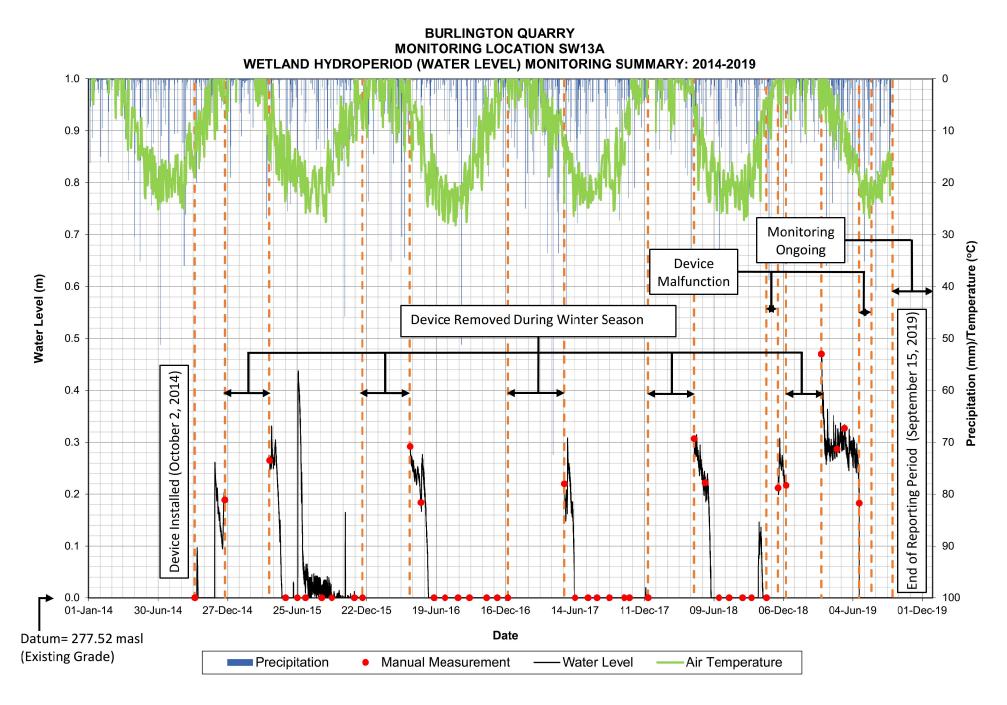
Natural Heritage and Habitat	Description		Reference		
Features	Description	Figure / Graph	Report	Section / Page	
Wetland Name & Provincial Significance Evaluation:	Grindstone Creek Headwaters Wetland Complex - Provincially Significant		NETR (Savanta, April 2020)	6.1.2	
ELC Unit(s):	Reed-canary Grass Mineral Meadow Marsh: MAM2-2				
Regulated Habitat (MECP):	Yes – Jefferson Salamander (not field verified during 2019 field program; regulated based on historical data) Hydroperiod sensitive species; water presence necessary until end of June		NETR (Savanta, April 2020)	6.1.2	
Significant Wildlife Habitat:	Unknown - outside of 120 m adjacent lands				
Fish Habitat:	None				
Habitat of Endangered and Threatened Species:	Unknown - outside of 120 m adjacent lands				

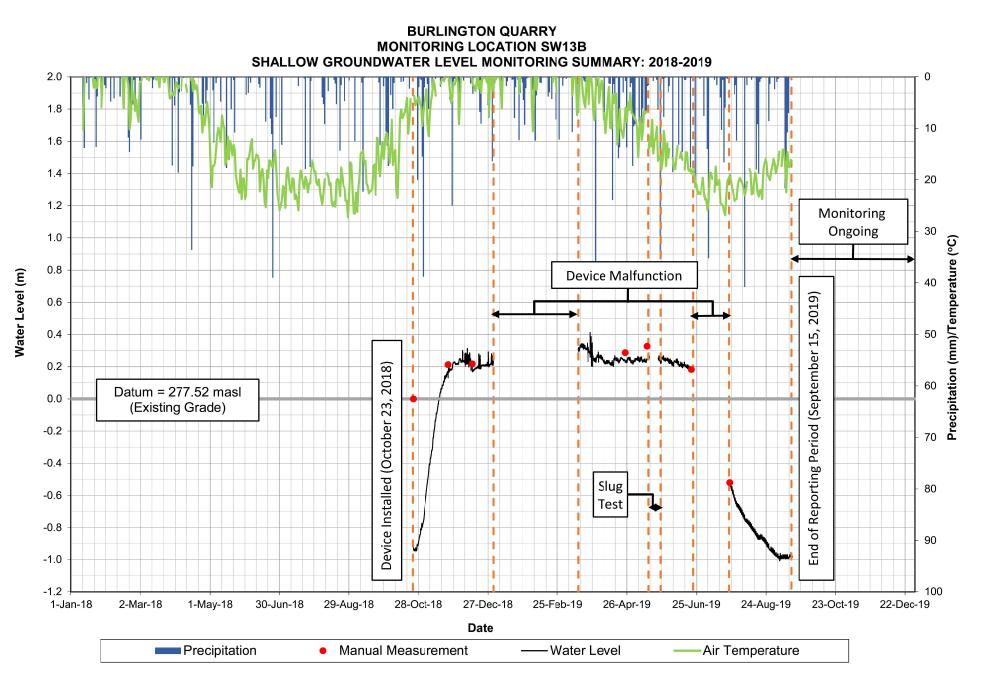
Groundwater Interaction	Description	Description							Reference		
Groundwater Interaction	Description	Description						Report	Section / Page		
Lithology:	Halton Till										
Hydraulic Conductivity:	Integrated Model (Ear conductivity, based o hydraulic conductivity fractures in the till. Wetland Water Baland	n testing by Golder (2 / was 1.6x10 ⁻⁷ m/s, ał	2007) of 10 mini-pie pout an order of ma								
Surface Water/Groundwater Interaction:	The low permeability interaction. The wetla system by the low per changes in the water	nds and streams are g rmeability till. This we	generally perched a etland does not rec	/							
Shallow Groundwater (Mini-piezometer) Monitoring:	Data Collection: Conti	ID: SW13B (Tatham) Installation Date: October 23, 2018 Data Collection: Continuous water level and temperature and manual monthly water level measurements Coordinates of Monitoring Station: Easting 591177.323, Northing 4805244.509							2.3 and Appendix G		
Background Shallow Groundwater (Mini-	Mini-piezometer ID		Bottom Elevation	Average WL	Logger	Manual Meas.	Graph 3				
piezometer) Monitoring:	Golder MP19	278.56	277.36	276.90	-	2007 - 2013					
	Golder MP20	278.36	277.16	276.86	-	2007 - 2013	-				
Groundwater Monitoring (Monitoring	Monitoring Well ID	Distance (Dir.)	Geologic Unit	Ground Elevation	Monitoring Elev	Average WL	Graph 3				
Wells):	OW03-31A	122 (NE)	Bedrock	278.5	268.6 - 263.2	275.3					
	OW03-31B	122 (NE)	Bedrock	279.7	276.2 - 270.8	274.1					
Water Budget Results:	A detailed average wa provided in Figure 2a. discharge to riparian a is discussed in Sectior	The wetland is a net areas, and streamflow	provider of ground in the vicinity of W	dwater. Simulated g	groundwater levels,	, groundwater	Figure 2a				
	Wetland 13016	GW Outflow (%)	GW Inflow (%)	7							
	Baseline (Existing)	3.97	0.00	1							

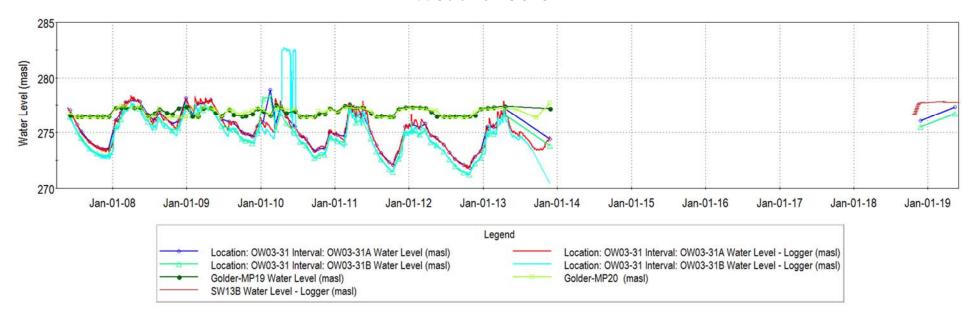
Groundwater Interaction	Description	Eigure / Graph	Reference		
Groundwater Interaction	Description	Figure / Graph	Report	Section / Page	
	Two mini-piezometers provide multiple years of monitoring in the soil zone and weathered Halton Till materials. These monitors correspond to the PRMS soil zone and upper-most part of Layer 1 of the GSFLOW model. A comparison of the mini-piezometer data to the simulated soil moisture conditions demonstrates that the model is closely matching both the soil moisture and hydroperiod of the shallow subsurface at this wetland.				
	Earthfx Figure 19.41 (p.442) in the Main Report shows a hydrograph for SW13A along with simulated shallow water levels. The figure is reproduced in Graph 6. The total range in observed water level fluctuation is about 70 cm. A brief discussion of the Wetland 13016 (Earthfx Wetland 11) is contained in Appendix E, Section 19.6 (p. 441).		HHIAR (Earthfx, April 2020)	441 - 442	

Impact Assessment (Operations	Description	Description							ference
Phases 1 & 2)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland Ic	ocated greater than 1	.20 m from licensed	l boundary.				SWA (Tatham, April 2020)	4.2.1
Change in Wetland Catchment Area (ha):	No change. Subcatchn	nent area protected.		SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2				
Change in Hydroperiod:	No Change. Wetland is	No Change. Wetland is perched and isolated from the groundwater system. Subcatchment area being protected.							
Change in Water Budget:	A detailed average wat budget results for Scen Report. Simulated char streamflow in the vicini report.	Figure 2b	HHIAR (Earthfx, April 2020)	191 - 303					
	Wetland 13016	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)	7			
	Baseline (Existing)	3.97	0.00	-	-	-			
	Operations Ph 1 & 2	3.90	0.00	-0.07	0.00	-			
Change on Soil Moisture Conditions:		The Water Budget figures indicate that there is no groundwater seepage entering the wetland under baseline conditions, so there will be no change under P12 conditions.							
Potential Impact to Form and Function of Feature:	No wetlands will be removed and the wetlands subcatchment will be protected. There will be no encroachment from the project into the wetland. The proposed limit of extraction is >120 m from the wetland boundary. Licensed boundary will be demarcated and fenced to ensure site construction and operations do not extend beyond the proposed limits of the project .								

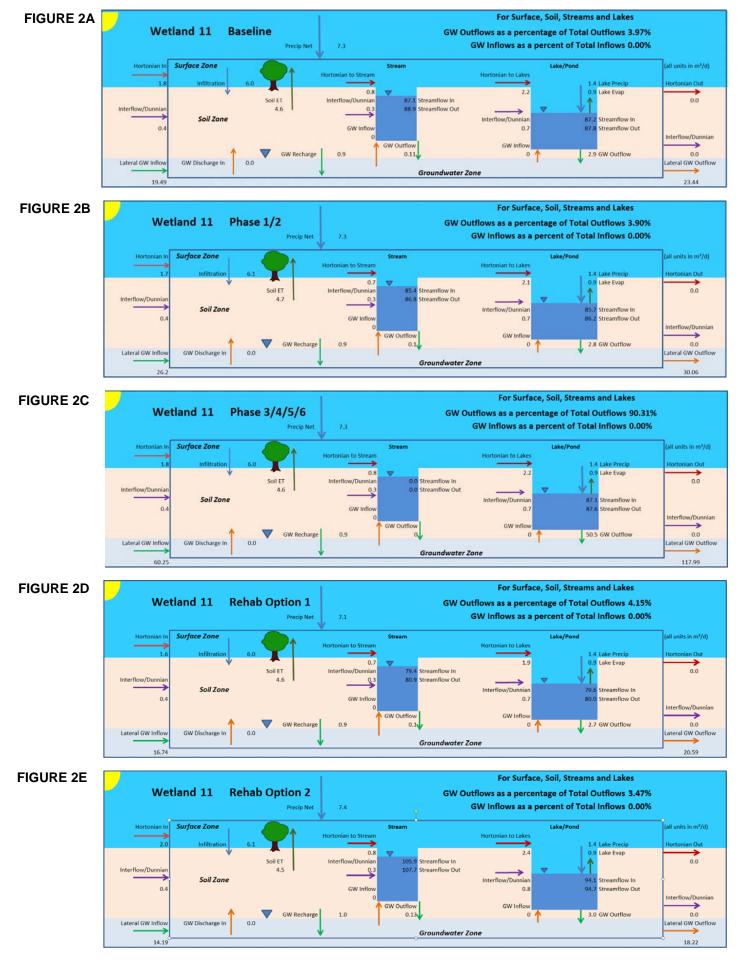

Mitigation (Operational Phases 1 & 2)	Description	Figure / Graph	Ref Report	ference Section / Page
Proposed Mitigation Measures:	None required.			

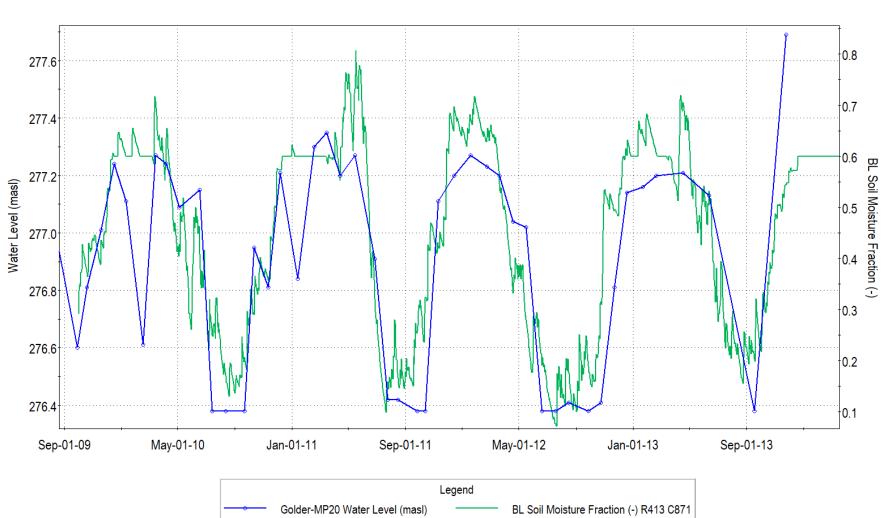

Impact Assessment (Operations	Description						Figure / Graph	Re	ference
Phases 3 - 6)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland lo	No change. Wetland located greater than 120 m from licensed boundary.							4.2.1
Change in Wetland Catchment Area (ha):	No change. Subcatchm		SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2					
Change in Hydroperiod:	No Change. Wetland is	perched and isolate	d from the ground	water system. Subca	atchment area bein	g protected.		SWA (Tatham, April 2020)	4.2.1
Change in Water Budget:	A detailed average wat budget results for Scen Report. Simulated char streamflow in the vicini report.	Figure 2c	HHIAR (Earthfx, April 2020)	191 - 303					
	Wetland 13016	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)	7			
	Baseline (Existing)	3.97	0.00	-	-	1			
	Operations Ph 3 - 6	4.00	0.00	0.03	0.00	1			
Change on Soil Moisture Conditions:	The Water Budget figur so there will be no char			er seepage entering t	he wetland under k	baseline conditions,			
Potential Impact to Form and Function of Feature:	No wetlands will be rem project into the wetland be demarcated and fen project .	d. The proposed limi	t of extraction is >2	120 m from the wetla	nd boundary. Lice	nsed boundary will			

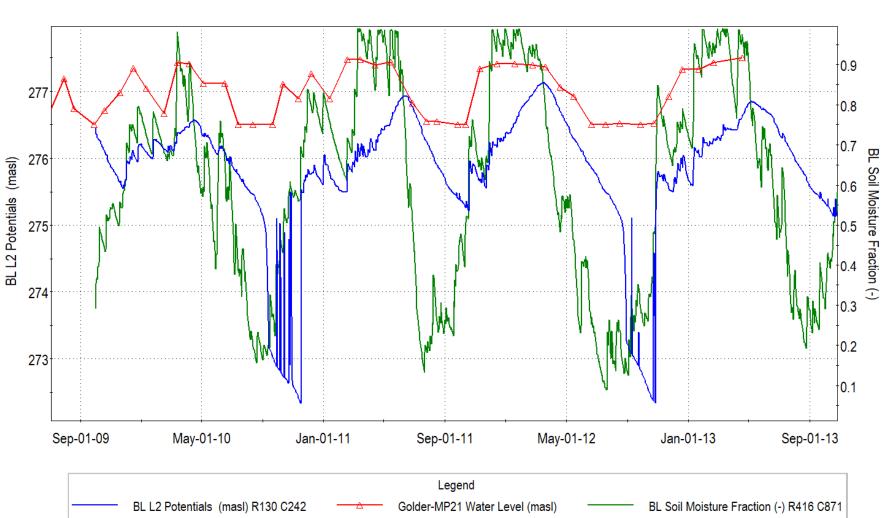

Mitigation (Operational Phases 3 - 6)	Description	Figure / Graph	Ref Report	ference Section / Page
Proposed Mitigation Measures:	None required.			


Impact Accessment (Debabilitation)	Description		Figure / Creat	Re	ference				
Impact Assessment (Rehabilitation)	Description	Figure / Graph	Report	Section / Page					
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.							SWA (Tatham, April 2020)	5.4.1
Change in Wetland Catchment Area (ha):	No change. Subcatchn	nent area protected.		SWA (Tatham, April 2020)	5.4.1 & Drawing DP-3				
Change in Hydroperiod:	No Change. Wetland is	s perched and isolate		SWA (Tatham, April 2020)	5.4.1				
Change in Water Budget:	A detailed average water budget as simulated by the integrated model is not provided in the Main report. The water budget results for Scenarios RHB1 and RHB2 are reproduced in Figures 2d and 2e. Results for nearby wetlands are provided in the Main Report. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13016 (Earthfx Wetland 11) for each scenario are discussed in Section 8 of the main report.								191 - 303
	Wetland 13016	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)	7			
	Baseline (Existing)	3.97	0.00	-	-	-			
	Rehab Scenario 1	4.15	0.00	0.18	0.00				
	Rehab Scenario 2	3.47	0.00	-0.05	0.00				
Change on Soil Moisture Conditions:	The Water Budget figu so there will be no char				he wetland under l	baseline conditions,			
Potential Impact to Form and Function of Feature:	No wetlands will be ren project into the wetlan be demarcated and fen project .	d. The proposed limi							
								- Do	ference

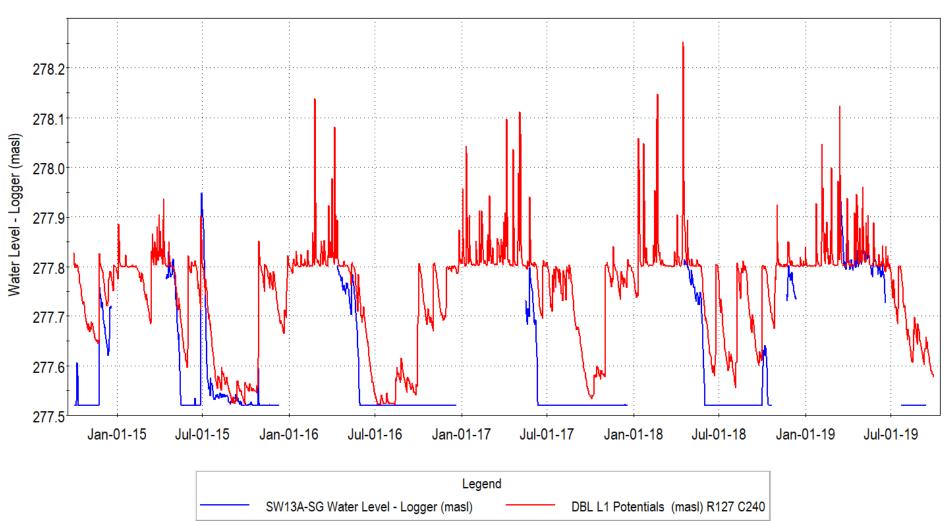
Mitigation (Rehabilitation)	Description	Figure / Graph	Reference		
			Report	Section / Page	
Proposed Mitigation Measures:	None required.				



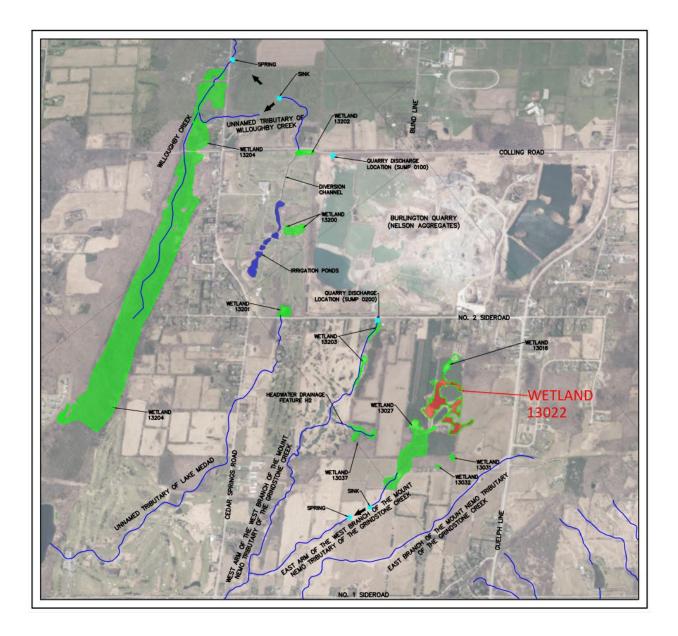


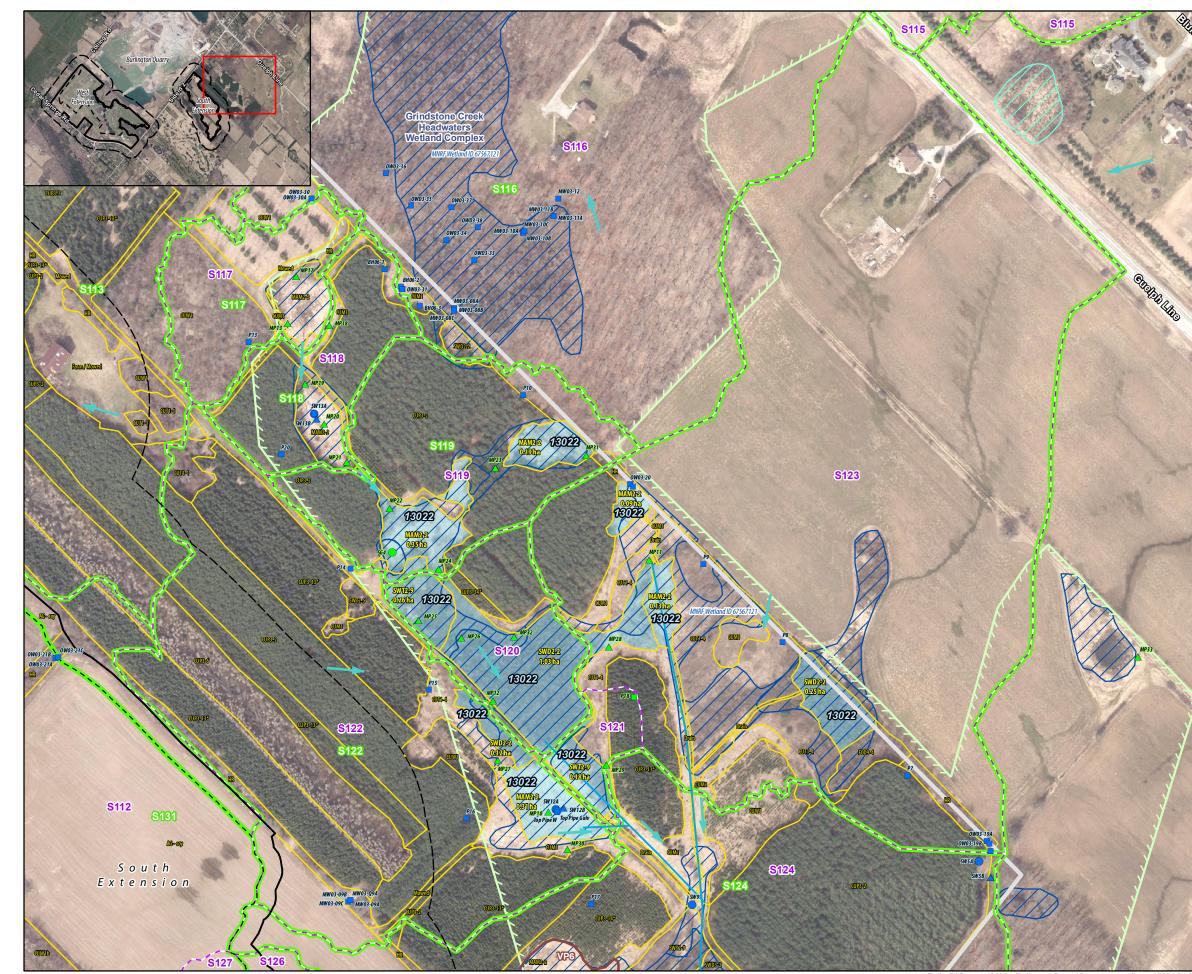

Shallow and Deep Groundwater Hydrographs Wetland 13016

WETLAND 13016



Integrated Model Calibration Wetland 13016




Integrated Model Calibration Wetland 13016

Integrated Model Calibration Wetland 13016

WETLAND 13022

Legend

Licensed Boundary

- Limit of Extraction
- 120 m Adjacent Lands
 - Subject Lands
- Salamander Habitat Assessment (2019)
- Indirect Fish Habitat
- Existing Subcatchment Boundary (Tatham Engineering, 2020)
- Proposed Subcatchment Boundary Operations and Post-Rehabilitation (Tatham Engineering, 2020
 - Wetland (Savanta, 2020)
- Ecological Land Classification (Savanta, 2019 & 2020)
- Provincially Significant Wetland (LIO/MNRF, 2020)
 - Wetland Not Evaluated per OWES (MNRF/LIO, 2020)
- MECP Jefferson Salamander Regulated Habitat

Current Instrumentation

- Groundwater Monitoring Station (EarthFx)
- Mini Piezometer (Tatham Engineering)
- Staff Gauge & Surface Water Monitoring Station (Tatham Engineering)
- Manual Stream Flow Measurement (Tatham Engineering)

Previous Instrumentation

- Groundwater Monitoring Station (Golder)
- Mini Piezometer (Golder)
- Staff Gauge & Surface Water Monitoring Station (Golder)

ELC Legend

AG, Agriculture

CUM1, Mineral Cultural Meadow

CUP3-2, White Pine Coniferous Plantation

- CUP3-6, European Larch Coniferous Plantation
- CUP3-13*, White Spruce Coniferous Plantation
- CUP3-14*, White Cedar Coniferous Plantation

CUT1-1, Sumac Cultural Thicket

CUT1-4, Gray Dogwood Cultural Thicket

CUW1, Mineral Cultural Woodland

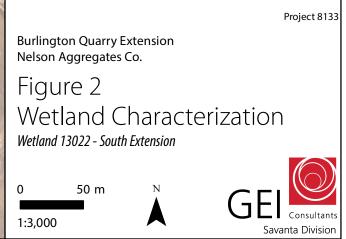
FOD9-4, Fresh – Moist Shagbark Hickory Deciduous Forest

HR, Hedgerow

MAM2-2, Reed-canary Grass Mineral Meadow Marsh RES, Residential

SWD2-2, Green Ash Mineral Deciduous Swamp

SWD3-2, Silver Maple Mineral Deciduous Swamp


SWT2-5, Red-osier Dogwood Mineral Thicket Swamp

SWT2-9, Gray Dogwood Mineral Thicket Swamp

NOTES:

1. Coordinate System: NAD 1983 UTM Zone 17N.

Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021.
 Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

Wetland 13022

Wetland Characteristics	Description		Reference		
wetland Characteristics	Description	Figure / Graph	Report	Section / Page	
Wetland IDs:	MNRF – 67567121 (OGF ID 67567134, 67567144, 67567123, 67567137, 67567136, 67567146, 67567133, 67567146, 67567151)				
	Earthfx - 12, 13, 14, 15, 16				
	Tatham - 13017, 13018, 13019, 13020, 13021, 13022, 13023, 13029, 13030, 13051				
	Savanta - 13022				
	Golder (Background) - 13017, 13018, 13019, 13020, 13021, 13022, 13023, 13029, 13030, 13051				
Wetland Area (ha):	LIO/MNRF - 4.45				
	Savanta - 2.91				
Watershed:	Grindstone Creek Watershed				
Sub-Watershed:	East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek				
Located in Proposed Limit of Extraction:	No				
Located in Proposed License Boundary:	No				
Catchment Area (ha):	30.45		SWA (Tatham, April 2020)	Drawing DP-1	
Catchment ID:	S119, S120, S121, S122, S123		SWA (Tatham, April 2020)	Drawing DP-1	
Closed or Connected System:	On-line (connected to downstream wetland; cascading)				
Condition:	Natural				
Bathymetry:	A bathymetry survey of Wetland 13022 was completed by Tatham Engineering Limited and incorporated into the integrated model (see Earthfx Section 18.3, p.381). Wetland lakes were assigned to Layer 1 of the integrated model by adjusting the base of Layer 1 to correspond with the interpolated bottom elevation. Care was taken to ensure that the lowest elevation observed in the wetland was honored in the assigned elevations.	Figure 1	HHIAR (Earthfx, April 2020)	18.3 (page 381)	
Outlet:	Downstream wetland (MNRF - OGF ID 67567149; Earthfx - 17, Tatham - 13049; Savanta - 13027; Golder {Background} - 13049)				
Hydroperiod:	Spring Hydroperiod (date wetland dries out) – March 20th – July 5th	Graph 1	SWA (Tatham,	2.2.3, 3 and Appendix	
	Fall Hydroperiod (start of hydroperiod) - October 8th - January 25th		April 2020)	F	
Surface Water Monitoring:	ID: SW12A (Tatham)	Graph 1	SWA (Tatham,	2.2.3, 3 and Appendix	
	Installation Date: October 2, 2014		April 2020)	F	
	Data Collection: Continuous water level and temperature and manual monthly water level measurements				
	Coordinates of Monitoring Station: Easting 591126.758, Northing 4805392.503				

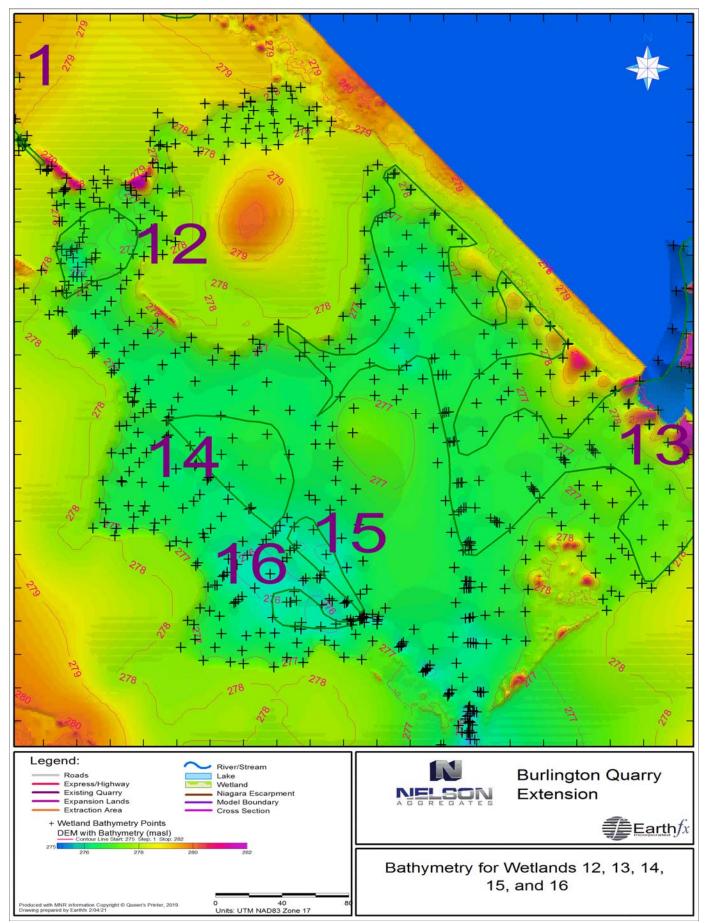
Natural Heritage and Habitat	Description		Reference		
Features	Description	Figure / Graph	Report	Section / Page	
Wetland Name & Provincial Significance Evaluation:	Grindstone Creek Headwaters Wetland Complex - Provincially Significant		NETR (Savanta, April 2020)	6.1.2	
ELC Unit(s):	Reed-canary Grass Mineral Meadow Marsh: MAM2-2 Gray Dogwood Mineral Thicket Swamp: SWT2-9 Green Ash Mineral Deciduous Swamp: SWD2-2		NETR (Savanta, April 2020)	Table 2	
Regulated Habitat (MECP):	Yes – Jefferson Salamander (not field verified during 2019 field program; regulated based on historical data) Hydroperiod sensitive species; water presence necessary until end of June		NETR (Savanta, April 2020)	6.7	
Significant Wildlife Habitat:	Unknown – outside of 120 m adjacent lands				
Fish Habitat:	Indirect		NETR (Savanta, April 2020)	6.6	
Habitat of Endangered and Threatened Species:	Unknown - outside of 120 m adjacent lands				

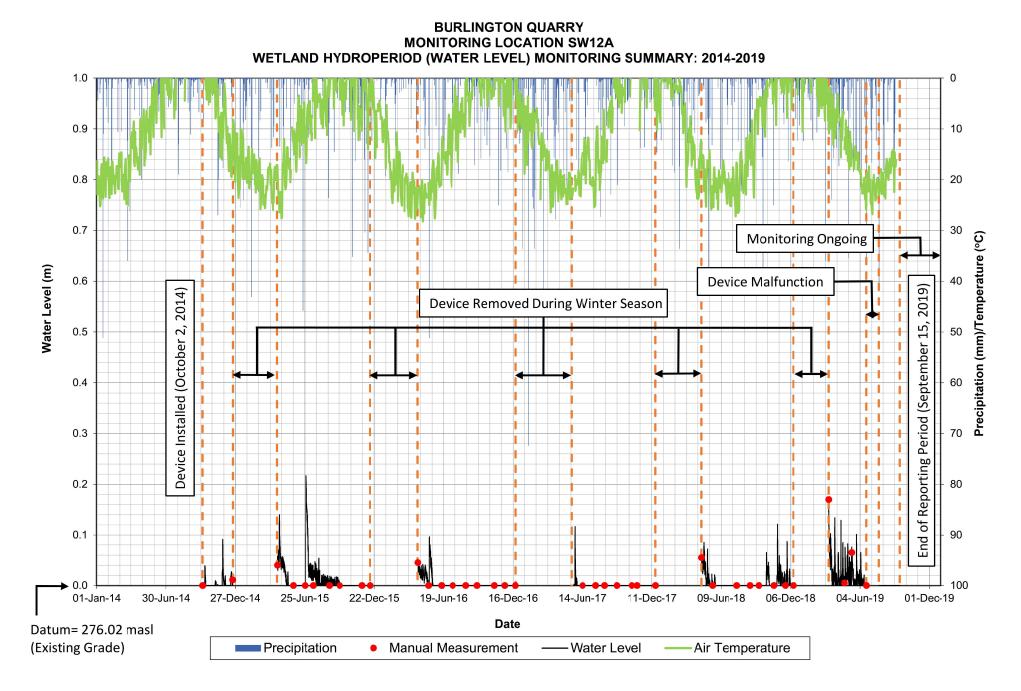
Creve durator Interaction	Description						Figure / Creat	Reference		
Groundwater Interaction	Description						Figure / Graph	Report	Section / Page	
Lithology:	Halton Till									
Hydraulic Conductivity:	Integrated Model (Earl conductivity, based or hydraulic conductivity fractures in the till. Wetland Water Balanc	testing by Golder (2 was 1.6x10 ⁻⁷ m/s, at								
Surface Water/Groundwater Interaction:	The low permeability of interaction. The wetlar system by the low per from any changes in the	nds and streams are g meability till. None o	generally perched at f the wetlands recei	oove the water table ve significant ground	and isolated from th	ne groundwater				
Shallow Groundwater (Mini-piezometer)	ID: SW12B (Tatham)						Graph 2	SWA (Tatham,	2.3 and Appendix G	
Monitoring:	Installation Date: Octo	ber 23, 2018						April 2020)		
	Data Collection: Contin Coordinates of Monito			-	r level measurement	ts				
Background Shallow Groundwater (Mini-	Mini-piezometer ID	Ground Elevation	Bottom Elevation	Average WL	Logger	Manual Meas.	Graph 3 & 4			
piezometer) Monitoring:	Golder MP10	278.17	276.97	275.13	2006-2013	2006-2013				
	Golder MP11	279.5	278.3	276.53	2007-2013	2007-2013				
	Golder MP12	278.07	276.87	275.29	2006-2013	2006-2013				
	Golder MP15	278.76	277.9	-	-	-				
	Golder MP22	278.41	277.21	276.08	-	2012-2013				
	Golder MP23	280.17	278.97	277.26	-	2007-2013				
	Golder MP24	279.69	278.49	275.78	-	2007-2013				
	Golder MP25	278.35	277.15	275.6	-	2007-2013				
	Golder MP26	278.22	277.02	275.57	-	2007-2013				
	Golder MP27	278.61	277.41	275.23	-	2007-2013				
	Golder MP28	279.32	278.12	276.57	-	2007-2013				
	Golder MP29	277.66	276.46	276.23	-	2007-2013				
	Golder MP 30	279.12	277.92	275.31	-	2007-2013				
	Golder MP 31	280.63	279.43	277.26	-	2007-2013				
	Golder MP 32	276.6	275.53	275.99	-	2007-2013				
Groundwater Monitoring (Monitoring	Monitoring Well ID	Distance (Dir.)	Geologic Unit	Ground Elevation	Monitoring Elev	Average WL	Graphs 5 & 6			
Wells):	MW03-09A	180 (WSW)	Bedrock	278.5	268.6 - 263.2	276.29	_			
	MW03-09B	180 (WSW)	Bedrock	279.7	276.2 - 270.8	276.68	_			
	MW03-09C	180 (WSW)	Overburden	279.7	276.2 - 270.8	277.60	-			
	OW03-20A	266 (NNW)	Overburden	277.68	259.0 - 252.2	277.03	_			
	OW03-20B OW03-20C	266 (NNW) 266 (NNW)	Overburden Overburden	277.69 277.66	275.2 - 268.2 275.5 - 273.9	276.90	4			
Water Budget Results:	A detailed average wa provided in the main re reproduced in Figure 1 discharge to riparian a are discussed in Sectio	ter budget for Wetla eport for Baseline Co .a. The wetland is a r reas, and streamflow	nd 13022 (Earthfx M nditions (Earthfx Fig net provider of grou in the vicinity of W	Vetland 16), as simula gure 7.24, p. 186). T ndwater. Simulated etland 13022 (Earthf	ated by the integrat ne baseline water bu groundwater levels, x Wetland 16) for ba	ed model, is udget is , groundwater aseline conditions	Figure 2a	HHIAR (Earthfx, April 2020)	186	
	Wetland 13022	GW Outflow (%)	GW Inflow (%)]						
	Baseline (Existing)	1.25	0.34	1						

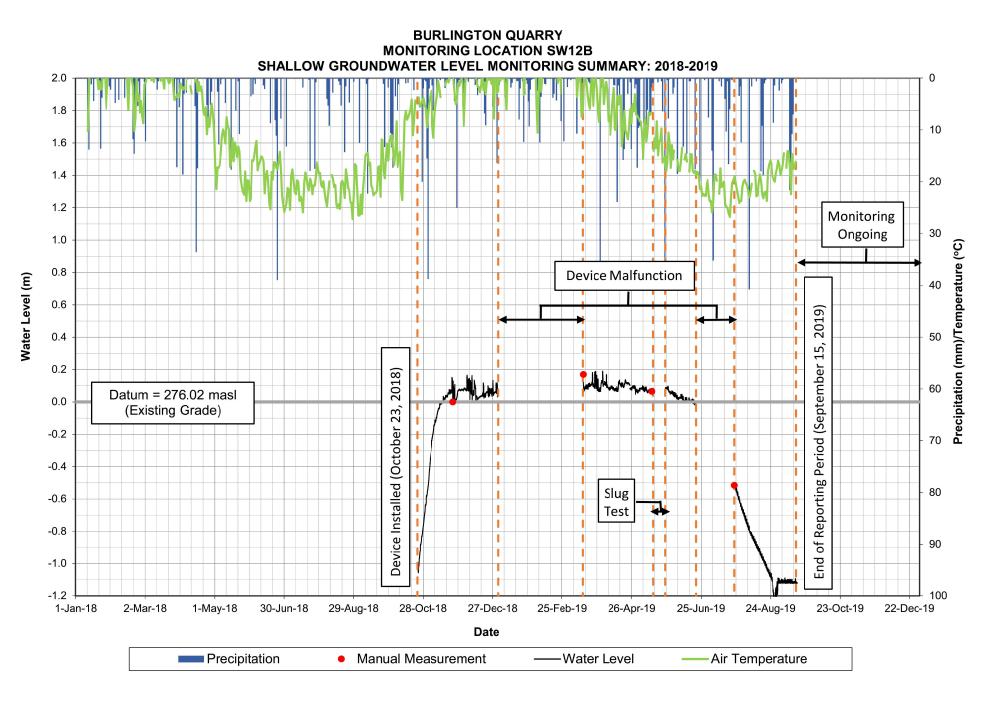
Groundwater Interaction	Description	Figure / Graph	Ref Report	ference Section / Page
	Halton Till materials. These monitors correspond to the PRMS soil zone and upper-most part of Layer 1 of the GSFLOW model. A comparison of the mini-piezometer data to the simulated soil moisture conditions demonstrates that the model is closely matching both the soil moisture and hydroperiod of the shallow subsurface at this wetland.	Graphs 7, 8, 9, 10, 11 & 12		
	Wetland 16 is not discussed in the Main Report. Other nearby wetlands are discussed in Appendix E, Section 19.6.			

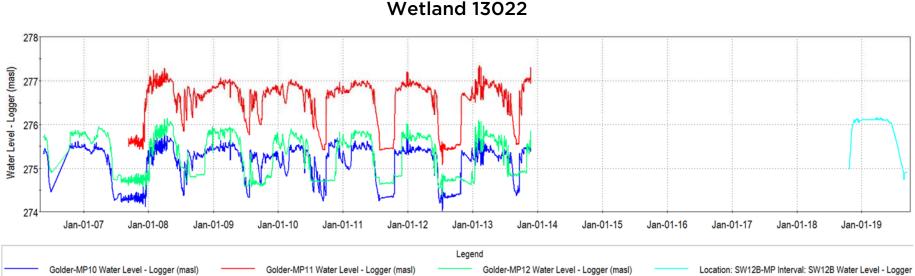
Impact Assessment (Operations	Description							Reference		
Phases 1 & 2)	Description						Figure / Graph	Report	Section / Page	
Change in Wetland Area (ha):	No change. Wetland loo	No change. Wetland located greater than 120 m from licensed boundary.							4.2.1	
Change in Wetland Catchment Area (ha):	No change. Subcatchm	ent area protected.			SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2				
Change in Hydroperiod:	No Change. Wetland is		SWA (Tatham, April 2020)	4.2.1						
Change in Water Budget:	A detailed average wate provided in the Earthfx (Figure 8.63, p. 248); RH P12 are reproduced in F riparian areas, and chan discussed in Section 8 o	report for Baseline (IB1 (Figure 8.99, p. Figure 2b. Simulated ge in streamflow in f the main report.	Conditions (Figure 7 277), and RHB2 (Fig d change in groundv the vicinity of Wetla	7.24, p. 186); Scenar gure 8.126, p. 299). water levels (drawdo and 13022 (Earthfx \	o P12 (Figure 8.31, The water budget r owns), groundwater Vetland 16) for each	p. 221); P3456 esults for Scenario discharge to	Figure 2b	HHIAR (Earthfx, April 2020)	191 - 303	
	Wetland 13022	GW Outflow (%) 1.25	GW Inflow (%) 0.34	∆ in Outflow (%)	∆ in Inflow (%)	-				
	Baseline (Existing) Operations Ph 1 & 2	1.25	0.00	0.06	-0.34					
Change on Soil Moisture Conditions:	The soil moisture and su Graph 14 (Note the scal- soil moisture in Wetland for Baseline conditions a the Baseline for much of spring, but slightly dryet (Blue) and P12 condition groundwater system for the wetter years when t water to the groundwat through the summer.	e range is very smal 13 under Baseline a as a blue line. The s f the time period. U r in the summer and ns (Red) are shown most of the year, a he water table is hig	I). The effects of de and P12 developme oil moisture under F Inder P12 developm I fall during a wet ye in Graph 13. Under nd only receive upv gher (generally in lat	evelopment can be il nt conditions. Grap P12 development is ear, soil moisture is ear. Wetland 13 lake Baseline conditions velling (negative lea te spring). Under P2	lustrated by compar In 13 shows average shown in red, and it essentially identical e seepage (Graph 14 , the ponds leak wat kage or seepage) fo .2 conditions (red lir	ring the average daily soil moisture overlies (covers) in the winter and 4) under Baseline ter to the r short periods of ne), the ponds leak				
Potential Impact to Form and Function of Feature:	No wetlands will be rem project into the wetland be demarcated and fenc project .	. The proposed limit	it of extraction is >1	20 m from the wetla	and boundary. Licer	nsed boundary will				

Mitigation (Operational Phases 1 &	Description	Figure / Graph	-	erence
2)		· · · gui e / · e · api	Report	Section / Page
Proposed Mitigation Measures:	None required.			

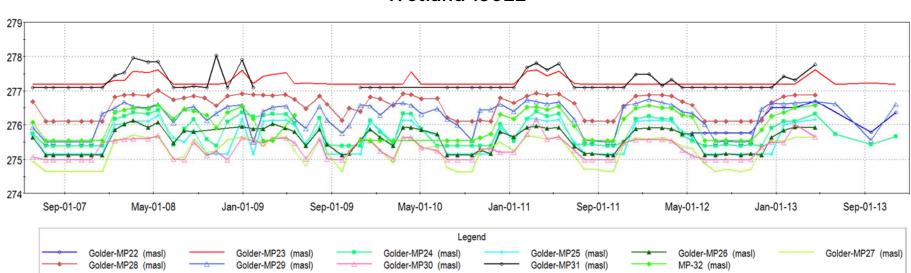

Impact Assessment (Operations	Description			Reference					
Phases 3 - 6)	Description		Figure / Graph	Report	Section / Page				
Change in Wetland Area (ha):	No change. Wetland loo	lo change. Wetland located greater than 120 m from licensed boundary.							4.2.1
Change in Wetland Catchment Area (ha):	No change. Subcatchm	ent area protected.		SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2				
Change in Hydroperiod:	No Change. Wetland is	perched and isolate	d from the ground	water system. Subca	tchment area being	g protected.		SWA (Tatham, April 2020)	4.2.1
	provided in the Earthfx (Figure 8.63, p. 248); RH P3456 are reproduced in riparian areas, and chan discussed in Section 8 o	verage water budget for Wetland 13022 (Earthfx Wetland 16), as simulated by the integrated model, is the Earthfx report for Baseline Conditions (Figure 7.24, p. 186); Scenario P12 (Figure 8.31, p. 221); P3456 , p. 248); RHB1 (Figure 8.99, p. 277), and RHB2 (Figure 8.126, p. 299). The water budget results for Scenario eproduced in Figure 2c. Simulated change in groundwater levels (drawdowns), groundwater discharge to as, and change in streamflow in the vicinity of Wetland 13022 (Earthfx Wetland 16) for each scenario are Section 8 of the main report						HHIAR (Earthfx, April 2020)	191 - 303
	Wetland 13022	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)				
	Baseline (Existing)	1.25	0.34	-	-				
	Operations Ph 3 - 6	1.34	0.00	0.09	-0.34				
Potential Impact to Form and Function of Feature:	No wetlands will be rem project into the wetland be demarcated and fenc project .	I. The proposed limi	t of extraction is >1	L20 m from the wetla	nd boundary. Lice	nsed boundary will			

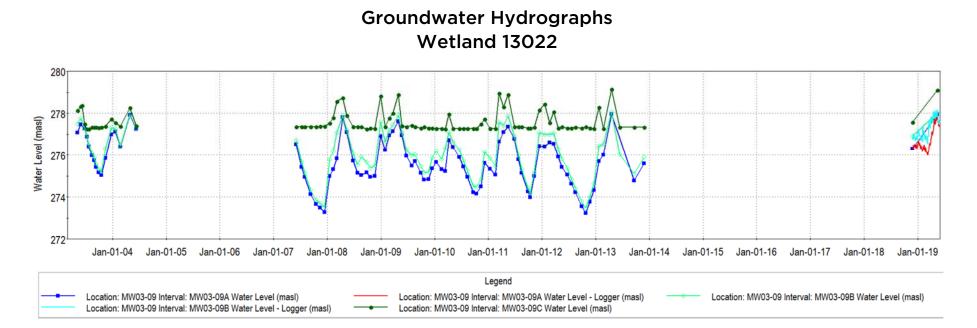

Mitigation (Operational Phases 3 -	Description	Figure / Graph		ference
6)			Report	Section / Page
Proposed Mitigation Measures:	None required.			

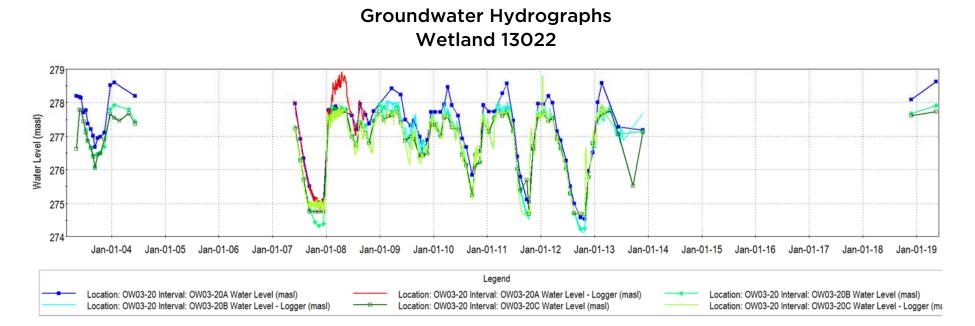

Impact Assessment (Rehabilitation)	Description		Figure / Graph	Reference					
impact Assessment (Renabilitation)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland lo	cated greater than 1	20 m from licensed			SWA (Tatham, April 2020)	5.4.1		
Change in Wetland Catchment Area (ha):	No change. Subcatchm	ent area protected.			SWA (Tatham, April 2020)	5.4.1 & Drawing DP-3			
Change in Hydroperiod:	No Change. Wetland is	No Change. Wetland is perched and isolated from the groundwater system. Subcatchment area being protected.						SWA (Tatham, April 2020)	5.4.1
Change in Water Budget:	provided in the Earthfx report for Baseline Conditions (Figure 7.24, p. 186); Scenario P12 (Figure 8.31, p. 221); P3456 (Figure 8.63, p. 248); RHB1 (Figure 8.99, p. 277), and RHB2 (Figure 8.126, p. 299). The water budget results for Scenarios RHB1 and RHB2 are reproduced in Figures 2d and 2e. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13022 (Earthfx Wetland 16) for each scenario are discussed in Section 8 of the main report.						Figure 2d and 2e	HHIAR (Earthfx, April 2020)	191 - 303
	Wetland 13022 Baseline (Existing)	GW Outflow (%) 1.25	GW Inflow (%) 0.34	∆ in Outflow (%)	∆ in Inflow (%) -				
	Rehab Scenario 1	1.37	0.02	0.12	-0.32	-			
	Rehab Scenario 2	1.17	0.04	-0.08	-0.30	1			
Potential Impact to Form and Function of Feature:	No wetlands will be rem project into the wetland be demarcated and fend project .	I. The proposed limi	t of extraction is >1	.20 m from the wetla	nd boundary. Licer	nsed boundary will			


Mitigation (Rehabilitation)	Description	Figure / Graph	Reference				
Mitigation (Renabilitation)		rigure / Oraph	Report	Section / Page			
Proposed Mitigation Measures:	None required.						

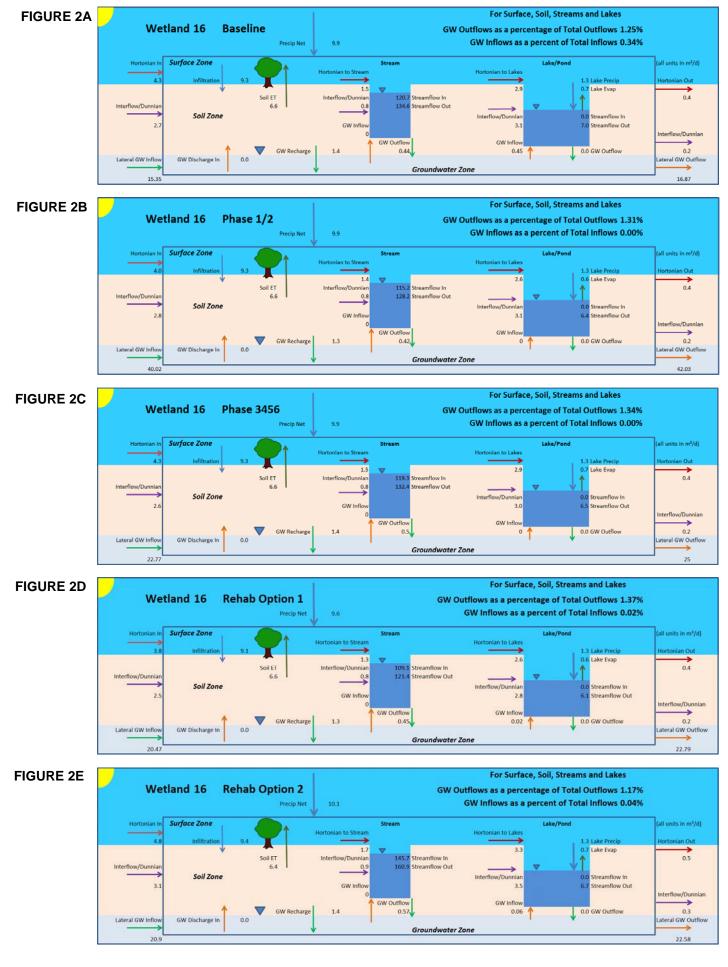
WETLAND 13022 - FIGURE 1



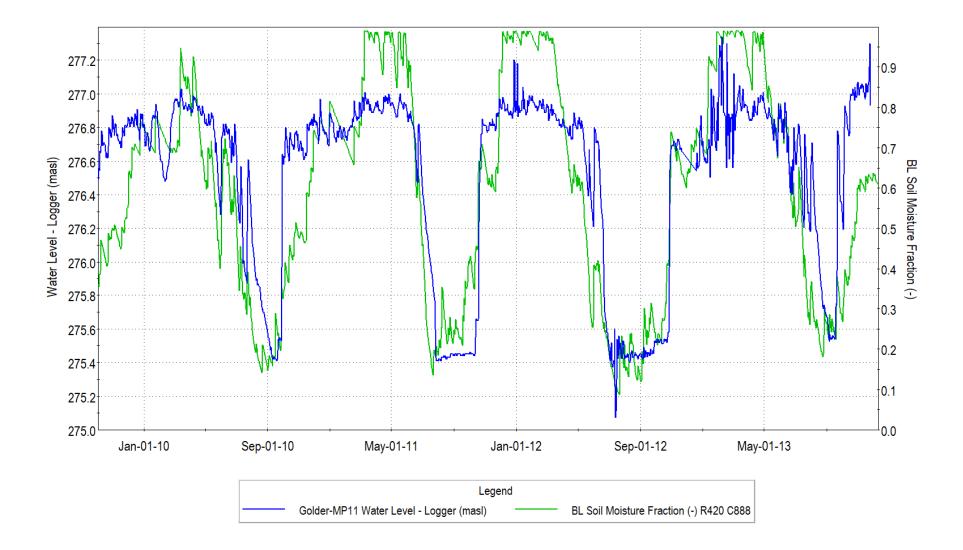


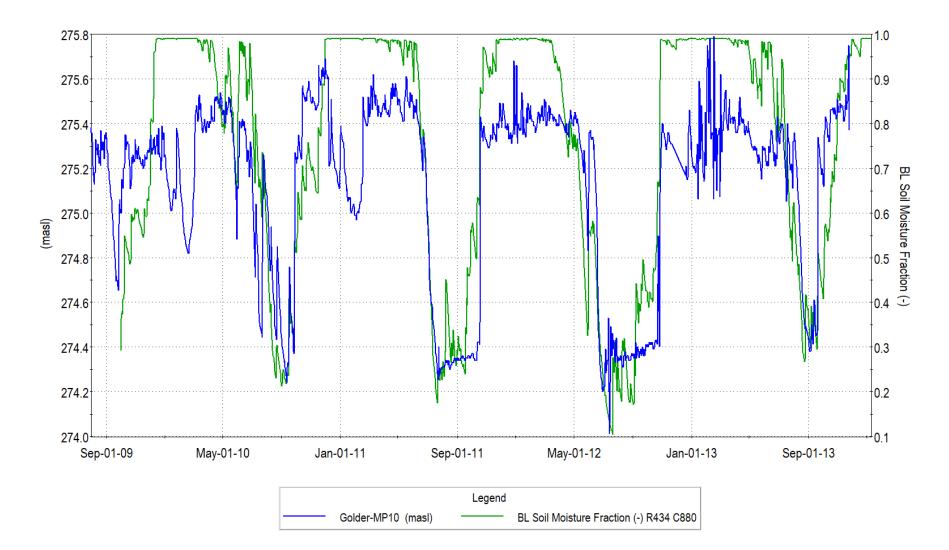


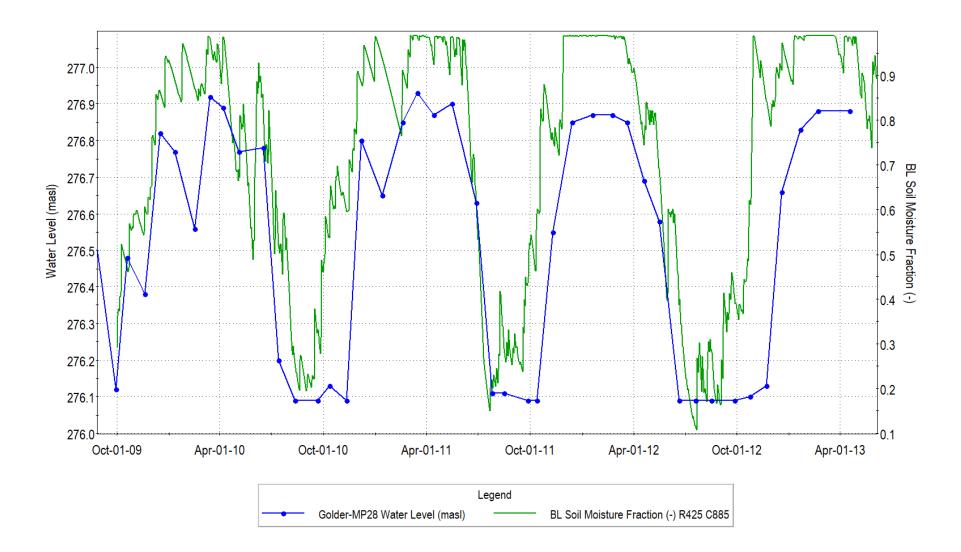
Shallow Groundwater Hydrographs Wetland 13022

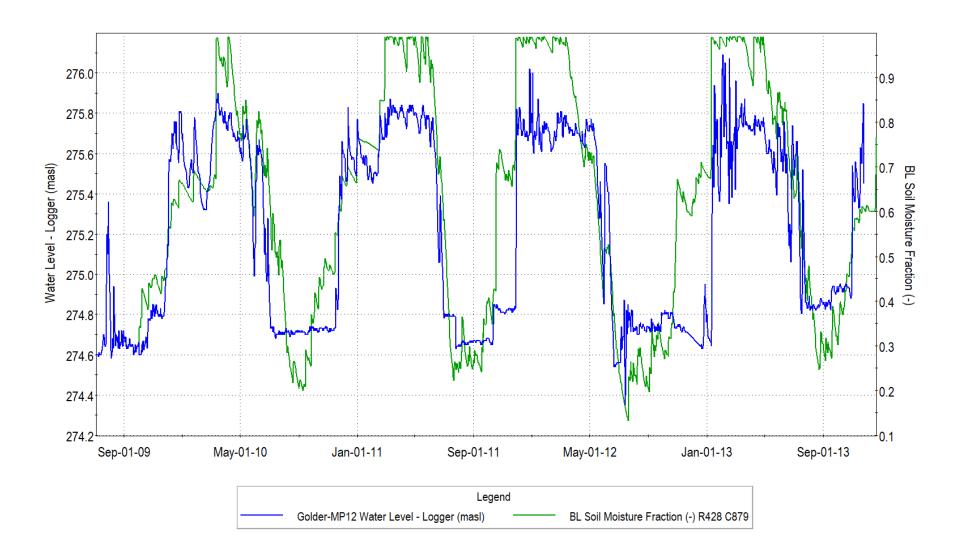


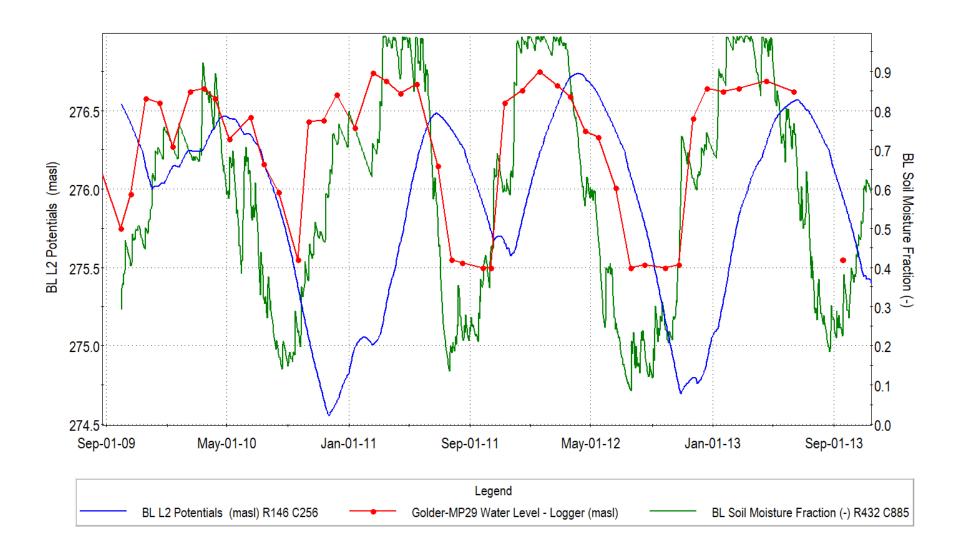
Shallow Groundwater Hydrographs Wetland 13022

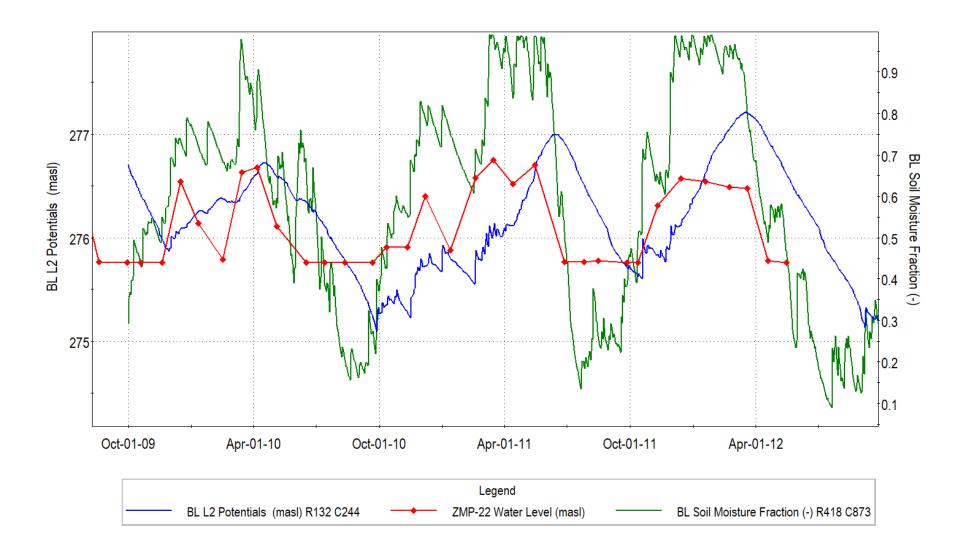


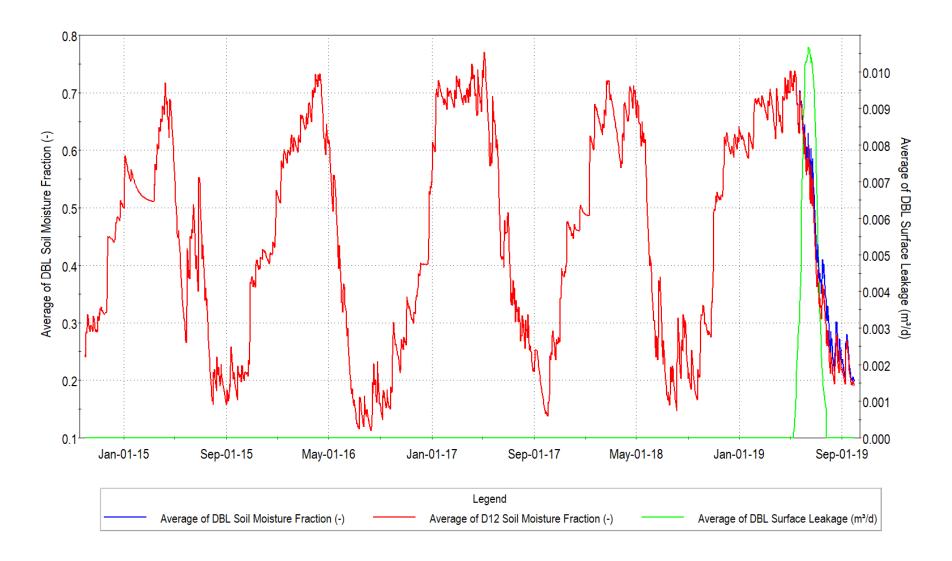

WETLAND 13022

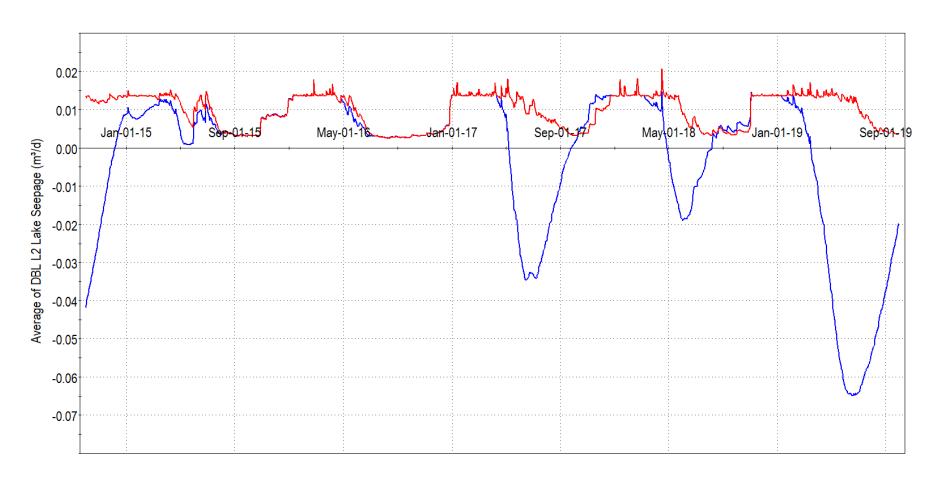





Integrated Model Calibration Wetland 13022

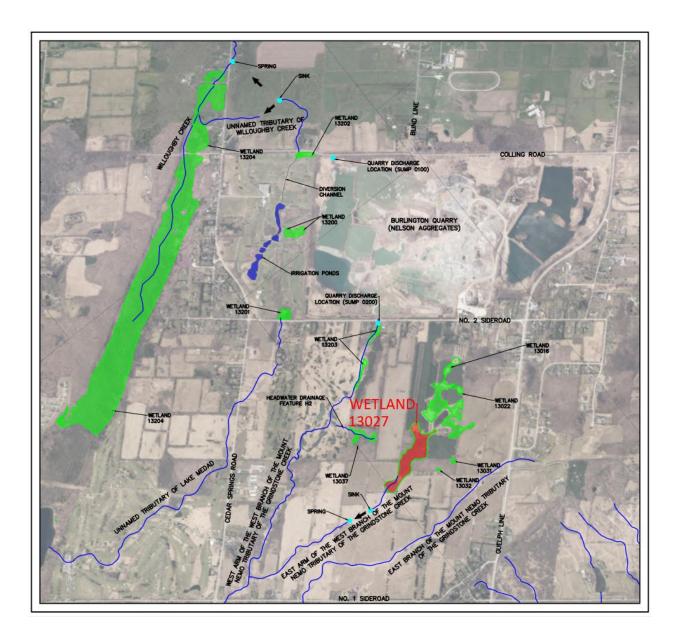

Integrated Model Calibration Wetland 13022

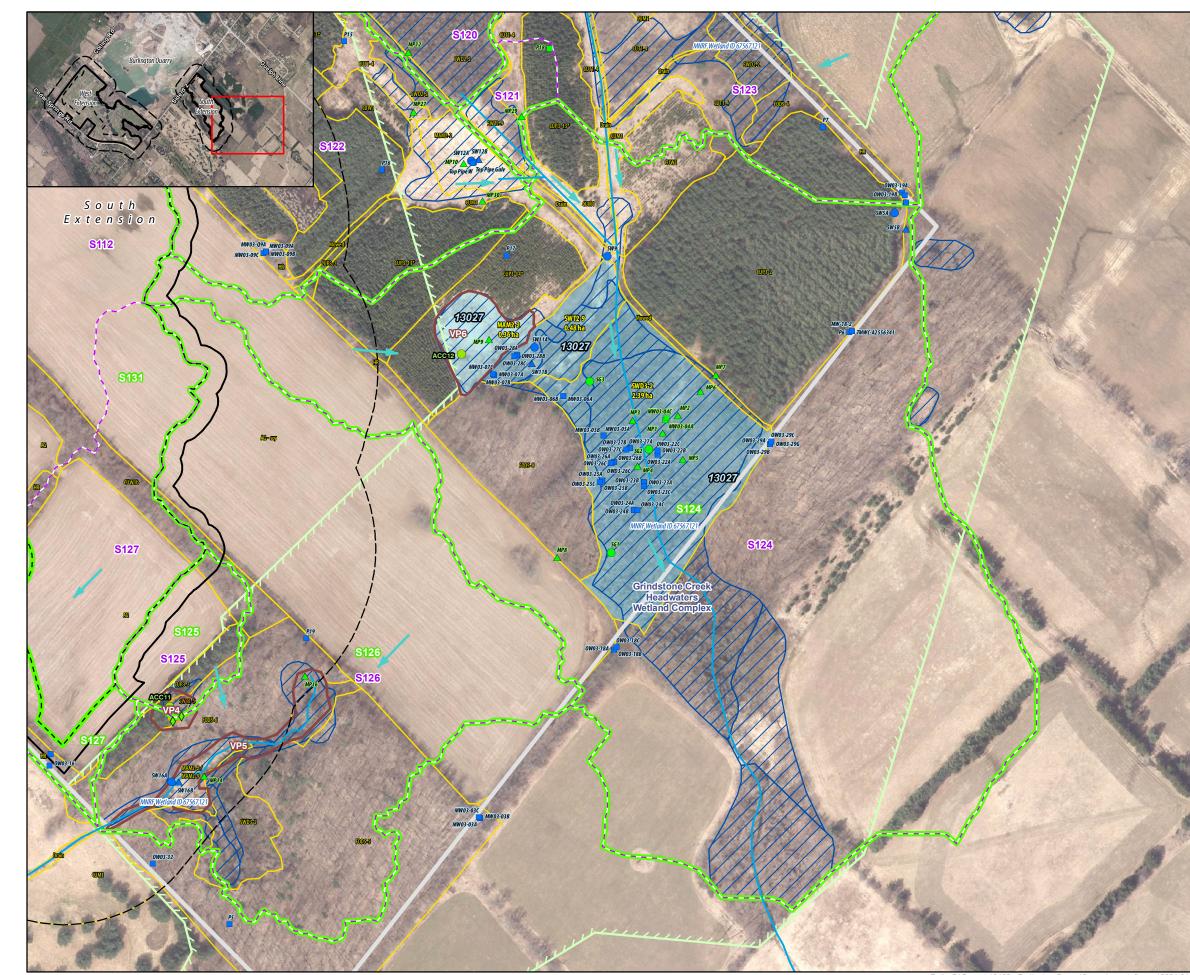

Integrated Model Calibration Wetland 13022



Integrated Model Calibration Wetland 13022

Change in Soil Moisture Conditions Wetland 13022





Change in Soil Moisture Conditions Wetland 13022

WETLAND 13027

50 m 1:3,000 Savanta Division

ta\8133 - Burlington Quarry\figures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_wetland_char_mapbook.mxd Date S Page 41uary 11, 202

0

Wetland 13027

Matland Characteristics	Description		Reference		
Wetland Characteristics	Description	Figure / Graph	Report	Section / Page	
Wetland IDs:	MNRF - 67567121(OGF ID 67567149, 67567122, 67567135, 67567124, 67567123, 67567127)				
	Earthfx - 17				
	Tatham - 13049, 13027, 13048, 13038, 13035, 13034				
	Savanta - 13027				
	Golder (Background) - 13049, 13027, 13048, 13038, 13035, 13034				
Wetland Area (ha):	LIO/MNRF - 6.53 (excludes wetland area on neighbouring property)				
	Savanta - 3.23 (excludes wetland area on neighbouring property)				
Watershed:	Grindstone Creek Watershed				
Sub-Watershed:	East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek				
Located in Proposed Limit of Extraction:	No				
Located in Proposed License Boundary:	No				
Catchment Area (ha):	22.04		SWA (Tatham, April 2020)	Drawing DP-1	
Catchment ID:	S124		SWA (Tatham, April 2020)	Drawing DP-1	
Closed or Connected System:	On-line (connected to downstream watercourse)				
Condition:	Natural				
Bathymetry:	A bathymetry survey of Wetland 13027 was completed by Tatham Engineering Limited and incorporated into the integrated model (see Earthfx Section 18.3, p.381). Wetland lakes were assigned to Layer 1 of the integrated model by adjusting the base of Layer 1 to correspond with the interpolated bottom elevation. Care was taken to ensure that the lowest elevation observed in the wetland was honored in the assigned elevations.	Figure 1	HHIAR (Earthfx, April 2020)	18.3 (page 381)	
Outlet:	East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek				
Hydroperiod:	Spring Hydroperiod (date wetland dries out) - April 7th - July 17th	Graph 1	SWA (Tatham,	2.2.2, 3 and Appendix	
	Fall Hydroperiod (start of hydroperiod) - September 4th -December 27th		April 2020)	F	
Surface Water Monitoring:	ID: SW11A (Tatham)	Graph 1	SWA (Tatham,	2.2.2, 3 and Appendix	
	Installation Date: October 2, 2014		April 2020)	F	
	Data Collection: Continuous water level and temperature and manual monthly water level measurements				
	Coordinates of Monitoring Station: Easting 591177.323, Northing 4805244.509				

Natural Heritage and Habitat	Description	Figure / Cusul	Re	ference
Features	Description	Figure / Graph	Report	Section / Page
Wetland Name & Provincial Significance Evaluation:	Grindstone Creek Headwaters Wetland Complex – Provincially Significant		NETR (Savanta, April 2020)	6.1.2
ELC Unit(s):	Reed-canary Grass Mineral Meadow Marsh: MAM2-2		NETR (Savanta,	Table 2
	Gray Dogwood Mineral Thicket Swamp: SWT2-9		April 2020)	
	Green Ash Mineral Deciduous Swamp: SWD2-2			
Regulated Habitat (MECP):	Yes - Jefferson Salamander (not field verified during 2019 field program; regulated based on historical data)		NETR (Savanta,	6.7
	Hydroperiod sensitive species; water presence necessary until end of June		April 2020)	
Significant Wildlife Habitat:	Unknown – outside of 120 m adjacent lands			
Fish Habitat:	Indirect		NETR (Savanta, April 2020)	6.6
Habitat of Endangered and Threatened Species:	Unknown – outside of 120 m adjacent lands			

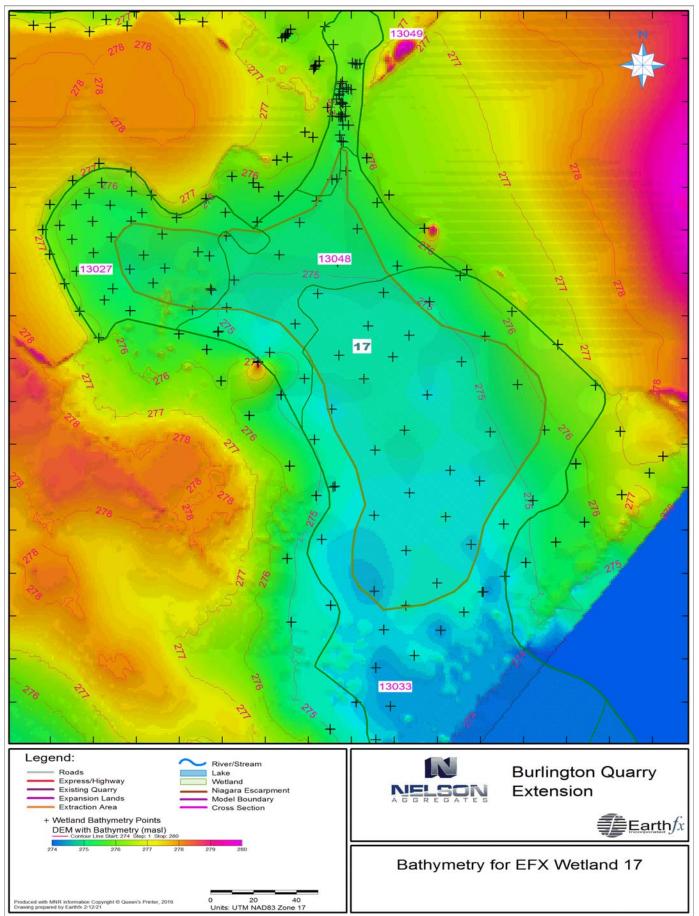
	Description						Figure / Creat	Reference		
Groundwater Interaction	Description						Figure / Graph	Report	Section / Page	
Lithology:	Halton Till									
Hydraulic Conductivity:	Integrated Model (Earthfx) - The harmonic mean hydraulic conductivity, based on testing by Golder (2007) of 10 mini- piezometers, was 1.2x10 ⁻⁸ m/s. Model value for the vertical hydraulic conductivity was 1.6x10 ⁻⁷ m/s, about an order of magnitude higher, to account for limited flow through fractures in the till. Wetland Water Balance (Tatham) - 8.2x10 ⁻⁹ m/s.									
Surface Water/Groundwater Interaction:	The low permeability o interaction. The wetlan system by the low perm changes in the water ta	ds and streams are g neability till. This we	generally perched ab etland receives some	ove the water table	and isolated from	the groundwater				
Shallow Groundwater (Mini-piezometer)	ID: SW11B (Tatham)						Graph 2	SWA (Tatham,	2.3 and Appendix G	
Monitoring:	Installation Date: Octob	per 25, 2018						April 2020)		
	Data Collection: Contin									
	Coordinates of Monitor									
Background Shallow Groundwater (Mini-	Mini-piezometer ID	-	Bottom Elevation	Average WL	Logger	Manual Meas.	Graph 3			
piezometer) Monitoring:	Golder-MP1	275.05	273.55	274.65	-	2007-2013	1			
	Golder-MP2	275.28	273.78	274.95	-	2007-2013	1			
	Golder-MP3	275.15	273.65	274.85	-	2007-2013	1			
	Golder-MP4	275.15	273.65	274.8	-	2007-2013				
	Golder-MP5	275.04	273.54	274.75	-	2007-2013				
	Golder-MP6	276.48	274.98	275.18	-	2007-2013				
	Golder-MP7	276.32	274.82	274.74	-	2007-2013				
	Golder-MP9	278.71	277.51	275.12	2006-2013	2006-2013				

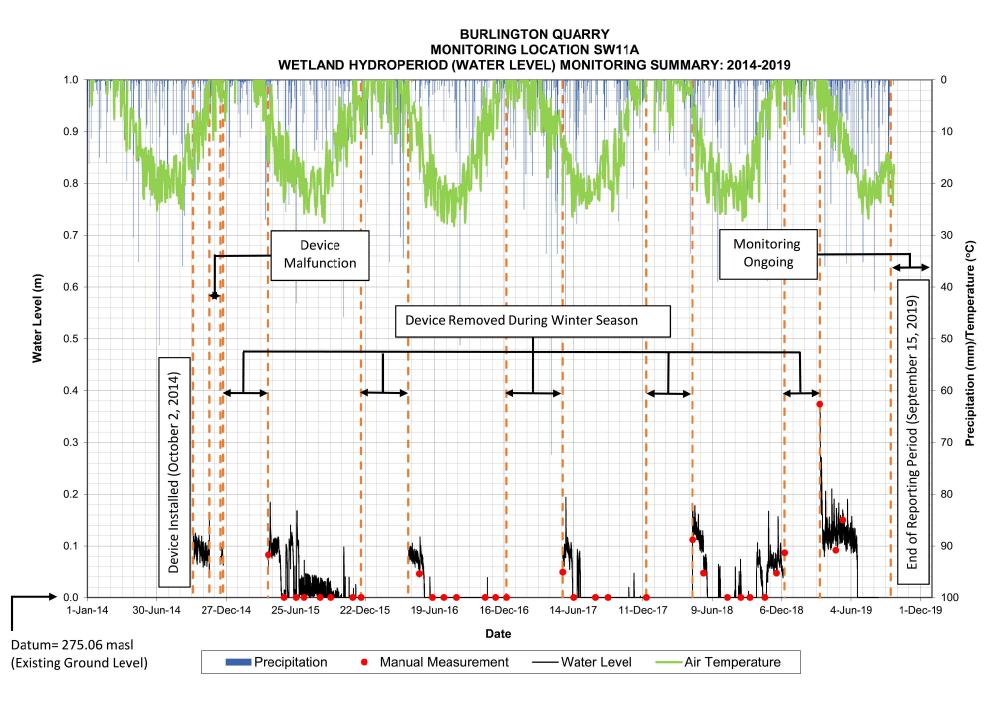
Groundwater Interaction	Description						Figure / Graph Reference Section			
Groundwater Interaction	Description						rigure / Graph	Report	Section / Page	
Groundwater Monitoring (Monitoring	Monitoring Well ID	Distance (Dir.)	Geologic Unit	Ground Elevation	Monitoring Elev	Average WL	Graphs 4, 5, 6 & 7			
Wells):	MW03-04A	16 (E)	Bedrock	274.92	257.24 - 253.28	274.79				
	MW03-04B	16 (E)	Bedrock	274.92	266.69 - 262.42	274.71				
	MW03-04C	17 (E)	Bedrock	274.86	273.46 - 271.66	274.66				
	MW03-05A	33 (ESE)	Bedrock	275.01	272.42 - 271.66	274.70				
	MW03-05B	33 (ESE)	Overburden	275.01	273.94 - 272.88	274.54				
	MW03-06A	65 (ENE)	Bedrock	275.01	273.03 - 272.6	274.83				
	MW03-06B	65 (ENE)	Overburden	275.01	273.79 - 273.33	274.82				
	MW03-07A	120 (ENE)	Bedrock	275.37	260.89 - 256.6	274.83				
	MW03-07B	120 (ENE)	Bedrock	275.38	269.74 - 267.46	275.03				
	MW03-07C	121 (ENE)	Bedrock	275.37	273.54 - 271.56	275.11				
	OW03-22A	10 (SSE)	Bedrock	275.01	255.41 - 247.31	274.15	-			
	OW03-22B	10 (SSE)	Bedrock	275.02	271.19 - 263.82	274.44	-			
	OW03-22C	10 (SSE)	Bedrock	274.92	273.22 - 271.62	274.58	-			
	OW03-23A	1(S)	Bedrock	274.96	256.31 - 249.66	274.18	-			
	OW03-23B	1(S)	Bedrock	274.91	270.88 - 264.21	274.44	-			
	OW03-23C	1 (S)	Bedrock	274.78	273.28 - 271.68	274.46				
	OW03-24A	9 (S)	Bedrock	274.88	256.75 - 250.13	274.16	-			
	OW03-24B	9 (S)	Bedrock	274.88	270.88 - 264.24	274.26	-			
	OW03-24C	6 (S)	Bedrock	274.74	272.97 - 271.39	274.35	-			
	OW03-25A	34 (SE)	Bedrock	275	255.9 - 247.48	274.14	-			
	OW03-25B	34 (SE)	Bedrock	274.99	270.69 - 264.22	274.43	-			
	OW03-25C	36 (SE)	Bedrock	274.99	273.19 - 271.59	274.50	-			
	OW03-26A	25 (SE)	Bedrock	275.02	255.82 - 248.42	274.16	-			
	OW03-26B	25 (SE)	Bedrock	275.03	272.04 - 263.7	274.46	-			
	OW03-26C	27 (SE)	Bedrock	275.005	272.71 - 271.11	274.22	-			
	OW03-27A	12 (SE)	Bedrock	275.05	256.05 - 247.28	274.19	-			
	OW03-27B	12 (SE)	Bedrock	275.06	270.91 - 263.88	274.50	-			
	OW03-27C	15 (SE)	Bedrock	275.04	272.74 - 271.14	274.48	-			
	OW03-28A	102 (ENE)	Bedrock	275.46	256.76 - 248.96	275.33	-			
	OW03-28B	102 (ENE)	Bedrock	275.46	272.36 - 265.66	275.07	-			
	OW03-28C	102 (ENE)	Bedrock	275.4	273.9 - 272.3	275.11	-			
	OW03-28C OW03-29A	99 (ENE)	Bedrock	277.06	256.46 - 248.92	274.84	_			
	OW03-29A OW03-29B			277.08	273.93 - 266.83	275.47	_			
		99 (ESE)	Bedrock				-			
	OW03-29C	100 (ESE)	Overburden	277.02	276.72 - 275.12	275.79	_			
·	OW03-29G	100 (ESE)	Overburden	277.02					107	
/ater Budget Results:	Conditions (Earthfx F provider of groundwa	igure 7.25, p. 187). Iter. Simulated grou	The baseline water l ndwater levels, gro	ited model, is provided oudget is reproduced undwater discharge to n Section 7 of the main	in Figure 2a. The we riparian areas, and	etland is a net	Figure 2a	HHIAR (Earthfx, April 2020)	187	
	Wetland 13027	GW Outflow (%)	GW Inflow (%)							
	Baseline (Existing)	2.51	1.31							

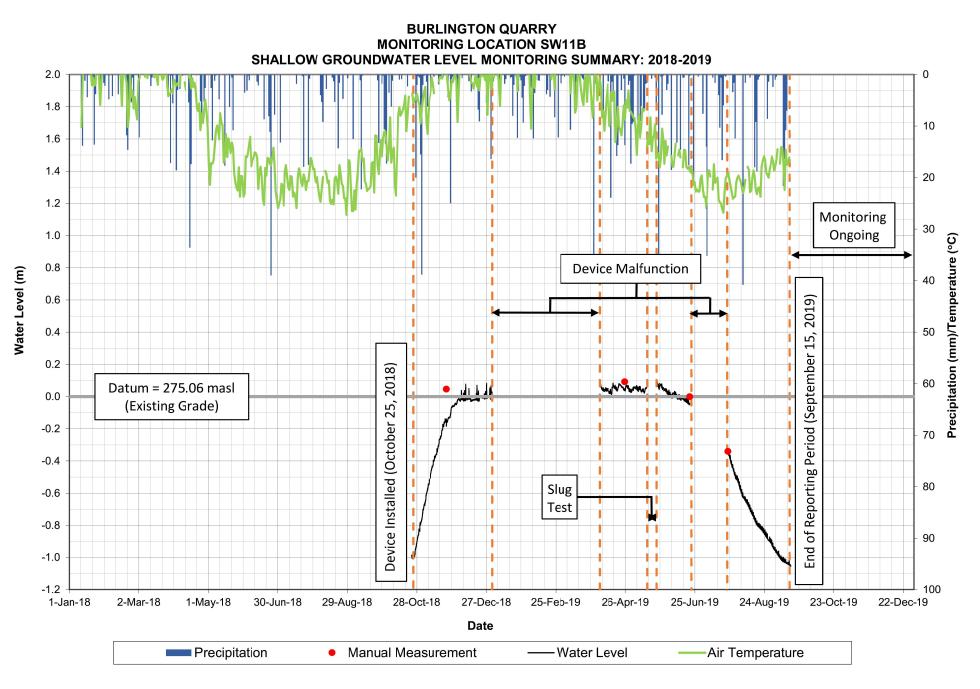
Croundwater Interaction	Description	Figure / Craph	Reference		
Groundwater Interaction	Description	Figure / Graph	Report	Section / Page	
Integrated Model Calibration:	Till. These monitors correspond to the PRMS soil zone and upper-most part of Layer 1 of the GSFLOW model. A comparison of the mini-piezometer data to the simulated soil moisture conditions demonstrates that the model is closely matching both the soil moisture and hydroperiod in the shallow subsurface at this wetland (see Graphs 8 through 12).	Graphs 8, 9, 10, 11 & 12 Graphs 13 & 14	HHIAR (Earthfx, April 2020)	155 and 441 - 443	

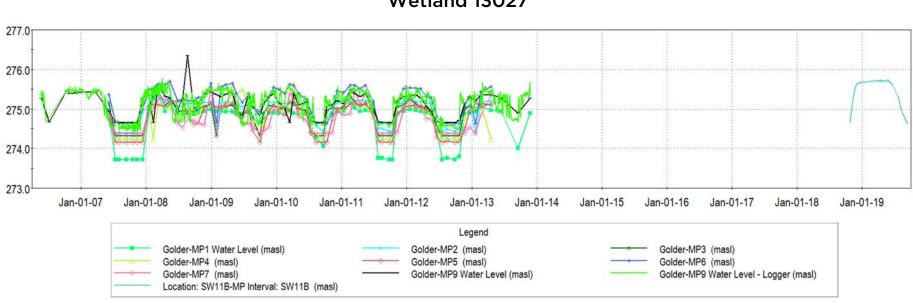
Phases 1 & 2) Change in Wetland Area (ha): Change in Wetland Catchment Area (ha): Change in Hydroperiod: Change in Water Budget:	Description No change. Wetland loc No change. Subcatchme No Change. Wetland is A detailed average wate provided in the Earthfx r (Figure 8.64, p. 249); RH P12 are reproduced in F	ent area protected. perched and isolate er budget for Wetlar report for Baseline C	d from the ground	_	tchment area bein	a protected	Figure / Graph	Report SWA (Tatham, April 2020) SWA (Tatham,	Section / Page 4.2.1 4.2.1 & Drawing DP-2			
Change in Wetland Catchment Area (ha): Change in Hydroperiod:	No change. Subcatchmo No Change. Wetland is A detailed average wate provided in the Earthfx r (Figure 8.64, p. 249); RH	ent area protected. perched and isolate er budget for Wetlar report for Baseline C	d from the ground		tchment area bein	a protected		April 2020)				
Change in Hydroperiod:	No Change. Wetland is A detailed average wate provided in the Earthfx r (Figure 8.64, p. 249); RH	perched and isolate er budget for Wetlar report for Baseline C	_	water system. Subca	tchment area bein	a protected			4218 Drawing DD 2			
Change in Hydroperiod:	No Change. Wetland is A detailed average wate provided in the Earthfx r (Figure 8.64, p. 249); RH	perched and isolate er budget for Wetlar report for Baseline C	_	water system. Subca	tchment area bein	a protected		SWA (Tatham,	1218 Drawing DD 2			
Change in Hydroperiod:	No Change. Wetland is A detailed average wate provided in the Earthfx r (Figure 8.64, p. 249); RH	perched and isolate er budget for Wetlar report for Baseline C	_	water system. Subca	tchment area bein	a protected			4.Z.I & DIAWING DP-Z			
	A detailed average wate provided in the Earthfx r (Figure 8.64, p. 249); RH	er budget for Wetlar report for Baseline (_	water system. Subca	tchment area bein	a protected		April 2020)				
	A detailed average wate provided in the Earthfx r (Figure 8.64, p. 249); RH	er budget for Wetlar report for Baseline (_	water system. Subce	teriment area being	No Change. Wetland is perched and isolated from the groundwater system. Subcatchment area being protected.						
Change in Water Budget:	provided in the Earthfx (Figure 8.64, p. 249); RH	report for Baseline (nd 13027 (Earthfx V			g protected.		SWA (Tatham, April 2020)	4.2.1			
Change in Water Budget:	provided in the Earthfx (Figure 8.64, p. 249); RH	report for Baseline (nd 13027 (Earthfx V									
	(Figure 8.64, p. 249); RH						Figure 2b	HHIAR (Earthfx,	191 - 303			
		ID1 (E:						April 2020)				
		-										
	riparian areas, and chang											
	discussed in Section 8 o Wetland 13027	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)	7						
						_						
	Baseline (Existing)	2.51	1.31	-	-	_						
	Operations Ph 1 & 2	5.71	0.00	3.20	-1.31							
Change on Soil Moisture Conditions:	The effects of developm			-			Graphs 15 & 16					
	P12 development condit											
	moisture under P12 deve	•										
	P12 development, soil moisture is essentially identical in the winter and spring, but slightly dryer in the summer and fall.											
	The Baseline groundwat	er discharge into W	etland 17 (seepage	e or "surface leakage"	in GSFLOW) is she	own as a green line						
	on the graph (right hand	d scale). The decline	e in soil moisture ur	nder P12 is due to the	e loss of this groun	dwater discharge						
	(due to the drawdown in groundwater levels near the excavation). Under baseline conditions, groundwater seepage											
	occurs as water levels ris	se in the late spring	in response to sno	wmelt. Seepage fluct	uates significantly,	however, due to						
	natural inter-annual clim	ate variability. Duri	ng a dry year (2015	5-2016) groundwater	levels are naturally	low, there is no						
	groundwater seepage, a	and so there is no dif	fference in soil mois	sture between Baseli	ne and P12. During	g an average year						
	(2017-2018) there is sma	all change in the late	e summer soil moist	ture conditions due t	o the loss of groun	dwater discharge						
	during P12 development	t. During a wet year	r there is a modest	loss of soil moisture	in the May-Septem	ber time frame. The						
	water budget summary											
	this will be lost with dev	elopment. Graph 16	5 illustrates how an	nd when that loss of g	roundwater inflow	will occur. The loss						
	will primarily occur durir											
	already experiences limi											
	the bottom of the ponde	-				-						
	represented in the mode											
	deeper groundwater sys											
	under Baseline (Blue) an											
	to the groundwater syst											
	periods of the wetter ye											
	ponds leak water to the											
	declining through the su											
	of soil moisture response	e.										
otential Impact to Form and Function of	No wetlands will be rem	oved and the wetlar										
eature:	project into the wetland	. The proposed limi	t of extraction is >1	120 m from the wetla	nd boundary. Lice	nsed boundary will						
	be demarcated and fend	ced to ensure site co	onstruction and ope	erations do not exten	d beyond the prop	osed limits of the						
	project .											
									<u> </u>			
1itigation (Operational Phases 1 &	Description						Figure / Graph	Re	ference			

Mitigation (Operational Phases 1 &	Description	Figure / Graph	Ref	ference
2)		Figure / Graph	Report	Section / Page
Proposed Mitigation Measures:	None required.			

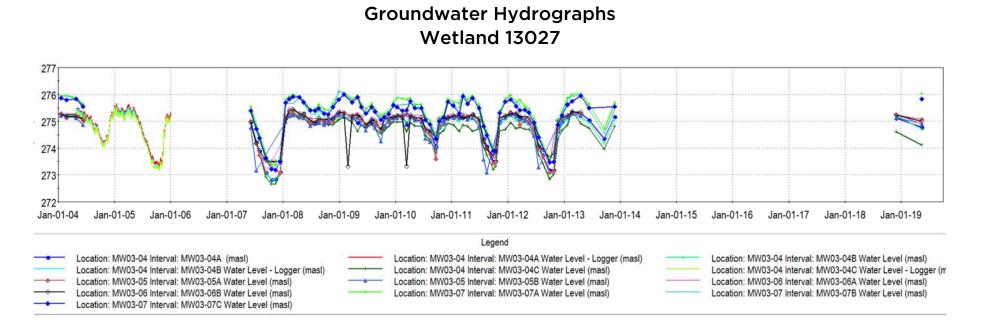

Impact Assessment (Operations	Description							Re	eference
Phases 3 - 6)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.							SWA (Tatham, April 2020)	4.2.1
Change in Wetland Catchment Area (ha):	No change. Subcatchm		SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2					
Change in Hydroperiod:	No Change. Wetland is		SWA (Tatham, April 2020)	4.2.1					
Change in Water Budget:	A detailed average wate provided in the Earthfx (Figure 8.64, p. 249); RF P3456 are reproduced in riparian areas, and chan <u>discussed in Section 8 o</u> Wetland 13027	report for Baseline C IB1 (Figure 8.100, p n Figure 2c. Simulat ge in streamflow in f	Conditions (Figure 2 . 278), and RHB2 (F ed change in grour	7.25, p. 187); Scenari Figure 8.127, p. 300). ndwater levels (draw	o P12 (Figure 8.32, The water budget downs), groundwat	p. 222); P3456 results for Scenaric er discharge to	Figure 2c	HHIAR (Earthfx, April 2020)	191 - 303
	Baseline (Existing)	2.51	1.31	-	-	-			
	Operations Ph 3 - 6	4.18	0.34	1.67	-0.97	4			
Potential Impact to Form and Function of Feature:	No wetlands will be rem project into the wetland be demarcated and fenc project .	. The proposed limi	t of extraction is >1	120 m from the wetla	nd boundary. Lice	nsed boundary will			
Mitigation (Operational Phases 3 -	Description						Figure / Graph	Re	ference

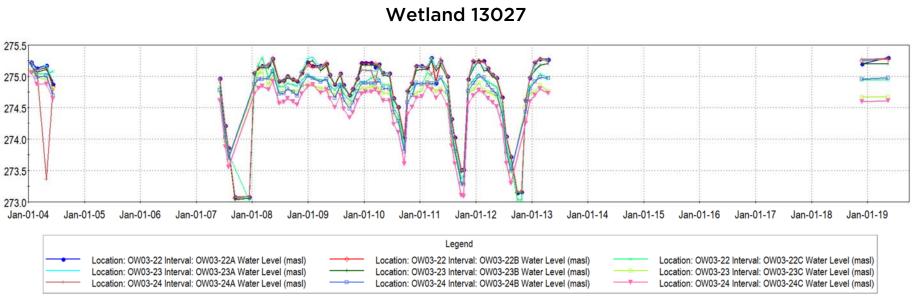

Mitigation (Operational Phases 3 -	Description Figure / Graph	Eigure / Graph	Reference		
6)		Figure / Graph	Report	Section / Page	
Proposed Mitigation Measures:	None required.				

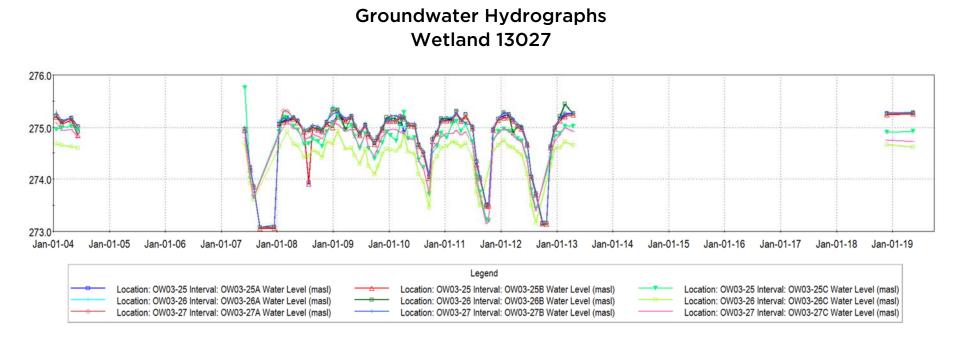

Impact Accessment (Dobakilitation)	Description						Figure / Granh	Reference		
Impact Assessment (Rehabilitation)	Description						Figure / Graph	Report	Section / Page	
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.							SWA (Tatham, April 2020)	5.4.1	
Change in Wetland Catchment Area (ha):	No change. Subcatchment area protected.							SWA (Tatham, April 2020)	5.4.1 & Drawing DP-3	
Change in Hydroperiod:	No Change. Wetland is perched and isolated from the groundwater system. Subcatchment area being protected.							SWA (Tatham, April 2020)	5.4.1	
Change in Water Budget:	A detailed average was provided in the Earthfx (Figure 8.64, p. 249); R RHB1 and RHB2 are re discharge to riparian a scenario are discussed Wetland 13027	report for Baseline C HB1 (Figure 8.100, p. produced in Figure 2 reas, and change in st		HHIAR (Earthfx, April 2020)	191 - 303					
	Baseline (Existing)	2.51	GW Inflow (%) 1.31	∆ in Outflow (%)	∆ in Inflow (%) -	-				
	Rehab Scenario 1	3.65	0.55	1.14	-0.76	-				
	Rehab Scenario 2	3.38	0.45	0.87	-0.86	-				
Potential Impact to Form and Function of Feature:	No wetlands will be rer project into the wetlan be demarcated and fer project.	d. The proposed limi	t of extraction is >1	20 m from the wetla	nd boundary. Lice	nsed boundary will				
	Description						Figure / Grand	Re	ference	


Mitigation (Rehabilitation)	Description		Ref Report	erence Section / Page
Proposed Mitigation Measures:	None required.		Report	Section / Luge

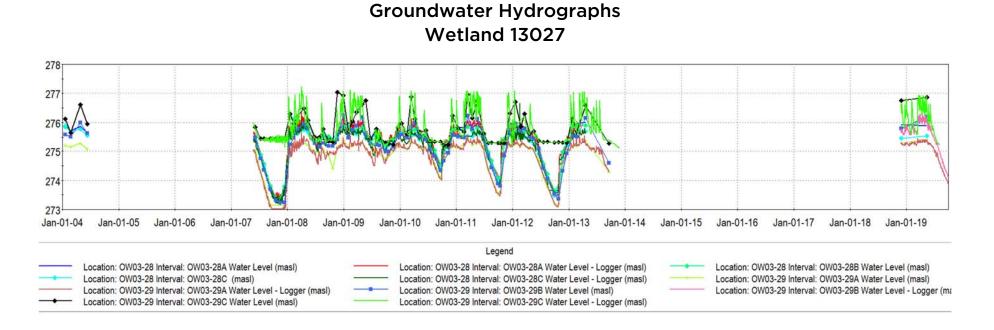
WETLAND 13027 - FIGURE 1



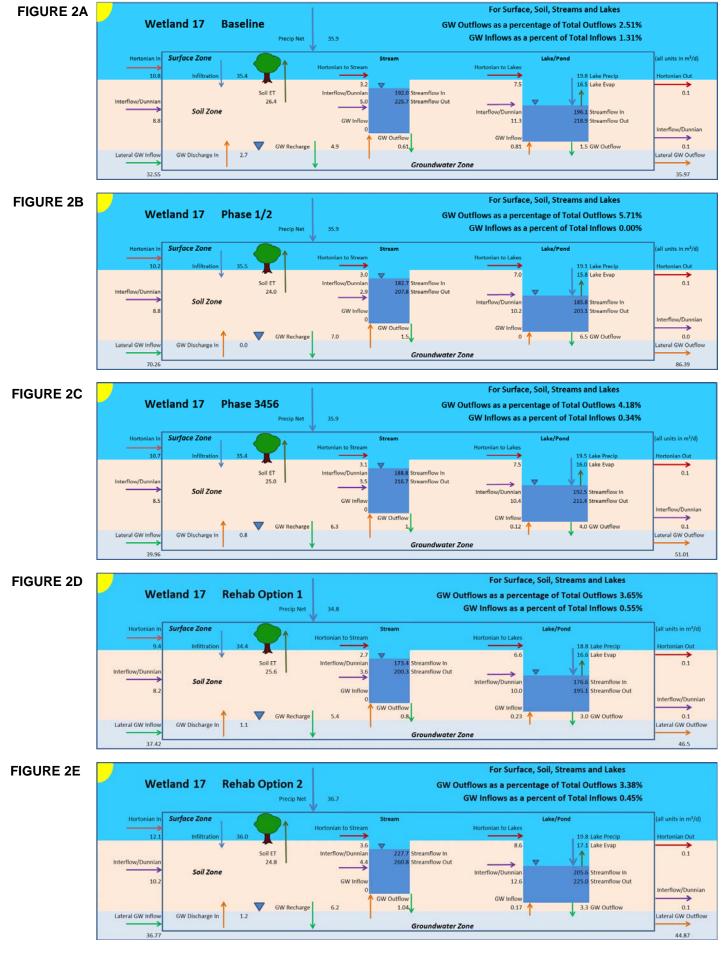


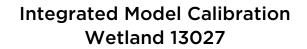


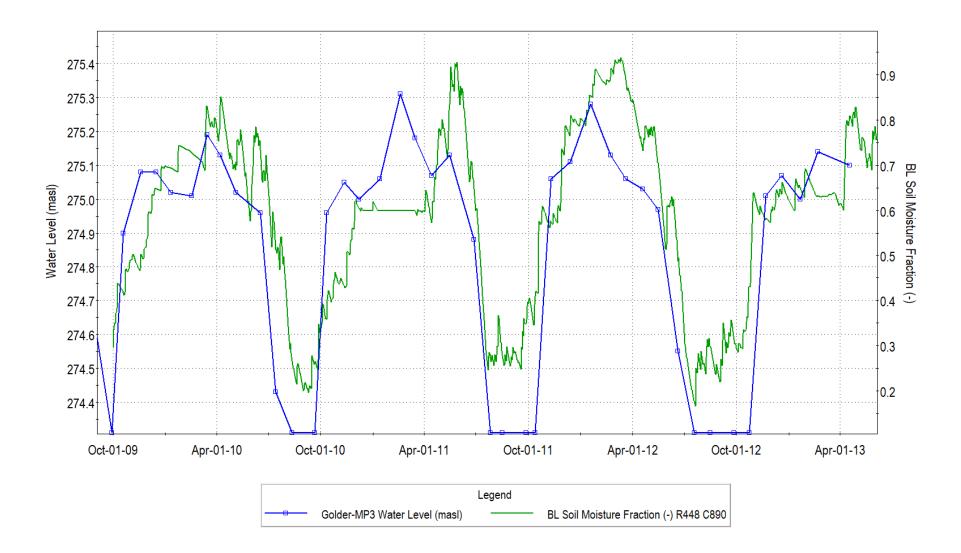
Shallow Groundwater Hydrographs Wetland 13027



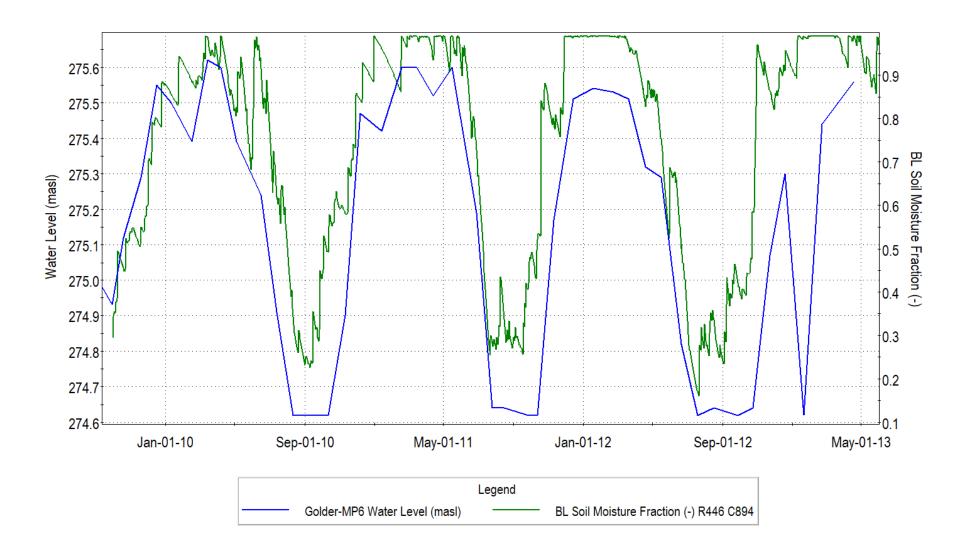
Groundwater Hydrographs

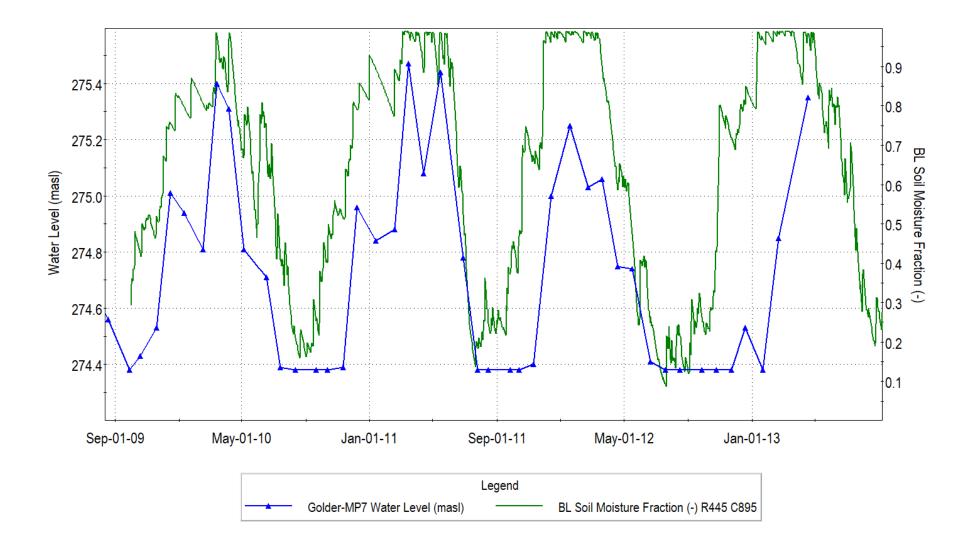


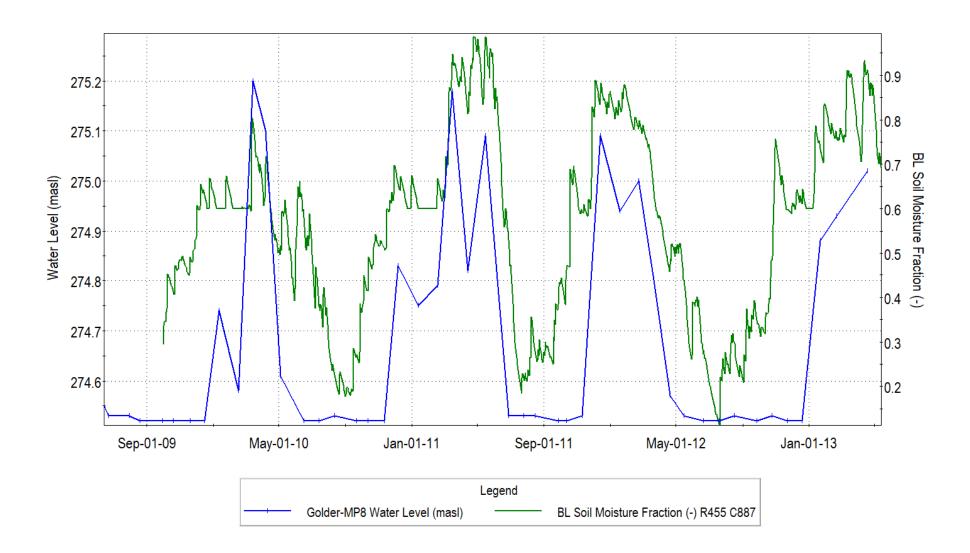

Page 55

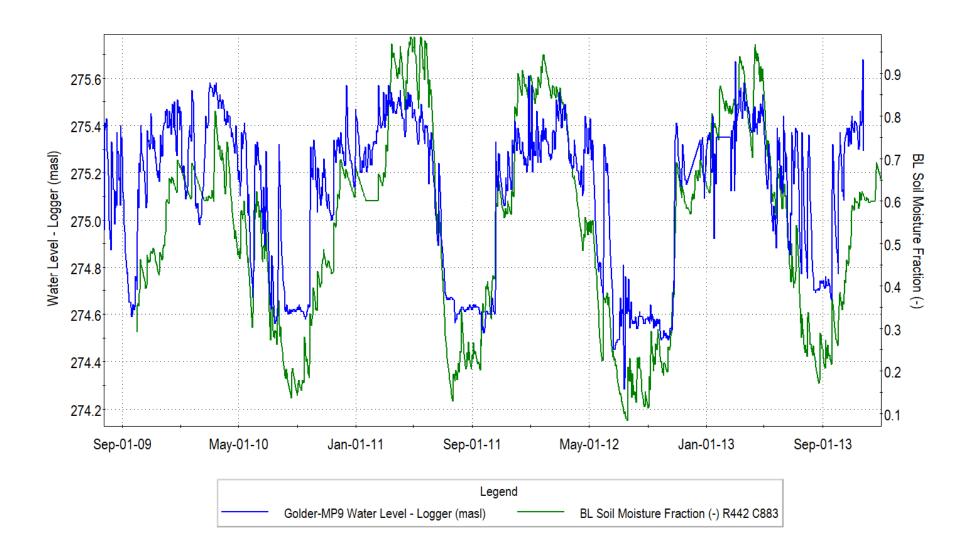


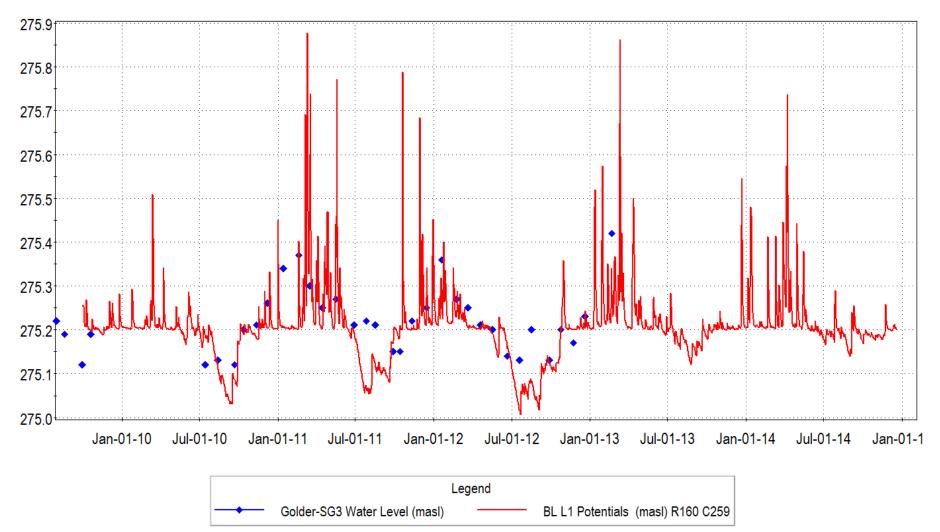
Page 56

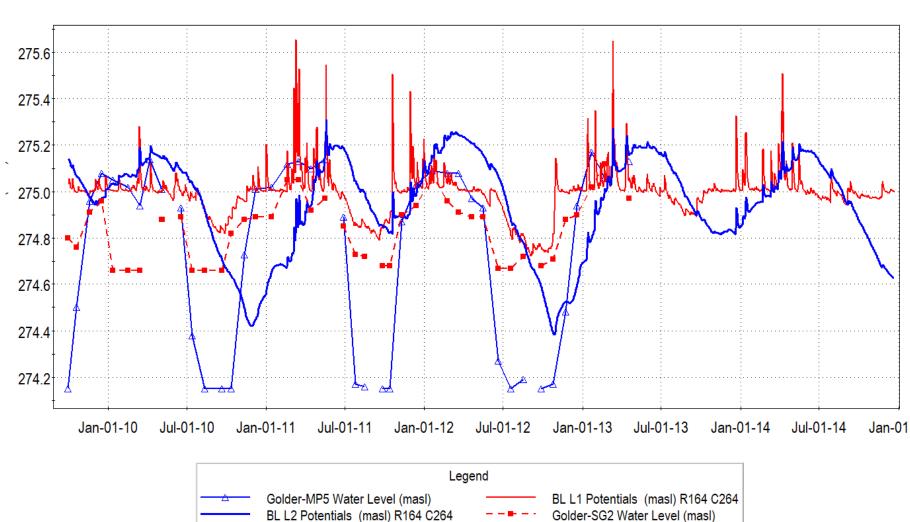

WETLAND 13027



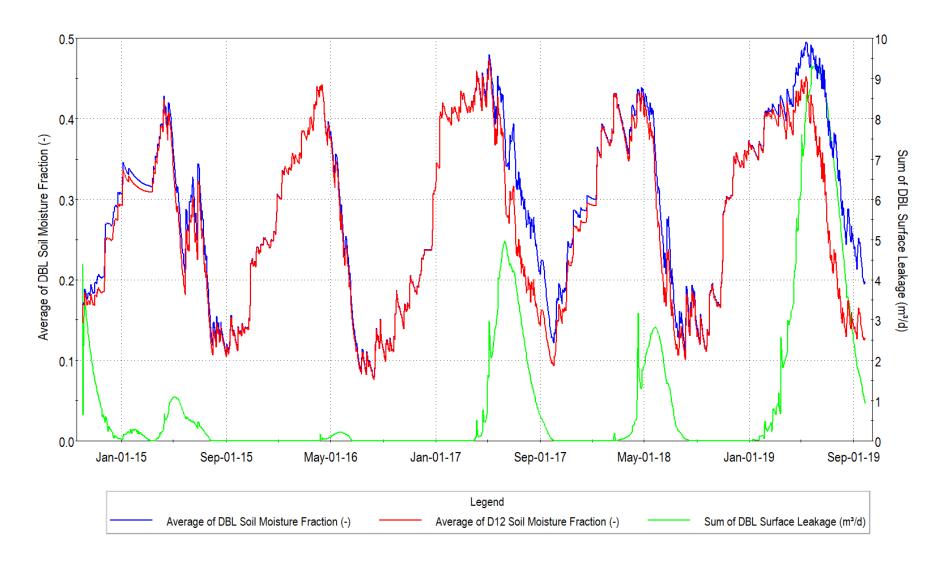


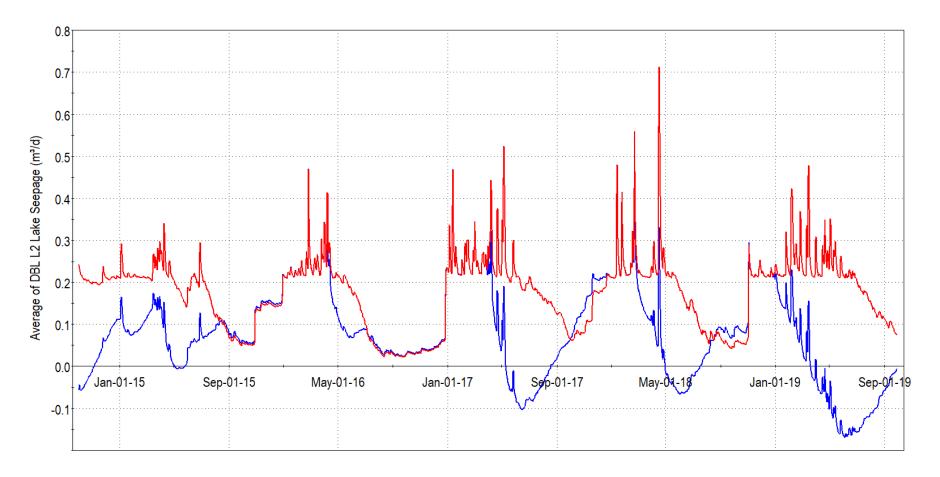



Integrated Model Calibration Wetland 13027



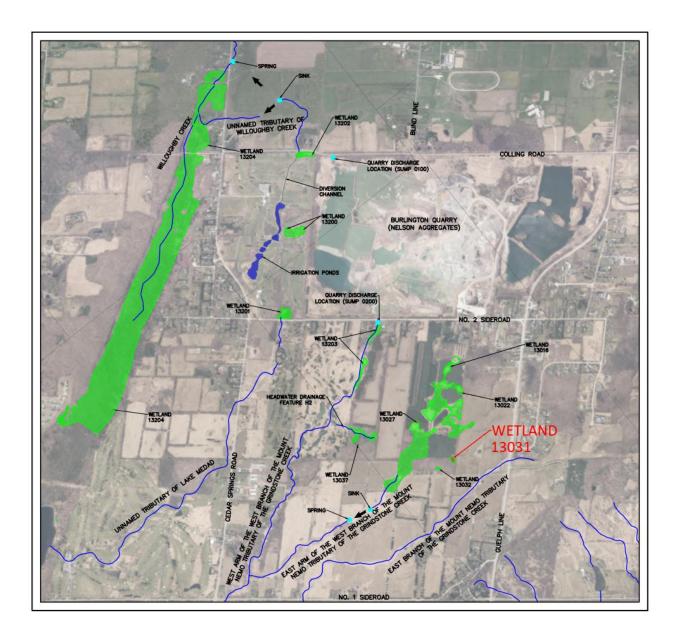
Integrated Model Calibration Wetland 13027

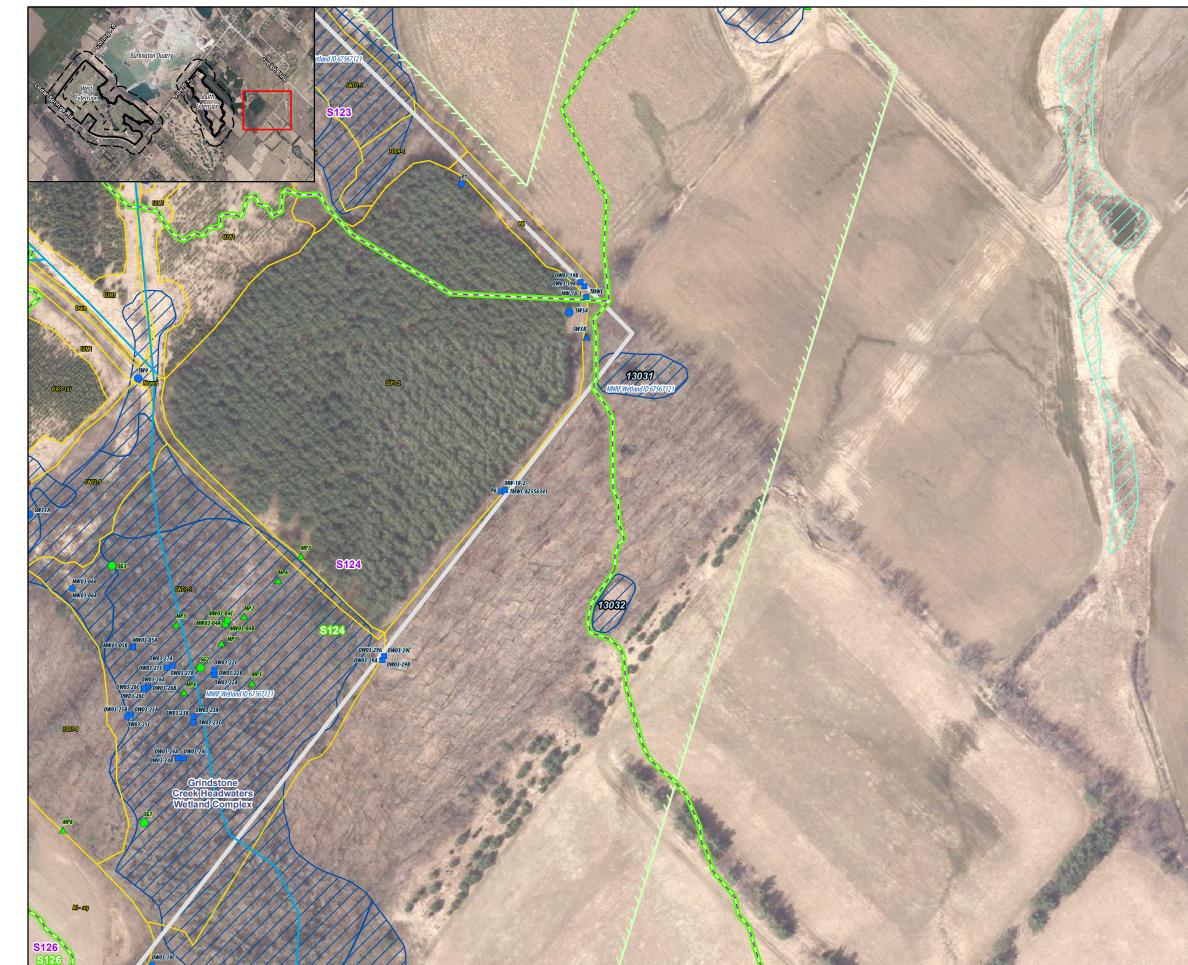




Integrated Model Calibration Wetland 13027

Change in Soil Moisture Conditions Wetland 13027





WETLAND 13031

Legend

Subject Lands Salamander Habitat Assessment (2019) Indirect Fish Habitat Existing Subcatchment Boundary (Tatham Engineering, 2020) Proposed Subcatchment Boundary - Operations and Post-Rehabilitation (Tatham Engineering, 2020 Ecological Land Classification (Savanta, 2019 & 2020) Provincially Significant Wetland (LIO/MNRF, 2020) Wetland - Not Evaluated per OWES (MNRF/LIO, 2020) MECP Jefferson Salamander Regulated Habitat Current Instrumentation Groundwater Monitoring Station (EarthFx) Mini Piezometer (Tatham Engineering) Staff Gauge & Surface Water Monitoring Station (Tatham Engineering) Previous Instrumentation Groundwater Monitoring Station (Golder) Mini Piezometer (Golder) Staff Gauge & Surface Water Monitoring Station (Golder) ELC Legend AG, Agriculture CUM1, Mineral Cultural Meadow CUP3-2, White Pine Coniferous Plantation CUP3-13*, White Spruce Coniferous Plantation CUP3-14*, White Cedar Coniferous Plantation CUT1-4, Gray Dogwood Cultural Thicket CUW1, Mineral Cultural Woodland FOD5-8, Dry – Fresh Sugar Maple – White Ash Deciduous Forest FOD9-4, Fresh – Moist Shagbark Hickory Deciduous Forest HR, Hedgerow MAM2-2, Reed-canary Grass Mineral Meadow Marsh SWD2-2, Green Ash Mineral Deciduous Swamp SWD3-2, Silver Maple Mineral Deciduous Swamp SWT2-9, Gray Dogwood Mineral Thicket Swamp

NOTES: 1. Coordinate System: NAD 1983 UTM Zone 17N.

Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021.
 Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

Project 8133 Burlington Quarry Extension Nelson Aggregates Co. Figure 4 Wetland Characterization Wetland 13031 and 13032 - South Extension 30 m 0 1:2,000 Savanta Division

Path: C:\Savanta\8133 - Burlington Quarry\figures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_wetland_char_mapbook.mxd Date S Page 68 ary 1

Wetland 13031

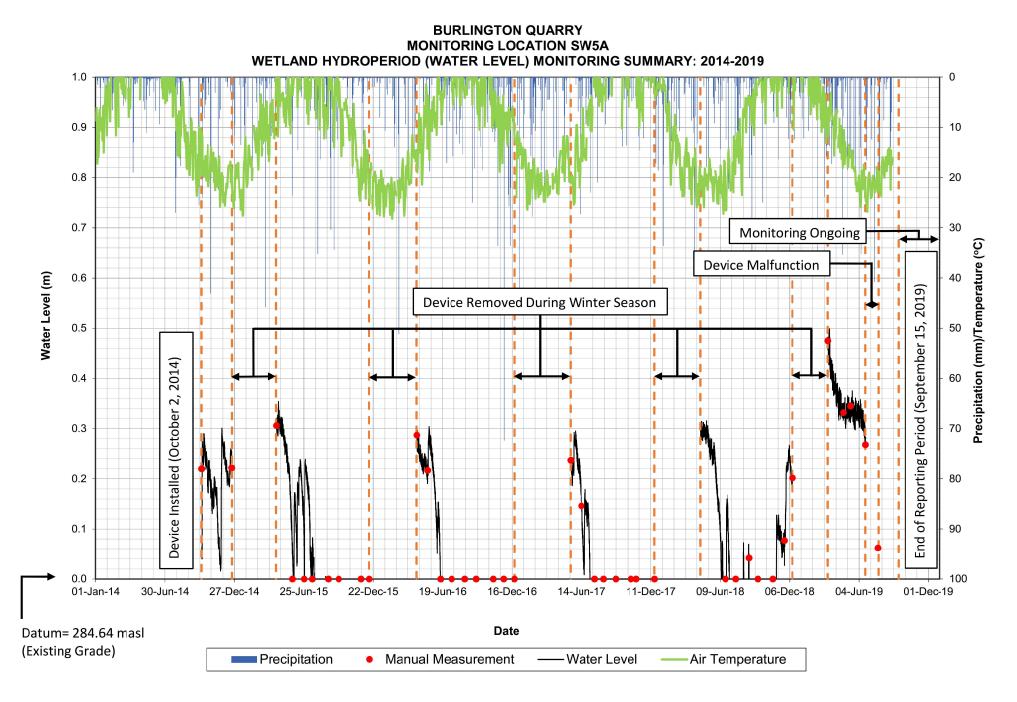
Wetland Characteristics	Description	Figure /
Wetland IDs:	MNRF - 67567121 (OGF ID 67567125)	
	Earthfx - N/A	
	Tatham - 13031	
	Savanta - 13031	
	Golder (Background) - 13031	
Wetland Area (ha):	LIO/MNRF - 0.09	
Watershed:	Grindstone Creek Watershed	
Sub-Watershed:	East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek	
Located in Proposed Limit of Extraction:	No	
Located in Proposed License Boundary:	No	
Catchment Area (ha):	N/A	
Catchment ID:	N/A	
Closed or Connected System:	Isolated Feature	
Condition:	Natural	
Bathymetry:	Bathymetry unavailable; off-site wetland without permission to survey.	
Outlet:	Isolated Feature	
Hydroperiod:	Spring Hydroperiod (date wetland dries out) - June 13th - July 24th	Graph 1
	Fall Hydroperiod (start of hydroperiod) - November 1st - N/A	
Surface Water Monitoring:	ID: SW5A (Tatham)	Graph 1
	Installation Date: October 2, 2014	
	Data Collection: Continuous water level and temperature and manual monthly water level measurements	
	Coordinates of Monitoring Station: Easting 591476.534, Northing 4805331.03	

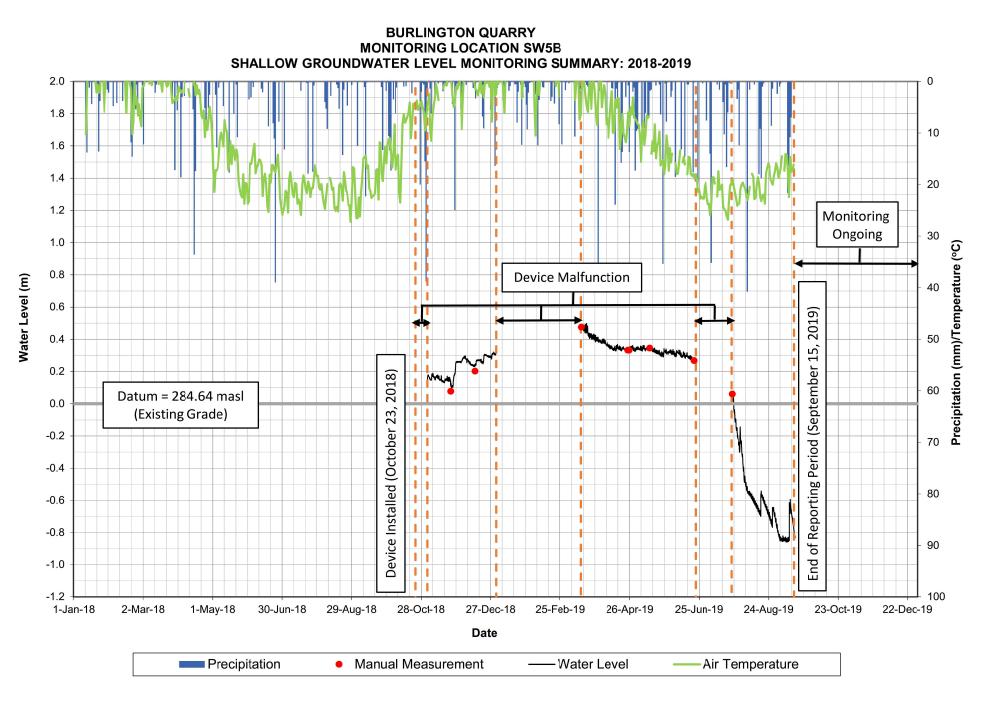
Natural Heritage and Habitat Features	Description	Figure / Craph	Reference		
	Description	Figure / Graph	Report	Section / Page	
Wetland Name & Provincial Significance Evaluation:	Grindstone Creek Headwaters Wetland Complex - Provincially Significant		NETR (Savanta, April 2020)	6.1.2	
ELC Unit(s):	Unknown – outside of 120 m adjacent lands				
Regulated Habitat (MECP):	Yes - Jefferson Salamander (not field verified during 2019 field program; regulated based on historical data)		NETR (Savanta,	6.7	
	Hydroperiod sensitive species; water presence necessary until end of June		April 2020)		
Significant Wildlife Habitat:	Unknown – outside of 120 m adjacent lands				
Fish Habitat:	None				
Habitat of Endangered and Threatened Species:	Unknown – outside of 120 m adjacent lands				

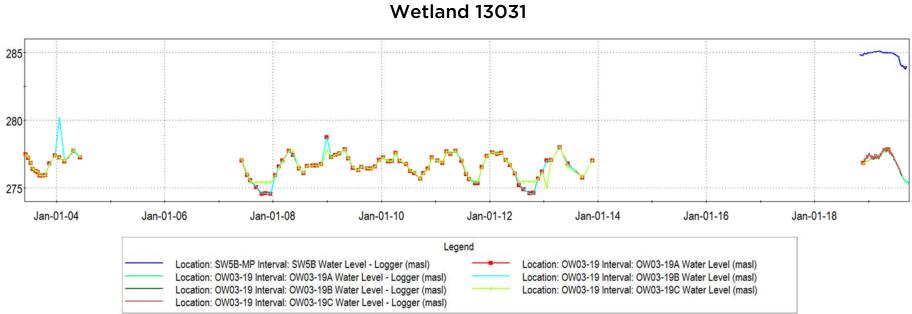
/ Graph	Reference						
/ Graph	Report	Section / Page					
	SWA (Tatham, April 2020)	2.2.1, 3 and Appendix F					
	SWA (Tatham, April 2020)	2.2.1, 3 and Appendix F					

Groundwater Interaction	Description	Description						Reference		
	Description						Figure / Graph	Report	Section / Page	
Lithology:	Halton Till									
Hydraulic Conductivity:	Integrated Model (Ear piezometers, was 1.2× magnitude higher, to a	alue for the vertical h								
Surface Water/Groundwater Interaction:	The low permeability interaction. The wetla system by the low per from any changes in t	e generally perched e of the wetlands rec								
Shallow Groundwater (Mini-piezometer) Monitoring:	Data Collection: Conti	ID: SW5B (Tatham) Installation Date: October 23, 2018 Data Collection: Continuous water level and temperature and manual monthly water level measurements Coordinates of Monitoring Station: Easting 591476.534, Northing 4805331.03						SWA (Tatham, April 2020)	2.3 and Appendix G	
Groundwater Monitoring (Monitoring	Monitoring Well ID	Distance (Dir.)	Geologic Unit	Ground Elevation	Monitoring Elev	Average WL	Graph 3			
Wells):	OW03-19A	50(NW)	Bedrock	284.87	262.1 - 255.4	268.62				
	OW03-19B	50(NW)	Bedrock	284.87	273.9 - 267.3	268.64	-			
	OW03-19C	50(NW)	Overburden	284.98	276.7 - 275.1	276.91	-			
Water Budget Results:	and similar in size. Th discharge to riparian a	A detailed water budget was not produced for this wetland. The wetland is close to Wetland 13032 (Earthfx Wetland 19) and similar in size. The water budget for this wetland should be similar. Simulated groundwater levels, groundwater discharge to riparian areas, and streamflow in the vicinity of Wetland 13032 (Earthfx Wetland 19) for baseline conditions is discussed in Section 7 of the main report.							165 - 190	
Integrated Model Calibration:	nearby Wetland 13032 The groundwater mor elevations and fluctua	The calibration of this wetland is not discussed in the Earthfx Main Report. Section 6.11.6.3 discusses the calibration to nearby Wetland 13032 (Earthfx Wetland 19) in great detail. The calibration to nearby well OW03-19 is shown in Graph 4. The groundwater monitors are completed in the shallow and intermediate depth bedrock and exhibit similar water level elevations and fluctuations. The model simulations match the observations closely (the ground surface and model layer tops are shown as horizontal reference lines to illustrate the thickness of the till at this location).								

Impact Assessment (Operations	Description	Eiguro / Graph	Reference		
Phases 1 & 2)	Description	Figure / Graph	Report	Section / Page	
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.		SWA (Tatham, April 2020)	4.2.1	
Change in Wetland Catchment Area (ha):	No change. Subcatchment area protected.		SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2	
Change in Hydroperiod:	No Change. Wetland is perched and isolated from the groundwater system. Subcatchment area being protected.		SWA (Tatham, April 2020)	4.2.1	
Change in Water Budget:	Detailed water budgets were not prepared for this feature. A detailed average water budget as simulated by the integrated model is provided for nearby Wetland 13032 (Earthfx Wetland 19) Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13032 (Earthfx Wetland 19) for each scenario are discussed in Section 8 of the main report.		HHIAR (Earthfx, April 2020)	191 - 303	
Potential Impact to Form and Function of Feature:	No wetlands will be removed and the wetlands subcatchment will be protected. There will be no encroachment from the project into the wetland. The proposed limit of extraction is >120 m from the wetland boundary. Licensed boundary will be demarcated and fenced to ensure site construction and operations do not extend beyond the proposed limits of the project.				

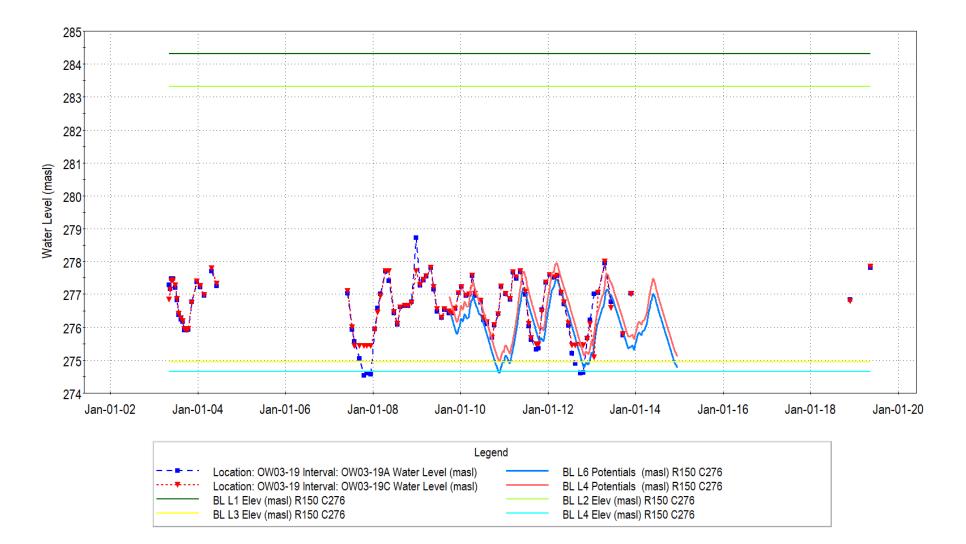

Mitigation (Operational Phases 1 &	Description Figure / Graph	Reference		
2)		Figure / Graph	Report	Section / Page
Proposed Mitigation Measures:	None required.			

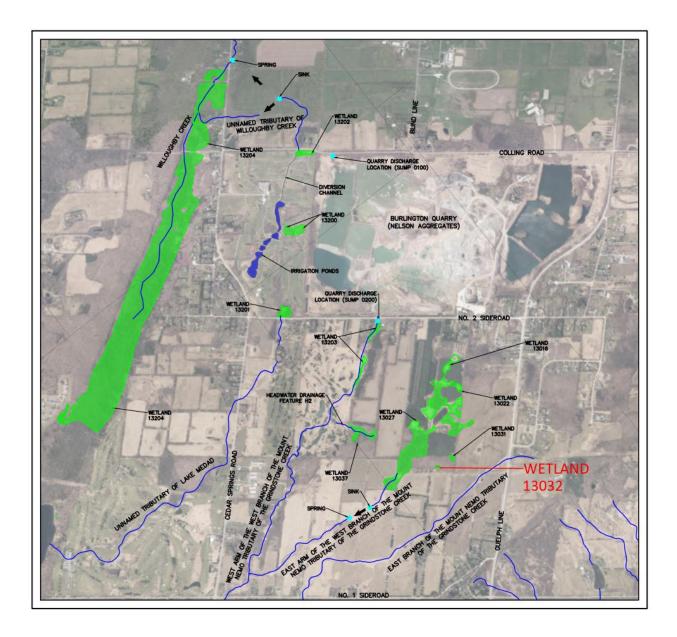

Impact Assessment (Operations	Description	Figure / Graph	Re	ference
Phases 3 - 6)	Description	Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.		SWA (Tatham, April 2020)	4.2.1
Change in Wetland Catchment Area (ha):	No change. Subcatchment area protected.		SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2
Change in Hydroperiod:	No Change. Wetland is perched and isolated from the groundwater system. Subcatchment area being protected.		SWA (Tatham, April 2020)	4.2.1
Change in Water Budget:	Detailed water budgets were not prepared for this feature. A detailed average water budget as simulated by the integrated model is provided for nearby Wetland 13032 (Earthfx Wetland 19) Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13032 (Earthfx Wetland 19) for each scenario are discussed in Section 8 of the main report.		HHIAR (Earthfx, April 2020)	191 - 303
Potential Impact to Form and Function of Feature:	No wetlands will be removed and the wetlands subcatchment will be protected. There will be no encroachment from the project into the wetland. The proposed limit of extraction is >120 m from the wetland boundary. Licensed boundary will be demarcated and fenced to ensure site construction and operations do not extend beyond the proposed limits of the project .			

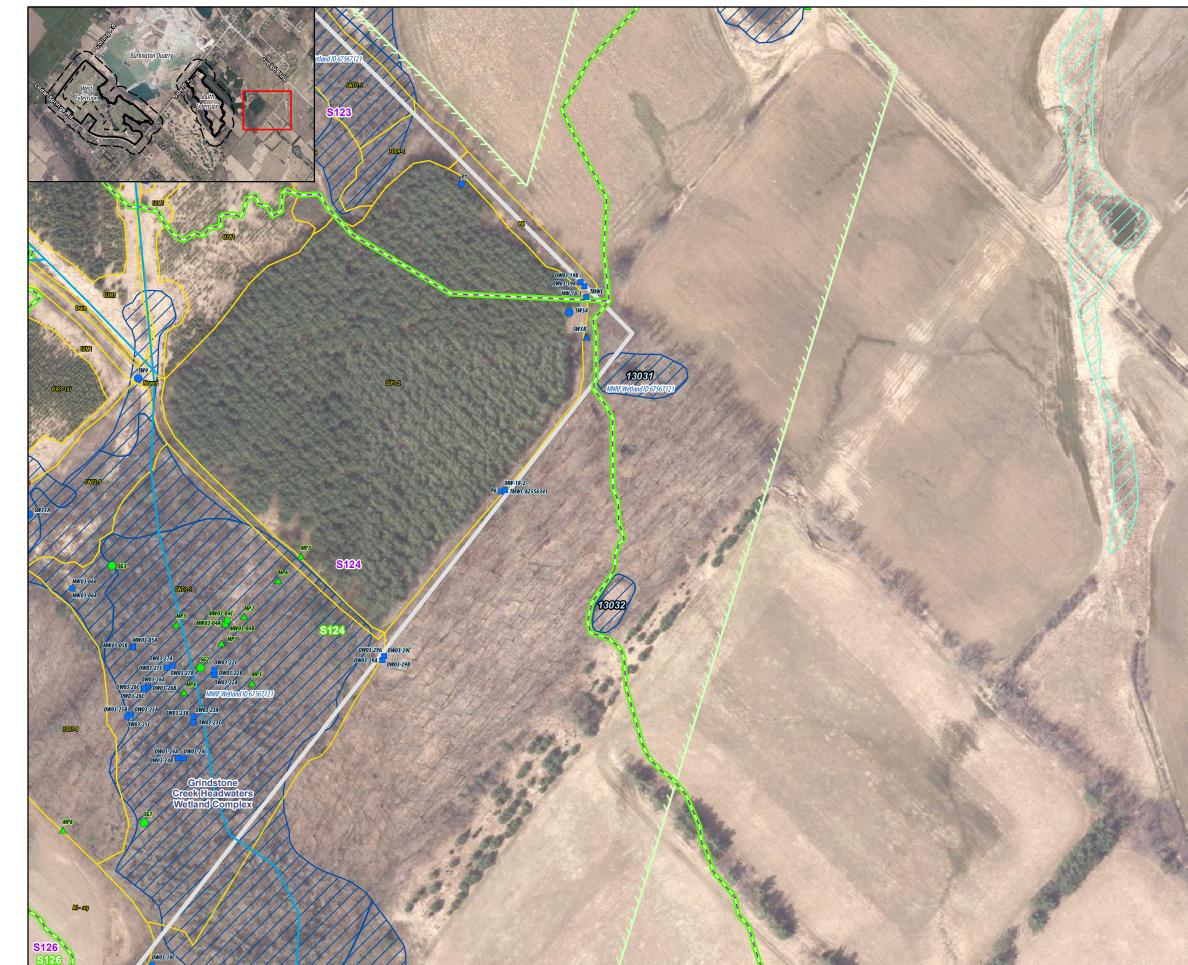

Mitigation (Operational Phases 3 -	Description Figure / Graph	Reference		
6)		Figure / Graph	Report	Section / Page
Proposed Mitigation Measures:	None required.			

Impact Accordment (Dehabilitation)	Description	Eiguro / Graph	Reference		
Impact Assessment (Rehabilitation)	Description	Figure / Graph	Report	Section / Page	
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.		SWA (Tatham, April 2020)	5.4.1	
Change in Wetland Catchment Area (ha):	No change. Subcatchment area protected.		SWA (Tatham, April 2020)	5.4.1 & Drawing DP-3	
Change in Hydroperiod:	No Change. Wetland is perched and isolated from the groundwater system. Subcatchment area being protected.		SWA (Tatham, April 2020)	5.4.1	
Change in Water Budget:	Detailed water budgets were not prepared for this feature. A detailed average water budget as simulated by the integrated model is provided for nearby Wetland 13032 (Earthfx Wetland 19) Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13032 (Earthfx Wetland 19) for each scenario are discussed in Section 8 of the main report.		HHIAR (Earthfx, April 2020)	191 - 303	
Potential Impact to Form and Function of Feature:	No wetlands will be removed and the wetlands subcatchment will be protected. There will be no encroachment from the project into the wetland. The proposed limit of extraction is >120 m from the wetland boundary. Licensed boundary will be demarcated and fenced to ensure site construction and operations do not extend beyond the proposed limits of the project .				
			De	foronco	

Mitigation (Rehabilitation)	Description	Figure / Graph	Reference		
	Description	Figure / Graph	Report	Section / Page	
Proposed Mitigation Measures:	None required.				






Groundwater Hydrograph Wetland 13031

WETLAND 13032

Legend

Subject Lands Salamander Habitat Assessment (2019) Indirect Fish Habitat Existing Subcatchment Boundary (Tatham Engineering, 2020) Proposed Subcatchment Boundary - Operations and Post-Rehabilitation (Tatham Engineering, 2020 Ecological Land Classification (Savanta, 2019 & 2020) Provincially Significant Wetland (LIO/MNRF, 2020) Wetland - Not Evaluated per OWES (MNRF/LIO, 2020) MECP Jefferson Salamander Regulated Habitat Current Instrumentation Groundwater Monitoring Station (EarthFx) Mini Piezometer (Tatham Engineering) Staff Gauge & Surface Water Monitoring Station (Tatham Engineering) Previous Instrumentation Groundwater Monitoring Station (Golder) Mini Piezometer (Golder) Staff Gauge & Surface Water Monitoring Station (Golder) ELC Legend AG, Agriculture CUM1, Mineral Cultural Meadow CUP3-2, White Pine Coniferous Plantation CUP3-13*, White Spruce Coniferous Plantation CUP3-14*, White Cedar Coniferous Plantation CUT1-4, Gray Dogwood Cultural Thicket CUW1, Mineral Cultural Woodland FOD5-8, Dry – Fresh Sugar Maple – White Ash Deciduous Forest FOD9-4, Fresh – Moist Shagbark Hickory Deciduous Forest HR, Hedgerow MAM2-2, Reed-canary Grass Mineral Meadow Marsh SWD2-2, Green Ash Mineral Deciduous Swamp SWD3-2, Silver Maple Mineral Deciduous Swamp SWT2-9, Gray Dogwood Mineral Thicket Swamp

NOTES: 1. Coordinate System: NAD 1983 UTM Zone 17N.

Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021.
 Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

Project 8133 Burlington Quarry Extension Nelson Aggregates Co. Figure 4 Wetland Characterization Wetland 13031 and 13032 - South Extension 30 m 0 1:2,000 Savanta Division

Path: C:\Savanta\8133 - Burlington Quarry\figures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_wetland_char_mapbook.mxd Date S Page 78 iary 1

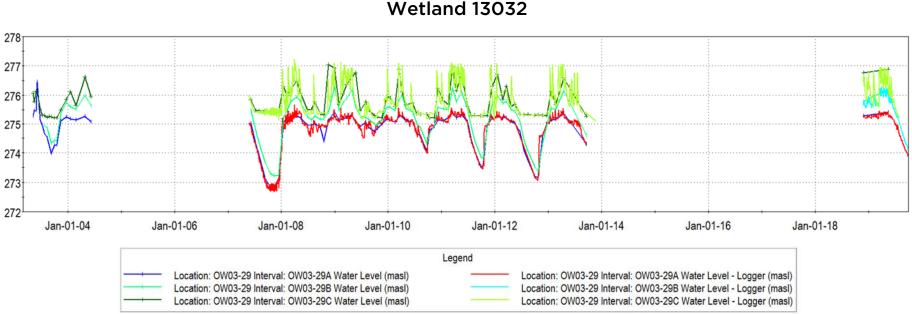
Wetland 13032

Watland Characteristics	Description					Figure / Craph	Reference		
Wetland Characteristics	Description					Figure / Graph	Report	Section / Page	
Wetland IDs:	MNRF - 67567121 (OGF I	D 67567150)							
	Earthfx - 19								
	Tatham - 13032								
	Savanta - 13032								
	Golder (Background) - 13	3032							
Wetland Area (ha):	LIO/MNRF - 0.04								
Watershed:	Grindstone Creek Waters	hed							
Sub-Watershed:	East Arm of the West Bra	anch of the Mount	Nemo Tributary of (Grindstone Creek					
Located in Proposed Limit of Extraction:	No								
Located in Proposed License Boundary:	No								
Catchment Area (ha):	N/A								
Catchment ID:	N/A								
Closed or Connected System:	Isolated Feature								
Condition:	Natural								
Bathymetry:	Bathymetry unavailable; o	off-site wetland w	ithout permission to	survey.					
Outlet:	Isolated Feature								
Hydroperiod:	It is understood a permar	nent pool of water	is maintained in We	etland 13032 year	round.				
Surface Water Monitoring:	MNRF Wetland 13032 wa the pond, two drive point indicating that the pond i	mini-piezometers		HHIAR (Earthfx, April 2020)	158				
	W	'ater Level Measur	ement Summary		Notes:				
		Pond	DP1	DP2	Ref: = reference point elevation				
	Ref:	283.09	284.09	283.31	GS = ground surface elevation				
	GS: -		283.29	282.63	DP1 is adjacent to the pond (north)				
	Date								
	17-May-07	283.40	N/A	N/A	of the pond				
	11-Jul-07	283.21	282.25	281.83					

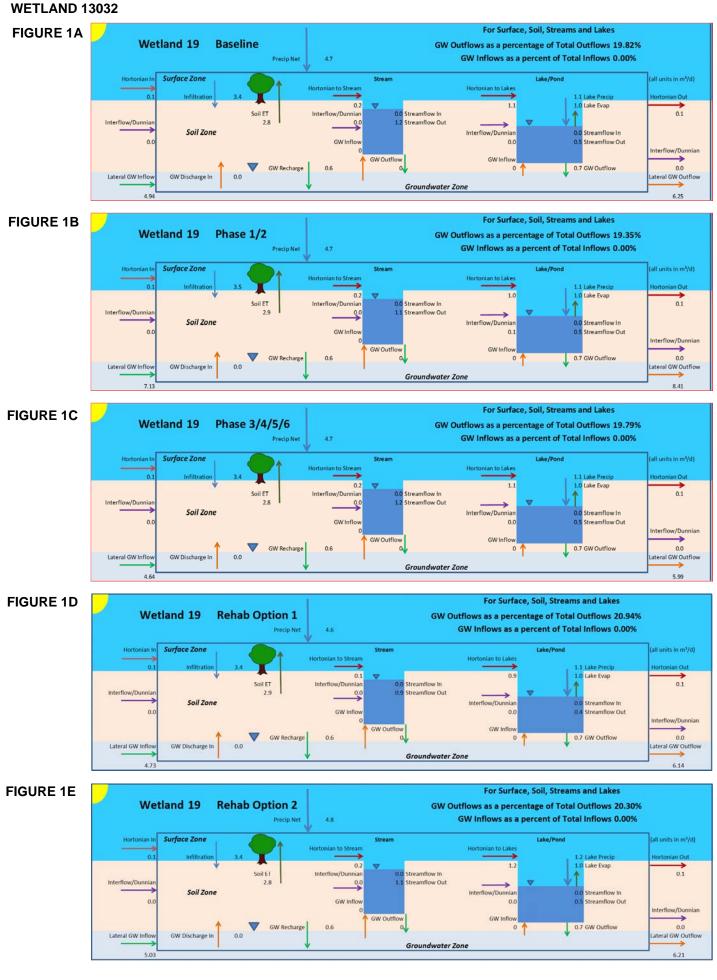
Natural Heritage and Habitat	Description	Eigung / Craph	Reference		
Features	Description	Figure / Graph	Report	Section / Page	
Wetland Name & Provincial Significance Evaluation:	Grindstone Creek Headwaters Wetland Complex - Provincially Significant		NETR (Savanta, April 2020)	6.1.2	
ELC Unit(s):	Unknown – outside of 120 m adjacent lands				
Regulated Habitat (MECP):	Yes - Jefferson Salamander (not field verified during 2019 field program; regulated based on historical data) Hydroperiod sensitive species; water presence necessary until end of June		NETR (Savanta, April 2020)	6.7	
Significant Wildlife Habitat:	Unknown – outside of 120 m adjacent lands				
Fish Habitat:	None				
Habitat of Endangered and Threatened Species:	Unknown – outside of 120 m adjacent lands				

Groundwater Interaction	Description							Re	Reference		
Groundwater Interaction	Description						Figure / Graph	Report	Section / Page		
Lithology:	Halton Till										
Hydraulic Conductivity:	Integrated Model (Eart piezometers, was 1.2x magnitude higher, to a	10 ⁻⁸ m/s. Model valu	e for the vertical hyd	draulic conductivity							
Surface Water/Groundwater Interaction:	The low permeability c interaction. The wetlar system by the low per changes in the water t	ids and streams are g meability till. This we	enerally perched ab tland receives no sig								
Background Shallow Groundwater (Mini-	Mini-piezometer ID	Ground Elevation	Bottom Elevation	Average WL	Logger	Manual Meas.					
piezometer) Monitoring:	DP1	283.29	282.25	Dry	-	2007.00	-				
	DP2	282.63	281.83	Dry	-	2007.00	-				
Groundwater Monitoring (Monitoring	Monitoring Well ID	Distance (Dir.)	Geologic Unit	Ground Elevation	Monitoring Elev	Average WL	Graph 1				
Wells):	OW03-29A	126 (W)	Bedrock	277.06	256.46 - 248.92	274.84					
	OW03-29B	126 (W)	Bedrock	277.05	273.93 - 266.83	275.47					
	OW03-29C	126 (W)	Overburden	277.02	276.72 - 275.12	275.79					
	OW03-29G	126 (W)	Overburden	277.02	-	-					
Water Budget Results:	A detailed average wa Conditions (Earthfx Fig provider of groundwat to riparian areas, and s main report.	Figure 1a	HHIAR (Earthfx, April 2020)	165 - 190							
	Wetland 13032	GW Outflow (%)	GW Inflow (%)								
	Baseline (Existing)	19.82	0.00								
Integrated Model Calibration:	Earthfx Figures 6.35 ar of simulated shallow w Earthfx Section 6.11.6.	ater levels. The resu					Graph 2				

Impact Assessment (Operations	Description						Figure / Granh	Re	eference
Phases 1 & 2)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland lo	cated greater than 1	.20 m from licensed	boundary.				SWA (Tatham, April 2020)	4.2.1
Change in Wetland Catchment Area (ha):	No change. Subcatchm	ent area protected.						SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2
Change in Hydroperiod:	No Change. Wetland is	perched and isolate	ed from the groundv	vater system. Subc	atchment area being	g protected.		SWA (Tatham, April 2020)	4.2.1
Change in Water Budget:	A detailed average wate Conditions (Figure 7.28, results for Scenario P12 groundwater discharge for each scenario are dis	Figure 1b	HHIAR (Earthfx, April 2020)	191 - 303					
	Wetland 13032	GW Outflow (%)	GW Inflow (%)	Change in GW	Change in GW]			
	Baseline (Existing)	19.82	0.00	-	-				
	Operations Ph 1 & 2	19.35	0.00	-0.47	0.00				
Change on Soil Moisture Conditions:	The Water Budget figur so there will be no chan								
Potential Impact to Form and Function of Feature:	No wetlands will be rem project into the wetland be demarcated and fend project .	I. The proposed limi	it of extraction is >1	20 m from the wetla	and boundary. Lice	nsed boundary will			


Mitigation (Operational Phases 1 & 2)	Description	Figure / Graph	Ref Report	erence Section / Page
Proposed Mitigation Measures:	None required.			

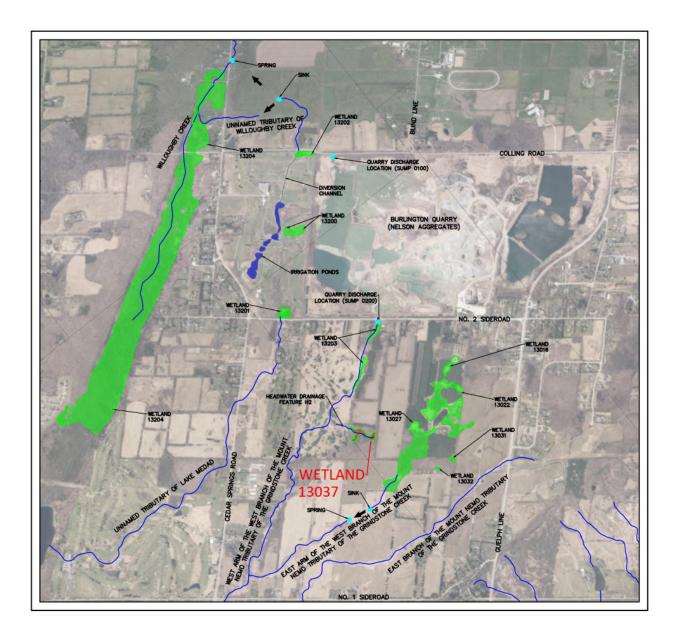
Impact Assessment (Operations	Description							Re	eference
Phases 3 - 6)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland lo	cated greater than 1	20 m from licensed	boundary.				SWA (Tatham, April 2020)	4.2.1
Change in Wetland Catchment Area (ha):	No change. Subcatchm	nent area protected.						SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2
Change in Hydroperiod:	No Change. Wetland is	perched and isolate	d from the groundv	vater system. Subca	atchment area being	protected.		SWA (Tatham, April 2020)	4.2.1
Change in Water Budget:	A detailed average wat Conditions (Figure 7.28 results for Scenario P34 groundwater discharge for each scenario are di	, p. 188); Scenario P. 56 are reproduced ir to riparian areas, an	Figure 1c	HHIAR (Earthfx, April 2020)	191 - 303				
	Wetland 13032	GW Outflow (%)	GW Inflow (%)	Change in GW	Change in GW				
	Baseline (Existing)	19.82	0.00	-	-				
	Operations Ph 3 - 6	19.79	0.00	-0.03	0.00				
Potential Impact to Form and Function of Feature:	No wetlands will be rem project into the wetland be demarcated and fen project .	d. The proposed limi	t of extraction is >1	20 m from the wetla	nd boundary. Licer	nsed boundary will			

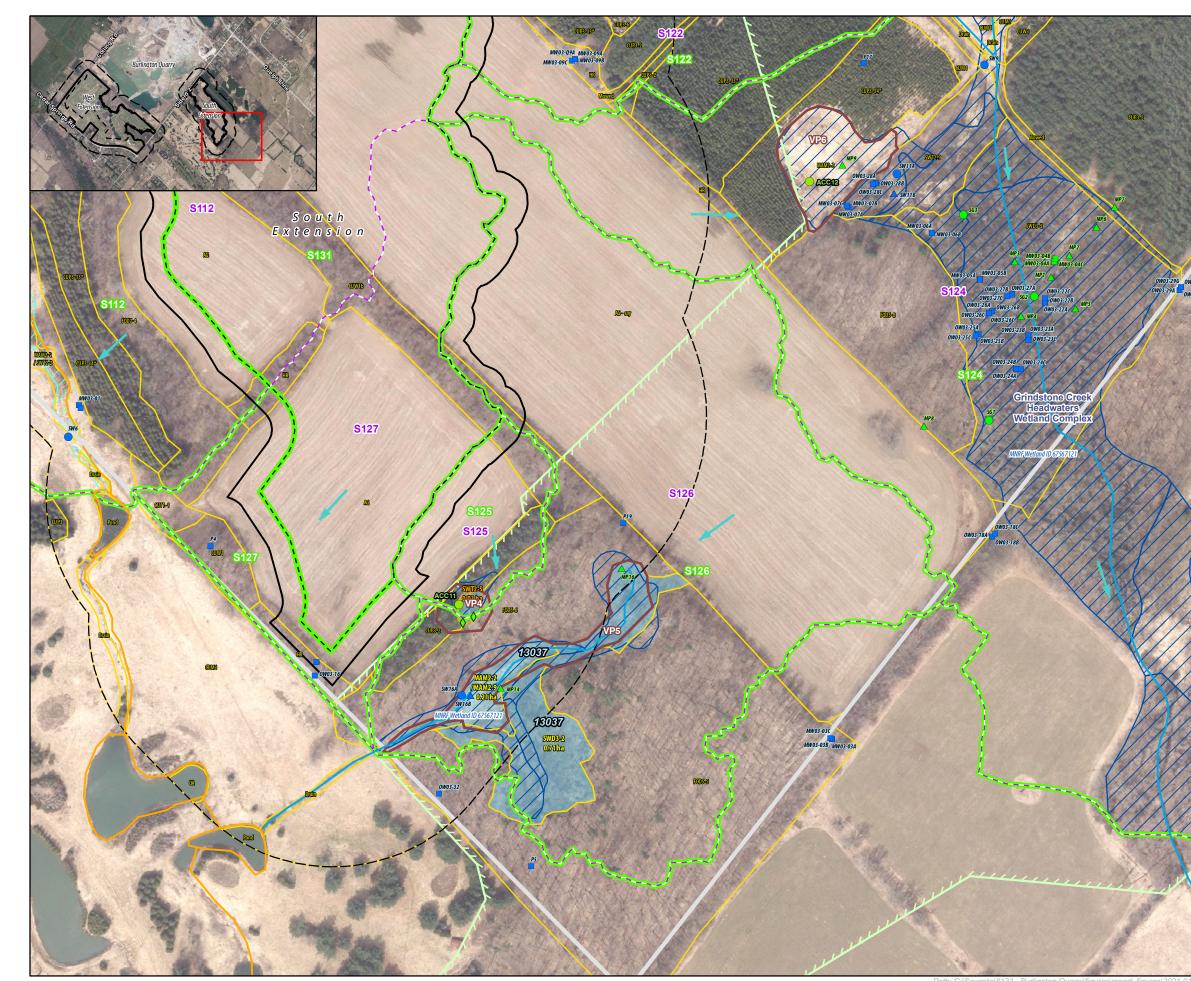

Mitigation (Operational Phases 3 -	Description	Figure / Graph	Reference		
6)	Description	Figure / Graph	Report	Section / Page	
Proposed Mitigation Measures:	None required.				

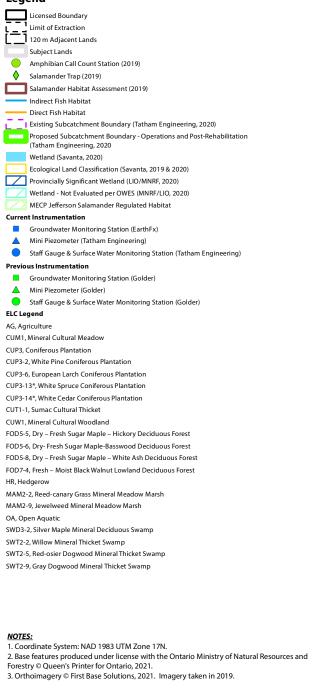
Impact Accessment (Debekilitetian)	Description						Figure / Creat	Re	eference
Impact Assessment (Rehabilitation)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland I	ocated greater than 1	.20 m from licensec	l boundary.				SWA (Tatham, April 2020)	5.4.1
Change in Wetland Catchment Area (ha):	No change. Subcatch	ment area protected.						SWA (Tatham, April 2020)	5.4.1 & Drawing DP-3
Change in Hydroperiod:	No Change. Wetland	is perched and isolate	d from the ground	water system. Subca	atchment area being	g protected.		SWA (Tatham, April 2020)	5.4.1
Change in Water Budget:	Vater Budget:A detailed average water budget as simulated by the integrated model is provided in the Earthfx report for Baseline Conditions (Figure 7.28, p. 188); Scenario P12 (Figure 8.34, p. 223); and P3456 (Figure 8.66, p. 250). The water budget results for Scenario RHB1 and RHB2 are reproduced in Figures 1d and 1e. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13032 (Earthfx Wetland 19) for each scenario are discussed in Section 8 of the main report.Figure 8.66, p. 250).Figure 8.66, p. 250.Figure 8.						Figure 1d and 1e	HHIAR (Earthfx, April 2020)	191 - 303
	Wetland 13027	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)	7			
	Baseline (Existing)	19.82	0.00	-	-	-			
	Rehab Scenario 1	20.94	0.00	1.12	0.00				
	Rehab Scenario 2	20.30	0.00	0.48	0.00	1			
Potential Impact to Form and Function of Feature:	No wetlands will be re project into the wetlar be demarcated and fe project .	nd. The proposed limi	it of extraction is >	120 m from the wetla	nd boundary. Lice	nsed boundary will			
Mitigation (Rehabilitation)	Description						Figure / Graph		eference


Mitigation (Rehabilitation)	Description	Figure / Graph	Reference		
	Description	Figure / Graph	Report	Section / Page	
Proposed Mitigation Measures:	None required.				

Groundwater Hydrograph Wetland 13032




Page 84


Page 85

WETLAND 13037

Legend

Burlington Quarry Extension Nelson Aggregates Co.

Figure 5 Wetland Characterization Wetland 13037 - South Extension

Project 8133

ranta\8133 - Burlington Quarry\figures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_wetland_char_mapbook.mxd Date SPage 87 uary 11, 2021

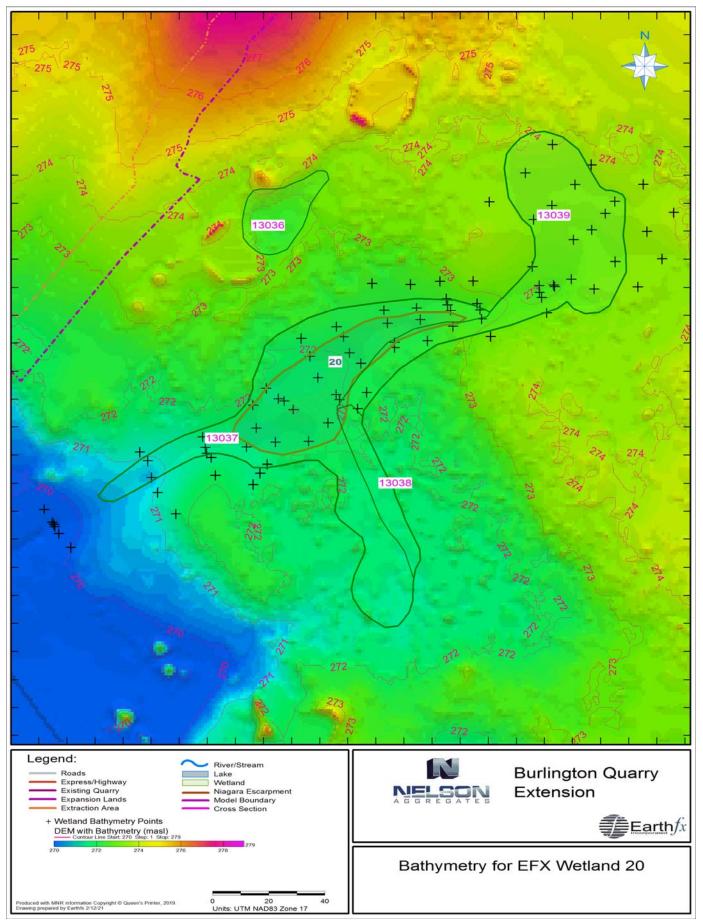
Wetland 13037

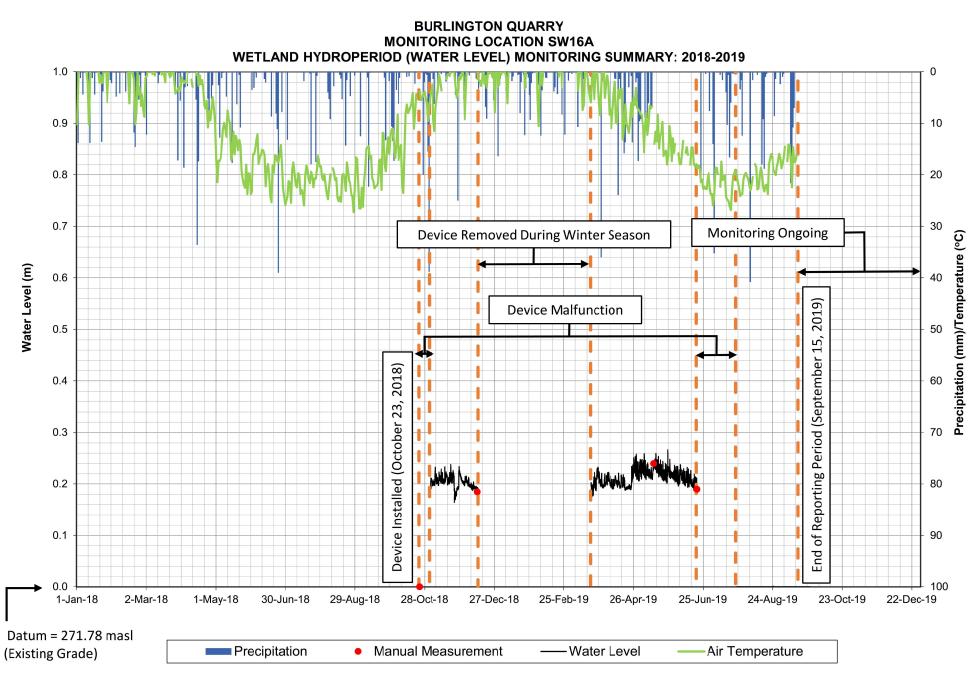
Wetland Characteristics	Description	Figure / Graph	Reference		
wetland Characteristics	Description	Figure / Graph	Report	Section / Page	
Wetland IDs:	MNRF - 67567121 (OGF ID 67567139, 67567128, 67567138, 67567132)				
	Earthfx - 20				
	Tatham - 13036, 13037				
	Savanta - 13037				
	Golder (Background) - 13036, 13037, 13038, 13039				
Wetland Area (ha):	LIO/MNRF - 1.05				
	Savanta - 0.95				
Watershed:	Grindstone Creek Watershed				
Sub-Watershed:	West Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek				
Located in Proposed Limit of Extraction:	No				
Located in Proposed License Boundary:	No				
Catchment Area (ha):	10.05		SWA (Tatham, April 2020)	Drawing DP-1	
Catchment ID:	S125, S126		SWA (Tatham, April 2020)	Drawing DP-1	
Closed or Connected System:	On-line (connected to downstream watercourse)				
Condition:	Natural				
Bathymetry:	A bathymetry survey of Wetland 13037 was completed by Tatham Engineering Limited and incorporated into the integrated model (see Earthfx Section 18.3, p.381). Wetland lakes were assigned to Layer 1 of the integrated model by adjusting the base of Layer 1 to correspond with the interpolated bottom elevation. Care was taken to ensure that the lowest elevation observed in the wetland was honored in the assigned elevations.	Figure 1	HHIAR (Earthfx, April 2020)	18.3 (page 381)	
Outlet:	Headwater Drainage Feature H2				
Hydroperiod:	Spring Hydroperiod (date wetland dries out) - May 25th - August 26th Fall Hydroperiod (start of hydroperiod) - September 6th - December 25th	Graph 1	SWA (Tatham, April 2020)	2.2.5, 3 and Appendix F	
Surface Water Monitoring:	ID: SW16A (Tatham) Installation Date: October 23, 2018	Graph 1	SWA (Tatham, April 2020)	2.2.5, 3 and Appendix F	
	Data Collection: Continuous water level and temperature and manual monthly water level measurements				
	Coordinates of Monitoring Station: Easting 590888.61, Northing 4804899.887				

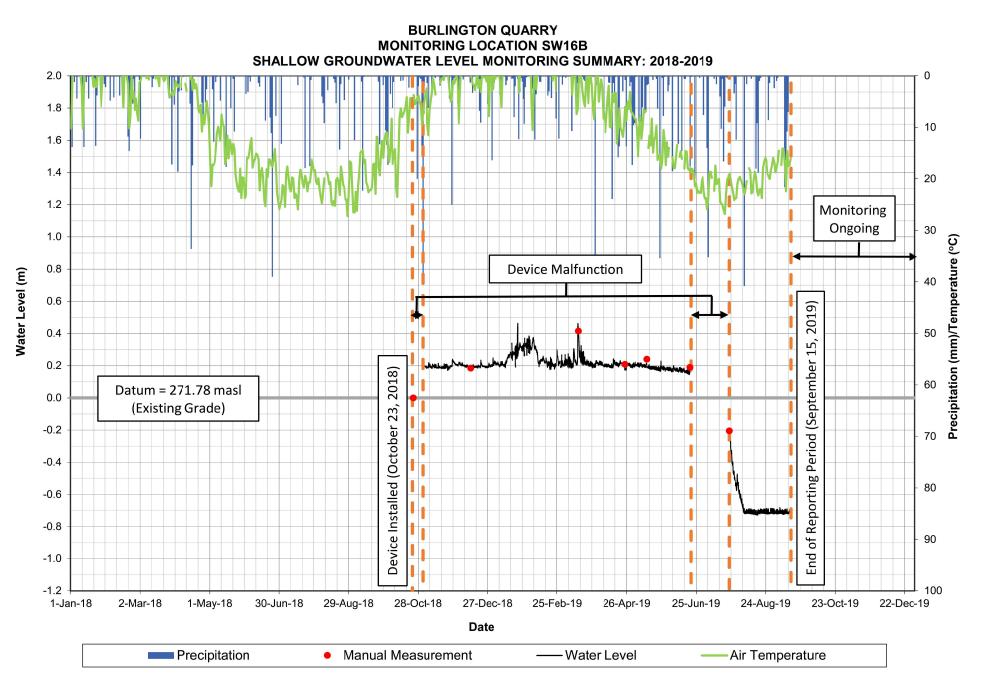
Natural Heritage and Habitat	Description	Figure / Graph	Re	ference
Features	Description	Figure / Graph	Report	Section / Page
Wetland Name & Provincial Significance Evaluation:	Grindstone Creek Headwaters Wetland Complex - Provincially Significant		NETR (Savanta, April 2020)	6.1.2
ELC Unit(s):	Dogwood Mineral Swamp Thicket: SWT2-5 Reed-canary grass / Jewelweed Mineral Meadow Marsh: MAM2-2/MAM2-9 Silver Maple Mineral Deciduous Swamp: SWD3-2		NETR (Savanta, April 2020)	Table 2
Regulated Habitat (MECP):	Yes – Jefferson Salamander (none observed despite survey effort) Hydroperiod sensitive species; water presence necessary until end of June		NETR (Savanta, April 2020)	6.1.2
Significant Wildlife Habitat:	None confirmed for amphibian breeding, despite survey effort through salamander habitat assessments, salamander trapping and call count surveys.			4.2.2; 4.2.3; 4.2.5; 5.2.2; 5.2.3; 5.2.5; 6.4; Table 19
Fish Habitat:	Indirect		NETR (Savanta, April 2020)	6.6
Habitat of Endangered and Threatened Species:	No species at risk salamanders observed, despite survey effort including salamander habitat assessment, salamander trapping and egg mass surveys.		NETR (Savanta, April 2020)	4.2.2; 4.2.3; 5.2.2; 5.2.3; 6.7

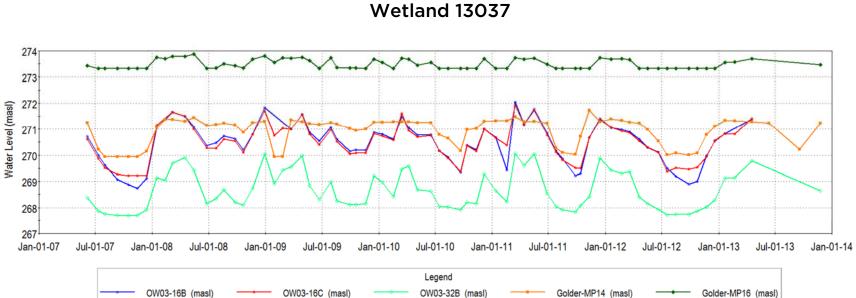
	Decemination						Figure / Creat	Reference		
Groundwater Interaction	Description						Figure / Graph	Report	Section / Page	
Lithology:	Halton Till									
Hydraulic Conductivity:	Integrated Model (Ear piezometers, was 1.2x magnitude higher, to a Wetland Water Balanc	10 ⁻⁸ m/s. Model valu	e for the vertical hyd ow through fractures	draulic conductivity						
Surface Water/Groundwater Interaction:	The low permeability of interaction. The wetlan system by the low per changes in the water t	nds and streams are g meability till. This we	generally perched ab atland receives some	ove the water table	and isolated from t	ne groundwater				
Shallow Groundwater (Mini-piezometer)	ID: SW16B (Tatham)						Graph 2	SWA (Tatham,	2.3 and Appendix G	
Monitoring:	Installation Date: Octo	ber 23, 2018						April 2020)		
	Data Collection: Conti Coordinates of Monito			ts						
Background Shallow Groundwater (Mini-	Mini-piezometer ID	Ground Elevation	Bottom Elevation	Average WL	Logger	Manual Meas.	Graph 3			
piezometer) Monitoring:	Golder MP14	274.57	273.37	270.93	-	2007-2013	1			
	Golder MP16	276.37	275.17	273.45	2007-2013	2007-2013	1			
Groundwater Monitoring (Monitoring	Monitoring Well ID	Distance (Dir.)	Geologic Unit	Ground Elevation	Monitoring Elev	Average WL	Graph 3			
Wells):	OW03-32A	78 (SSW)	Bedrock	278.00	265.0 - 254.4	268.62				
	OW03-32B	78 (SSW)	Bedrock	271.00	269.1 - 261.3	268.64				
	OW03-16A	114 (W)	Bedrock	272.20	254.4 - 246.6	268.28				
	OW03-16B	114 (W)	Bedrock	272.20	269.3 - 262.2	270.22				
	OW03-16C	112 (W)	Bedrock	272.30	270.0 - 268.4	270.55				
	MW03-03A	212 (E)	Bedrock	274.80	255.6 - 251.6	273.33				
	MW03-03B	212 (E)	Bedrock	274.80	264.7 - 260.8	273.69				
	MW03-03C	212 (E)	Overburden	274.70	274.1 - 272.1	272.93				
Water Budget Results:	A detailed average wa provided in Figure 2a. discharge to riparian a is discussed in Section	The wetland is a net areas, and streamflow of the main report.	provider of ground in the vicinity of We	water. Simulated gr	oundwater levels, gi	roundwater	Figure 2a	HHIAR (Earthfx, April 2020)	165 - 190	
	Wetland 13037	GW Outflow (%)	GW Inflow (%)							
	Baseline (Existing)	12.84	1.76							
Integrated Model Calibration:	Two mini-piezometers Till. These monitors concomparison of the mini- the model is closely mini- recent measurements simulated response do Earthfx Figure 6.29 (pi simulated shallow wat level fluctuation is less more detailed discussion	orrespond to the PRM ni-piezometer data to latching both the soil at SW16B, it appears bes, however, match t .154) and Figure 19.4 er levels. The figure is than 40 cm. A brief	1S soil zone and upp the simulated soil m moisture and hydro that the historic dat the recorded data. 4 (p.444) in the Mair s reproduced in Gra discussion of the Wa	per-most part of Laye noisture conditions (period of the shallow ta at MP14 may have n Report shows a hye phs 4 and 5. Note the etland 20 is containe	er 1 of the GSFLOW see Graphs 4 and 5) y subsurface at this an elevation offset drograph for Golder nat the total range in	model. A demonstrates tha wetland. Based or . The timing of the MP16 along with n observed water	Graph 6	HHIAR (Earthfx, April 2020)	154, 443 - 444	

Impact Assessment (Operations	Description						Figure / Graph	Reference		
Phases 1 & 2)	Description							Report	Section / Page	
Change in Wetland Area (ha):	No change. Wetland lo	cated greater than 1	L20 m from licensed	l boundary.				SWA (Tatham, April 2020)	4.2.1	
Change in Wetland Catchment Area (ha):	No change. Subcatchm	ent area protected.						SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2	
Change in Hydroperiod:	No Change. Wetland is	perched and isolate	ed from the ground	water system. Subca	tchment area bein	g protected.		SWA (Tatham, April 2020)	4.2.1	
Change in Water Budget:	A detailed average wate Conditions (Figure 7.28 279), and RHB2 (Figure change in groundwater vicinity of Wetland 1303	, p. 188); Scenario P 8.129, p. 300). The levels (drawdowns)	Figure 2b	HHIAR (Earthfx, April 2020)	191 - 303					
	Wetland 13037	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)	7				
	Baseline (Existing)	12.84	1.76	-	-	-				
	Operations Ph 1 & 2	15.90	0.00	3.45	-1.76	-				
Change on Soil Moisture Conditions:	The soil moisture under 7. The small reduction drawdown in groundwa levels rise in the late spi annual climate variabilit groundwater seepage, a (2017-2018) there is sm during P12 developmen Additional surface wate Wetland 20. Pond leaka upwelling into the pond year, and only receive u table is higher. Under P throughout the year; ge	in soil moisture und ter levels near the e ring in response to s y. During a dry yea and a very minor dif all change in the late t. During a wet yea r and ground water ge to the groundwa . Under Baseline co pwelling (negative I 22 conditions (red I	er P12 conditions is xcavation). Under nowmelt. Seepage r (2015-2016) grour ference in soil moist e summer soil moist r there is a modest interaction occurs t ter system is showr anditions, the ponds eakage or seepage) ine), the ponds leak	s due to the loss of g baseline conditions, fluctuates significant ndwater levels are na ture between Baselin ture conditions due t loss of soil moisture through the bottom in Graph 8. Negativ s leak water to the gr) for short periods due water to the ground	roundwater seepag groundwater seepag ly, however, due to turally low, there is e and P12. During the loss of groun in the May-Septem of the ponded water re seepage indicate oundwater system iring the wetter yea water system at val	ge (due to the age occurs as water o natural inter- s limited an average year dwater discharge ber time frame. er portions of es groundwater is for most of the ars when the water				
Potential Impact to Form and Function of Feature:	No wetlands will be rem project into the wetland be demarcated and fend project .	I. The proposed lim	it of extraction is >1	120 m from the wetla	nd boundary. Lice	ensed boundary will				
Mitigation (Operational Phases 1 &								Re	eference	
	Description						Figure / Graph			

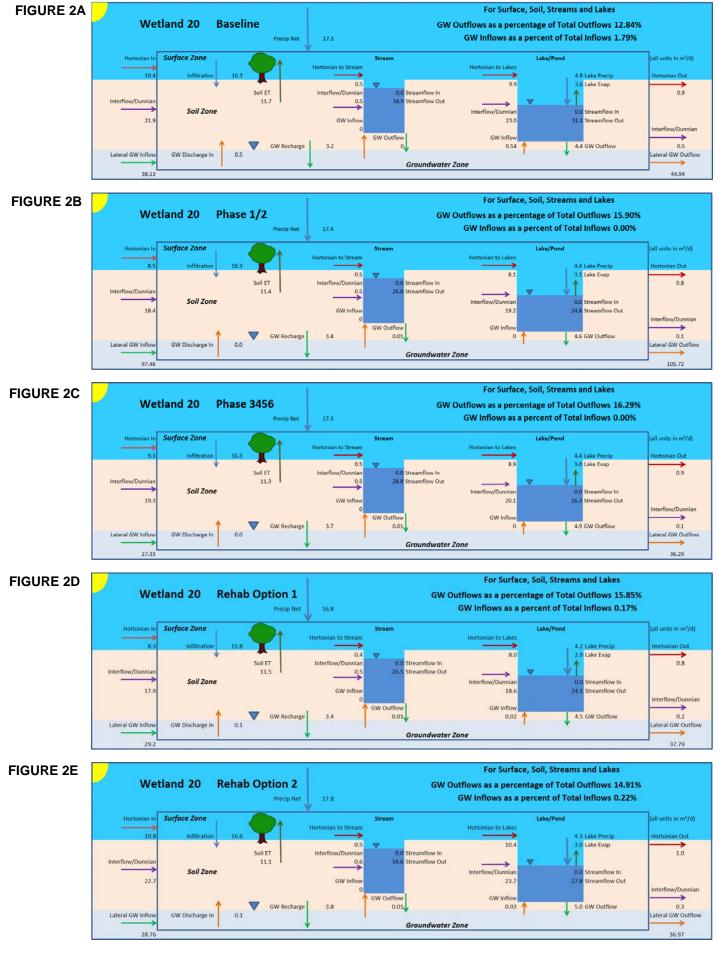

Mitigation (Operational Phases 1 &	Description		Reference		
2)		Figure / Graph	Report	Section / Page	
Proposed Mitigation Measures:	None required.				

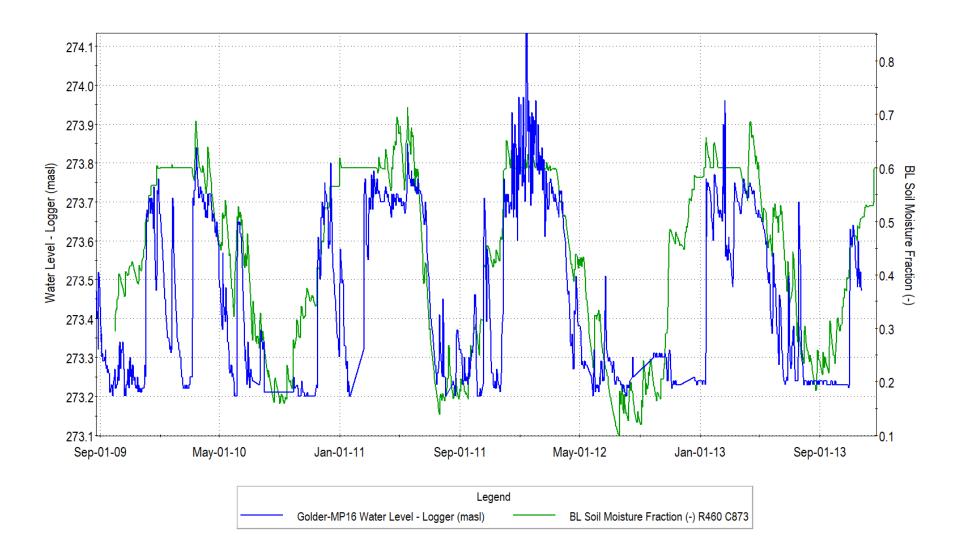

Impact Assessment (Operations	Description							Re	ference
Phases 3 - 6)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.							SWA (Tatham, April 2020)	4.2.1
Change in Wetland Catchment Area (ha):	No change. Subcatchment area protected.							SWA (Tatham, April 2020)	4.2.1 & Drawing DP-2
Change in Hydroperiod:	No Change. Wetland is perched and isolated from the groundwater system. Subcatchment area being protected.							SWA (Tatham, April 2020)	4.2.1
Change in Water Budget:	A detailed average water budget as simulated by the integrated model is provided in the Earthfx report for Baseline Conditions (Figure 7.28, p. 188); Scenario P12 (Figure 8.35, p. 223); P3456 (Figure 8.67, p. 250); RHB1 (Figure 8.102, p. 279), and RHB2 (Figure 8.129, p. 300). The water budget results for Scenario P3456 are reproduced in Figure 2c. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13037 (Earthfx Wetland 20) for each scenario are discussed in Section 8 of the main report.						Figure 2c	HHIAR (Earthfx, April 2020)	191 - 303
	Wetland 13037	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)				
	Baseline (Existing)	12.84	1.76	-	-				
	Operations Ph 3 - 6	16.29	0.00	3.45	-1.76				
Potential Impact to Form and Function of Feature:	No wetlands will be rem project into the wetland be demarcated and fen- project.	d. The proposed limi	it of extraction is >2	120 m from the wetla	nd boundary. Lice	ensed boundary will			

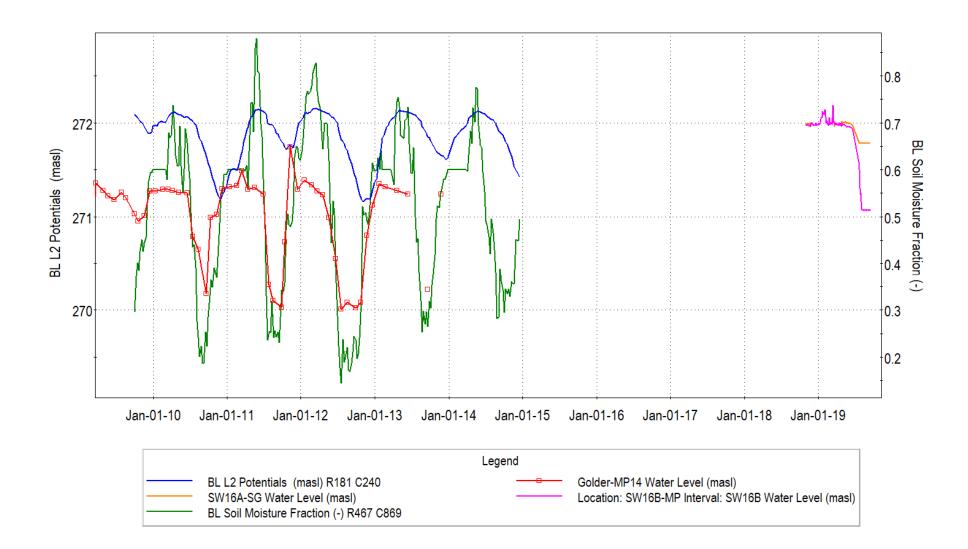

Mitigation (Operational Phases 3 -	Description	Figure / Graph	Reference	
) Desc	escription		Report	Section / Page
Proposed Mitigation Measures:	None required.			

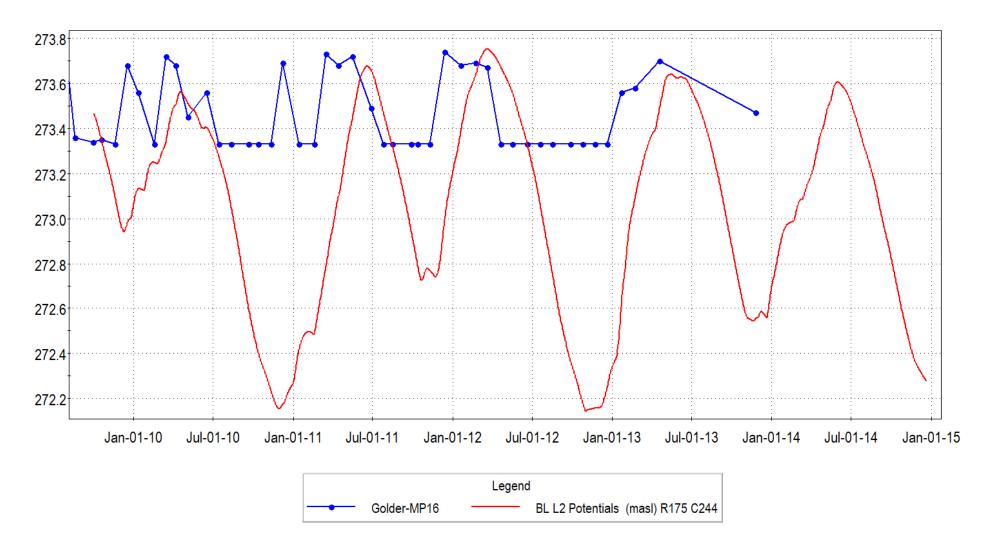

llmnact Accoccmont (Dobabilitation)	Description						Figure / Graph	Reference		
Impact Assessment (Rehabilitation)								Report	Section / Page	
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.							SWA (Tatham, April 2020)	5.4.1	
Change in Wetland Catchment Area (ha):	No change. Subcatchment area protected.							SWA (Tatham, April 2020)	5.4.1 & Drawing DP-3	
Change in Hydroperiod:	No Change. Wetland is perched and isolated from the groundwater system. Subcatchment area being protected.							SWA (Tatham, April 2020)	5.4.1	
	A detailed average water budget as simulated by the integrated model is provided in the Earthfx report for Baseline Conditions (Figure 7.28, p. 188); Scenario P12 (Figure 8.35, p. 223); P3456 (Figure 8.67, p. 250); RHB1 (Figure 8.102, p. 279), and RHB2 (Figure 8.129, p. 300). The water budget results for Scenarios RHB1 and RHB2 are reproduced in Figure 2d and 2e. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change streamflow in the vicinity of Wetland 13037 (Earthfx Wetland 20) for each scenario are discussed in Section 8 of the main report.						n	HHIAR (Earthfx, April 2020)	191 - 303	
	Wetland 13037	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)]				
	Baseline (Existing)	12.84	1.76	-	-	1				
	Rehab Scenario 1	15.85	0.17	3.01	-1.59					
	Rehab Scenario 2	14.91	0.22	2.07	-1.54					
Feature:	No wetlands will be rer project into the wetlan be demarcated and fer	d. The proposed limi	t of extraction is >1	120 m from the wetla	nd boundary. Licer	nsed boundary will				

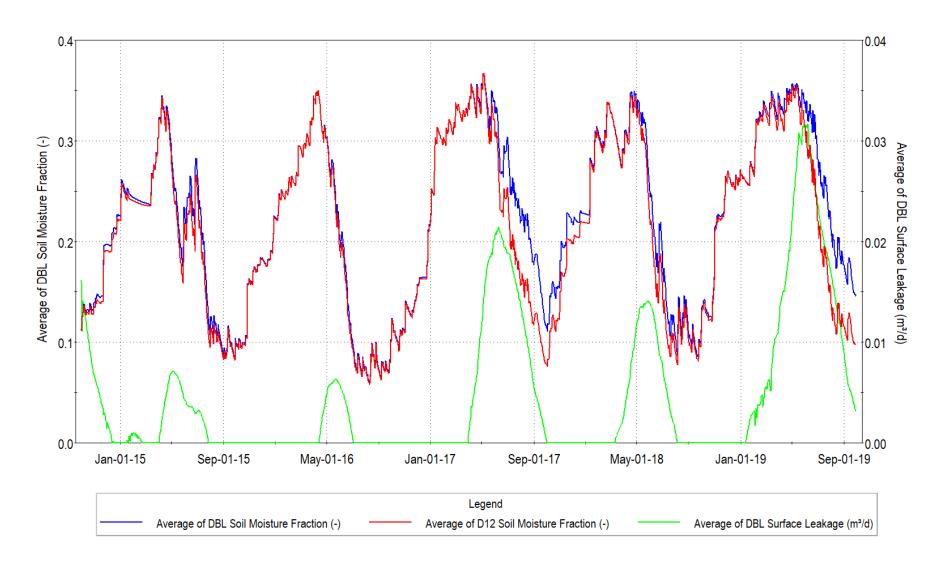
Mitigation (Rehabilitation)	Description	Figure / Graph	Reference Report Section / Page	
Proposed Mitigation Measures:	Nana required		Report	Section / Page
Proposed Miligation Measures:	None required.			

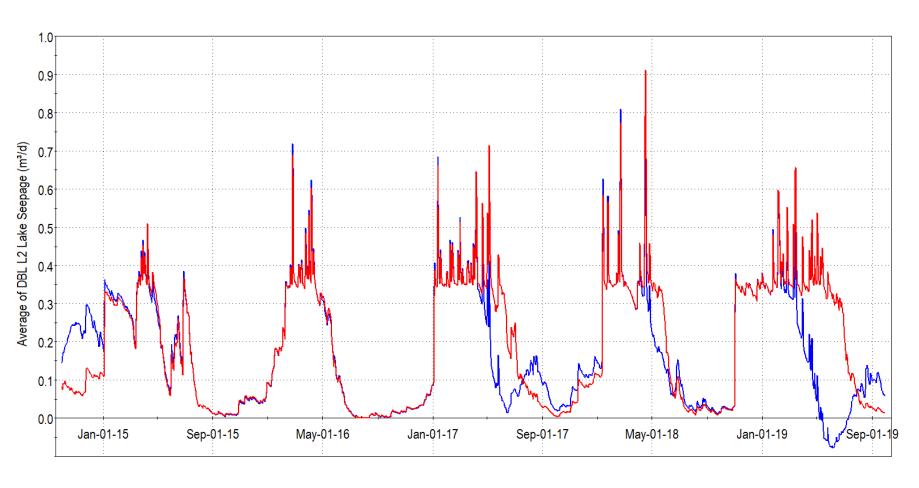


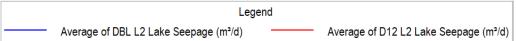


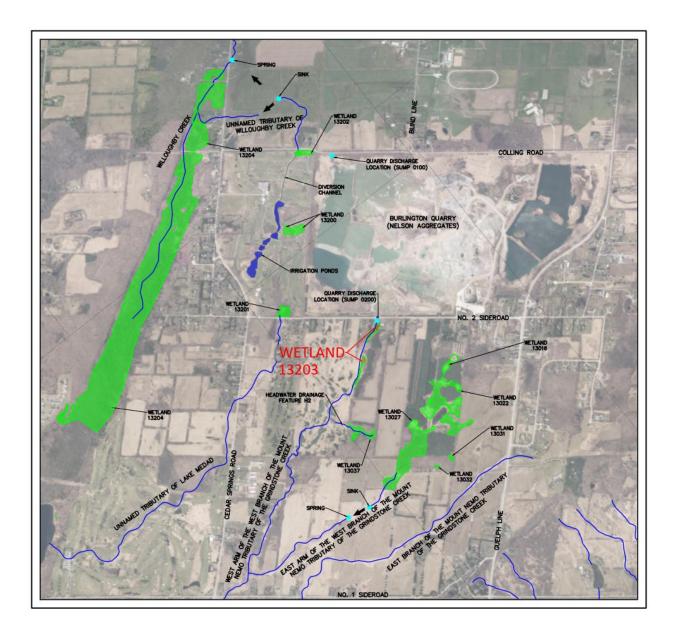

Shallow and Deep Groundwater Hydrographs Wetland 13037

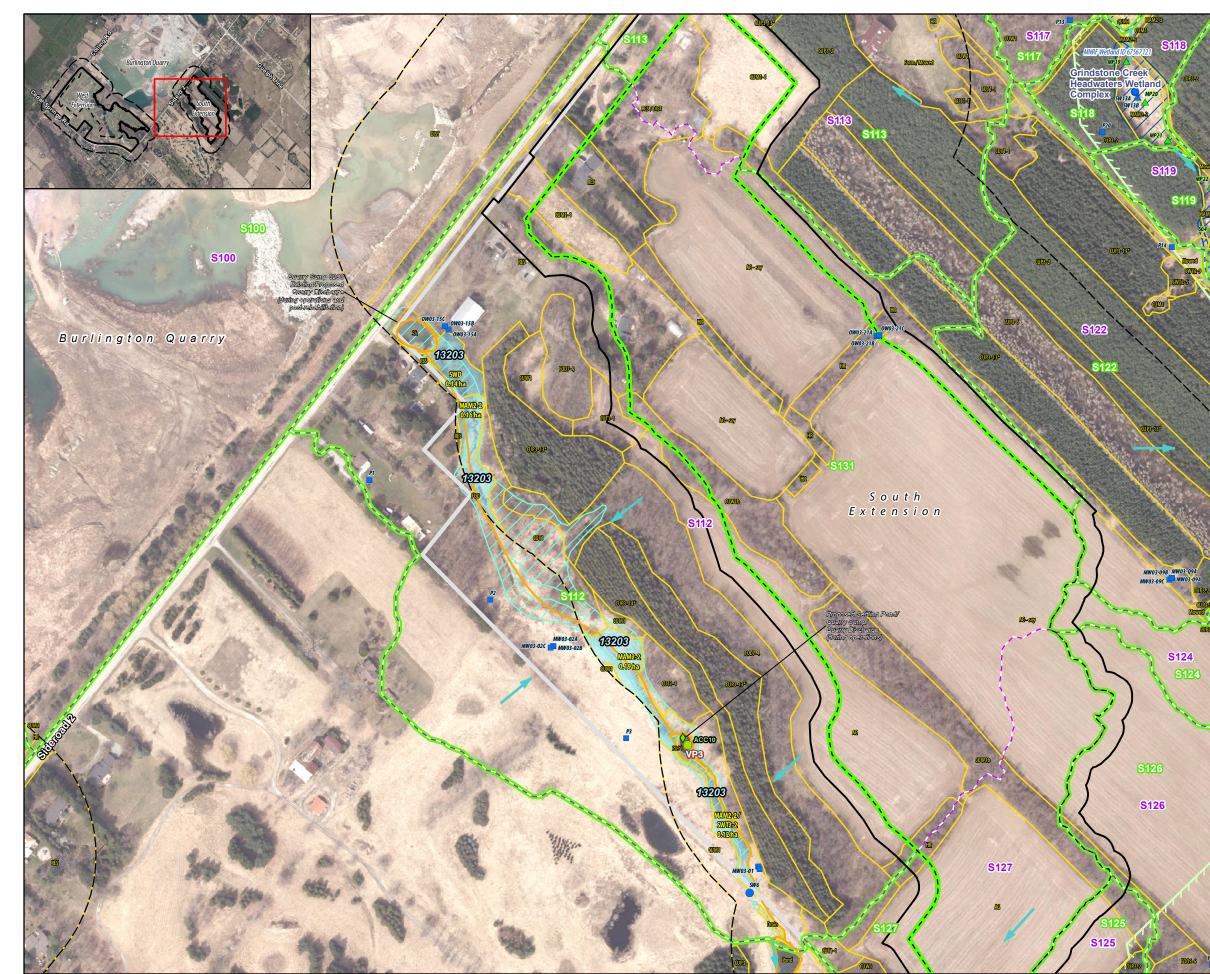

Integrated Model Calibration Wetland 13037


Integrated Model Calibration Wetland 13037

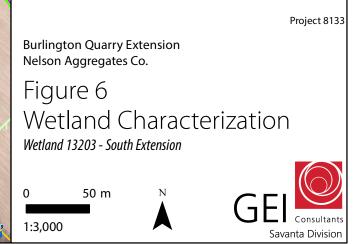





Change in Soil Moisture Conditions Wetland 13037



Change in Soil Moisture Conditions Wetland 13037



Legend

Legena	
Licensed Boundary	
Limit of Extraction	
120 m Adjacent Lands	
Subject Lands	
Amphibian Call Count Station (201)	<i>э</i>)
Salamander Trap (2019)	
Salamander Habitat Assessment (2	019)
Direct Fish Habitat	
Existing Subcatchment Boundary (latham Engineering, 2020)
Proposed Subcatchment Boundary (Tatham Engineering, 2020	- Operations and Post-Rehabilitation
Wetland (Savanta, 2020)	
Ecological Land Classification (Sava	nta, 2019 & 2020)
Ecological Land Classification (Sava	
Provincially Significant Wetland (LK	D/MNRF, 2020)
Wetland - Not Evaluated per OWES	(MNRF/LIO, 2020)
MECP Jefferson Salamander Regula	ted Habitat
Current Instrumentation	
Groundwater Monitoring Station (E	
Mini Piezometer (Tatham Engineer	ng)
Staff Gauge & Surface Water Monitor	oring Station (Tatham Engineering)
Previous Instrumentation	
Mini Piezometer (Golder)	
Staff Gauge & Surface Water Monitor	oring Station (Golder)
ELC Legend	
AG, Agriculture	
CUM1, Mineral Cultural Meadow	
CUM1-1, Dry Moist Old Field Meadow	
CUP3, Coniferous Plantation	
CUP3-2, White Pine Coniferous Plantation	
CUP3-6, European Larch Coniferous Plantat	
CUP3-13*, White Spruce Coniferous Plantat	
CUP3-14*, White Cedar Coniferous Plantati	on
CUT1, Mineral Cultural Thicket	
CUT1-1, Sumac Cultural Thicket CUW1, Mineral Cultural Woodland	
DIST, Disturbed	
FOD, Deciduous Forest	
FOD5-6, Dry- Fresh Sugar Maple-Basswood	Deciduous Forest
FOD7-4, Fresh – Moist Black Walnut Lowlan	
HR, Hedgerow	
MAM2-2, Reed-canary Grass Mineral Mead	ow Marsh
RES, Residential	
SA, Shallow Aquatic	
SAS1, Submerged Shallow Aquatic	
SWD, Deciduous Swamp	
SWT2-2, Willow Mineral Thicket Swamp	
SWT2-5, Red-osier Dogwood Mineral Thick	et Swamp
SWT2-9, Gray Dogwood Mineral Thicket Sw	
NOTES:	7
1. Coordinate System: NAD 1983 UTM 2 2. Base features produced under licens	Zone 17N. e with the Ontario Ministry of Natural Resources and
Forestry © Queen's Printer for Ontario,	
in a state in the second state of the	

3. Ortho
imagery $\ensuremath{\textcircled{\sc Solutions}}$ First Base Solutions, 2021. Imagery taken in 2019.

2021 01 21 natural feature tech summary\8133_rpt_wetland_char_mapbook.mxd_Date Page 105 ary 11, 2021

Wetland 13203

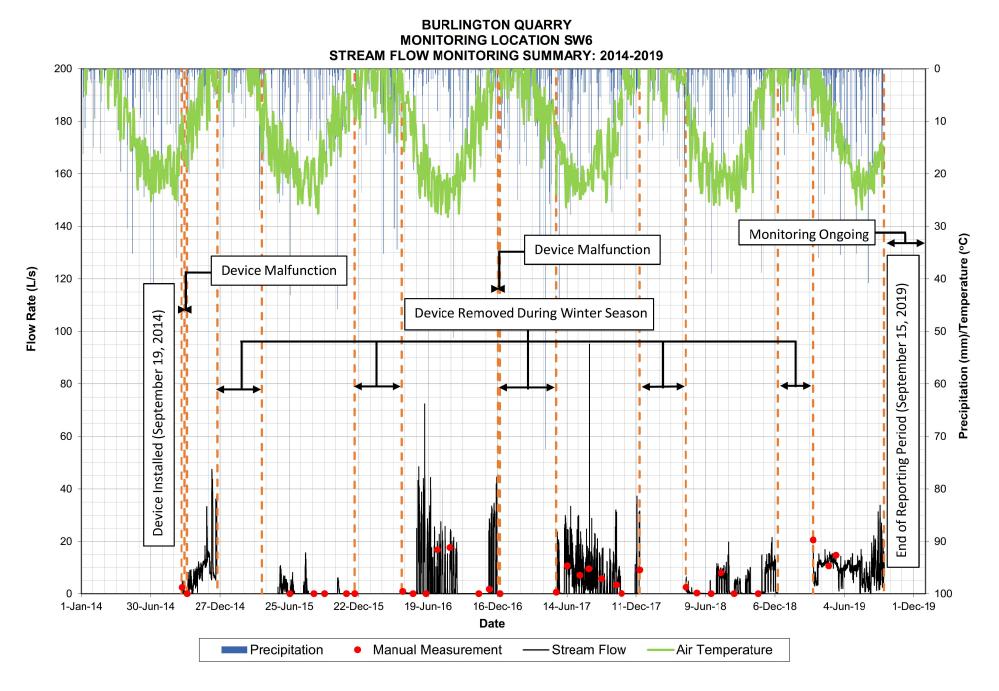
Wetland Characteristics	Description	Figure /
Wetland IDs:	MNRF - N/A (OGF ID 67196365, 67196392, 67196289)	
	Earthfx - 18	
	Tatham - 13203	
	Savanta - 13203	
	Golder (Background) - N/A	
Wetland Area (ha):	LIO/MNRF - 1.84 (includes wetland area outside 120 m adjacent lands)	
	Savanta - 0.61 (excludes wetland area outside 120 m adjacent lands)	
Watershed:	Grindstone Creek Watershed	
Sub-Watershed:	West Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek	
Located in Proposed Limit of Extraction:	No	
Located in Proposed License Boundary:	No	
Catchment Area (ha):	26.2 + quarry discharge (Sump 0200)	
Catchment ID:	S112	
Closed or Connected System:	On-line (connected to downstream watercourse)	
Condition:	Modified	
Bathymetry:	A bathymetric survey of Wetland 13202 has not been completed.	
Outlet:	West Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek	
Hydroperiod:	Water level in Wetland 13203 maintained by quarry discharge. When quarry discharge ceases, flow through West Arm ceases.	
Surface Water Monitoring:	ID: SW6 (Tatham)	Graph 1
	Installation Date: September 19, 2014	
	Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve)	
	Coordinates of Monitoring Station: Easting 590629.123, Northing 4805071.124	

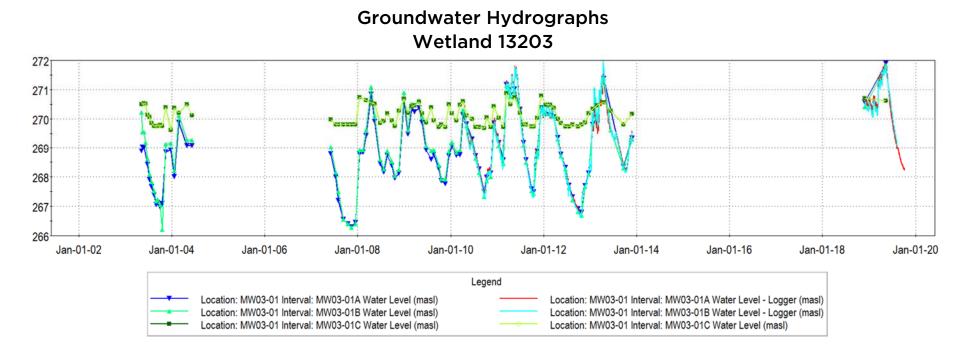
/ Graph	Ref	ference				
/ Graph	Report	Section / Page				
	SWA (Tatham, April 2020)	Drawing DP-1				
	SWA (Tatham,	Drawing DP-1				
	April 2020)					
	SWA (Tatham, April 2020)	2.1.2, 3 and Appendix C				
	SWA (Tatham,	2.1.2 and Appendix C				
	April 2020)					

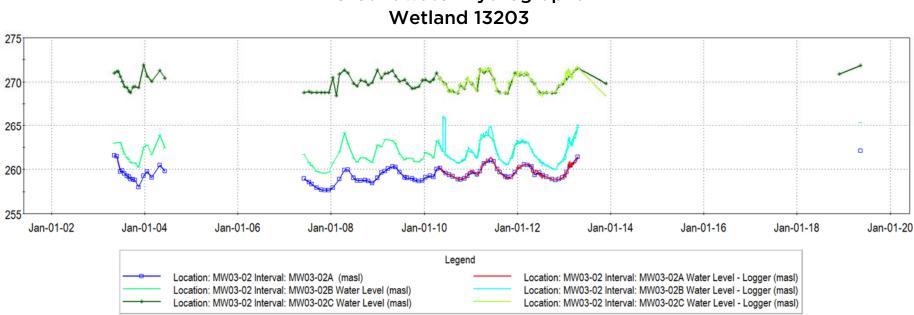
Natural Heritage and Habitat	Description		Re	ference
Features	Description	Figure / Graph	Report	Section / Page
Wetland Name & Provincial Significance Evaluation:	Wetland 13203 - Other (as determined by MNRF and it is completely dependent on pumping from the existing quarry; however it has been designed to demonstrate no negative impacts.)		NETR (Savanta, April 2020)	6.1.2
ELC Unit(s):	Shallow Aquatic: SA Submerged Shallow Aquatic: SAS1 Deciduous Swamp: SWD Reed-canary Grass Mineral Meadow Marsh: MAM2-2 Reed-canary Grass Mineral Meadow Marsh / Willow Mineral Thicket Swamp: MAM2-2 / SWT2-2		NETR (Savanta, April 2020)	Table 2
Regulated Habitat (MECP):	No		NETR (Savanta, April 2020)	6.7
Significant Wildlife Habitat:	Confirmed for amphibian breeding (woodland) - SAS1. Salamander species absent, despite survey effort including salamander habitat assessment, salamander trapping and egg mass surveys.		NETR (Savanta, April 2020)	4.2.2; 4.2.3; 4.2.5; 5.2.2; 5.2.3; 5.2.5; 6.4; Table 19
Fish Habitat:	Indirect		NETR (Savanta, April 2020)	6.6
Habitat of Endangered and Threatened Species:	No species at risk salamanders observed, despite survey effort including salamander habitat assessment, salamander trapping and egg mass surveys.		NETR (Savanta, April 2020)	4.2.2; 4.2.3; 5.2.2; 5.2.3; 6.7

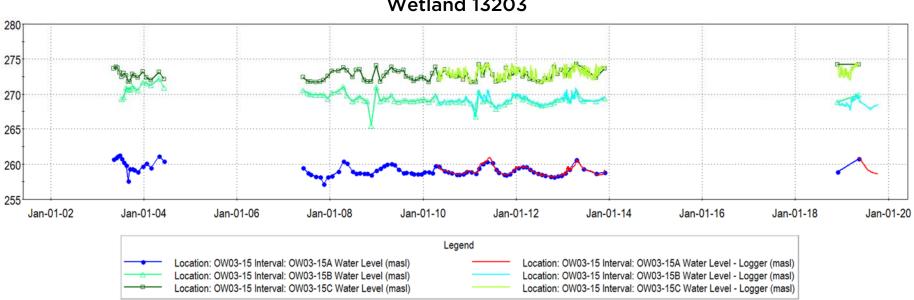
Groundwater Interaction	Description						Figure / Graph	Re	ference
Groundwater interaction	Description							Report	Section / Page
Lithology:	Halton Till								
Hydraulic Conductivity:	Integrated Model (Eart								
	piezometers, was 1.2x1								
	magnitude higher, to a	ccount for limited flo	w through fracture	s in the till.					
Surface Water/Groundwater Interaction:	The low permeability o				-				
	interaction. The wetlan	-				-			
	system by the low perr changes in the water ta	-		e groundwater inflow	/ but is generally iso	lated from any			
	changes in the water to		evelopment.						
Groundwater Monitoring (Monitoring	Monitoring Well ID		Geologic Unit	Ground Elevation	Monitoring Elev	Average WL	Graphs 2, 3 & 4		
Wells):	MW03-01A	227 (SW)	Bedrock	270.94	251.9 - 247.7	269.33			
	MW03-01B	227 (SW)	Bedrock	270.94	261.8 - 256.8	269.37			
	MW03-01C	227 (SW)	Bedrock	270.97	270.4 - 269.5	270.13			
	MW03-02A	36 (E)	Bedrock	272.48	251.8 - 247.8	259.76			
	MW03-02B	36 (E)	Bedrock	272.48	260.9 - 256.6	262.02			
	MW03-02C	36 (E)	Bedrock	272.54	270.0 - 268.4	269.89			
	OW03-15A	226 (NNE)	Bedrock	275.12	256.8 - 250.0	259.11			
	OW03-15B	226 (NNE)	Bedrock	275.12	269.2 - 264.9	268.97			
	OW03-15B	226 (NNE)	Bedrock	275.13	273.2 - 271.6	272.93	1		
Water Budget Results:	A detailed average wat						Figure 1a	HHIAR (Earthfx,	165 - 190
	Conditions (Earthfx Fig				-			April 2020)	
	provider of groundwate vicinity of Wetland 18 f	-	-	-		streamflow in the			
	Vicinity of Wetland 161	or baseline condition	is are discussed in .		report.				
	Wetland 13203	GW Outflow (%)	GW Inflow (%)						
	Baseline (Existing)	5.98	2.42						
Integrated Model Calibration:	No mini-piezometers fo		-	Graphs 5 & 6					
	end of the wetland (see Graph 5). Water level calibration at the south end of wetland is reasonable (see Graph 6). There is some uncertainty in the calibration because records and operations of south quarry discharge are intermittent.								
	Wetland 13203 is not d	iscussed in the Main	Report. Other hear	ny wettands are disc	ussed in Appendix i	E, SECTION 19.0.			

Impact Assessment (Operations	Description							Reference	
Phases 1 & 2) Description							Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change.								
Change in Wetland Catchment Area (ha):	Reduction in catchmen (reduction of 11.7 ha)	reduction in catchment area. During operations in Phases 1 and 2 the catchment area will be reduced to 14.5 ha reduction of 11.7 ha)							Drawing DP-2
Change in Hydroperiod:	No change in hydroper	iod expected as quar	ry discharge maint	ains wetland water le	evels.				
Change in Water Budget:	A detailed average wat Conditions (Figure 7.26 278), and RHB2 (Figure Simulated change in gr streamflow in the vicini report.	5, p. 187); Scenario P. 8.126, p. 300). The oundwater levels (dr. ty of Wetland 13203	12 (Figure 8.33, p. : water budget resul awdowns), ground (Earthfx Wetland 1	222); P3456 (Figure 8 Its for Scenario P12 a water discharge to ri L8) for each scenario	8.65, p. 249); RHB1 re reproduced in F parian areas, and c are discussed in S	. (Figure 8.101, p. Figure 1b. Change in	Figure 1b	HHIAR (Earthfx, April 2020)	191 - 303
	Wetland 13203	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)				
	Baseline (Existing)	5.98	2.42	-	-				
	Operations Ph 1 & 2	9.95	0.00	3.97	-2.42				
Change on Soil Moisture Conditions:	The soil moisture and s in soil moisture condition inflows is only 2.42% (th	ons under P12 condit	Graph 7						
Potential Impact to Form and Function of Feature:	Both the pond and the Proposed limit of extra- ensure site construction	ction is >30 m from t	he wetland bounda	ry. The extraction lin	nit will be demarca			NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2

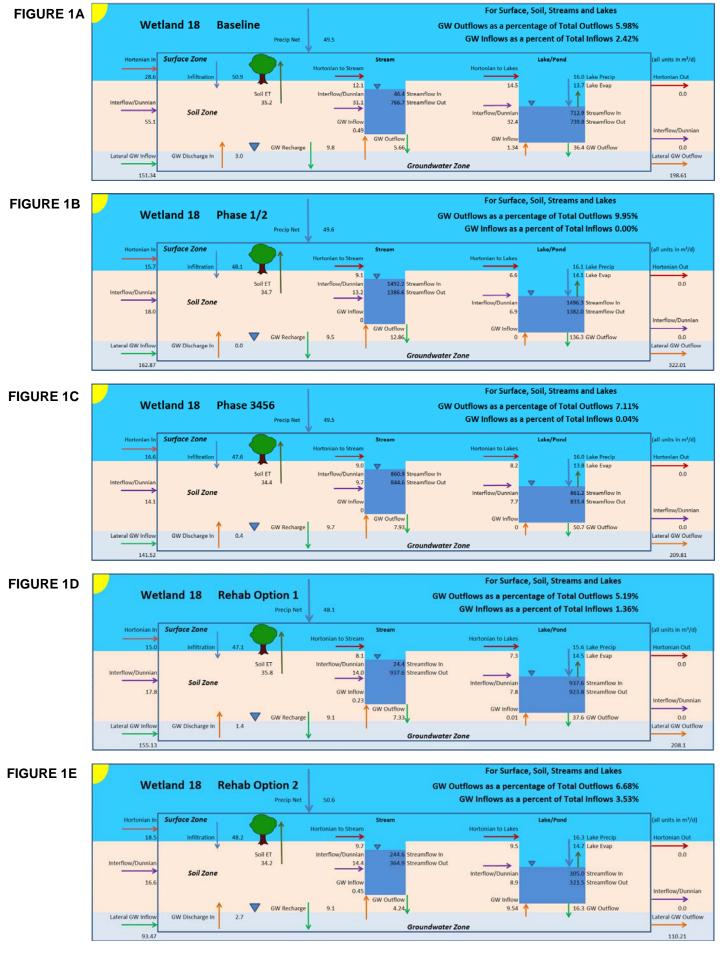

Mitigation (Operational Phases 1 &	Description	Figure / Graph	Reference		
2)	Description	Figure / Graph	Report	Section / Page	
	The wetland is supplied with water by pumping from the existing adjacent quarry. The proposed quarry Extension is not anticipated to have any impact on pumping or water quality related to discharge from the existing quarry. Pumping and discharge are recommended to occur at the same location at the upstream end of the tributary and in the same manner as existing pumping.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2	

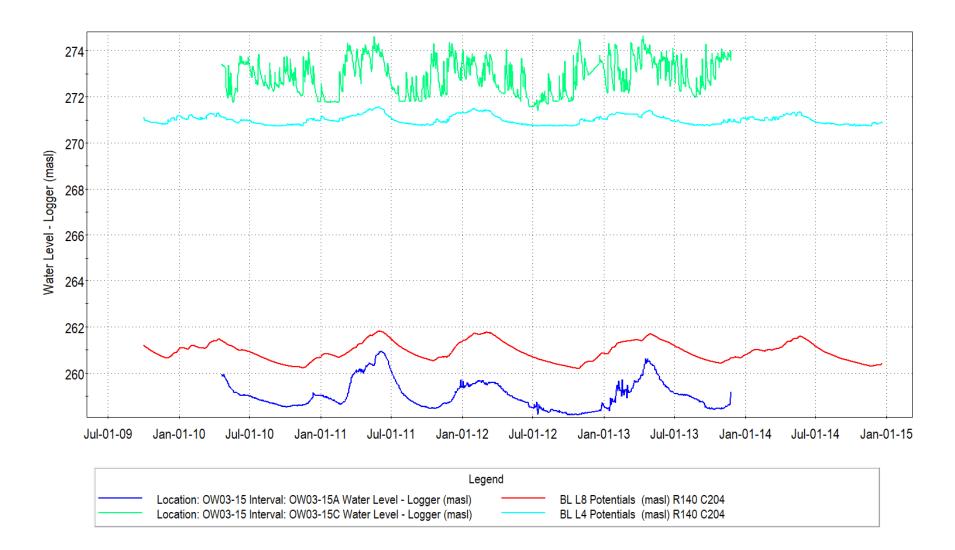

Impact Assessment (Operations	Description						Figure / Graph	Re	ference
Phases 3 - 6)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change.								
Change in Wetland Catchment Area (ha):		duction in catchment area. During operations in Phases 1 and 2 the catchment area will be reduced to 14.5 ha duction of 11.7 ha). This reduction in drainage area will remain long-term.							Drawing DP-2
Change in Hydroperiod:	No change in hydroperi	od expected as quar	ry discharge mainta	ains wetland water le	evels.				
Change in Water Budget:	A detailed average wate Conditions (Figure 7.26 278), and RHB2 (Figure Simulated change in gro streamflow in the vicinit report.	, p. 187); Scenario P1 8.126, p. 300). The bundwater levels (dra	12 (Figure 8.33, p. 2 water budget resul awdowns), groundw	Figure 8.101, p. Figure 1c. ange in	Figure 1c	HHIAR (Earthfx, April 2020)	191 - 303		
	Wetland 13203	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)				
	Baseline (Existing)	5.98	2.42	-	-				
	Operations Ph 3 - 6	7.11	0.04	1.13	-2.38				
Potential Impact to Form and Function of Feature:	Both the pond and the Proposed limit of extrac ensure site construction	ction is >30 m from th	ne wetland bounda		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2			

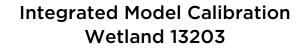

Mitigation (Operational Phases 3 -	Description	Figure / Graph	Reference		
6)	Description	Figure / Graph	Report	Section / Page	
	The wetland is supplied with water by pumping from the existing adjacent quarry. The proposed quarry Extension is not anticipated to have any impact on pumping or water quality related to discharge from the existing quarry. Pumping and discharge are recommended to occur at the same location at the upstream end of the tributary and in the same manner as existing pumping.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2	

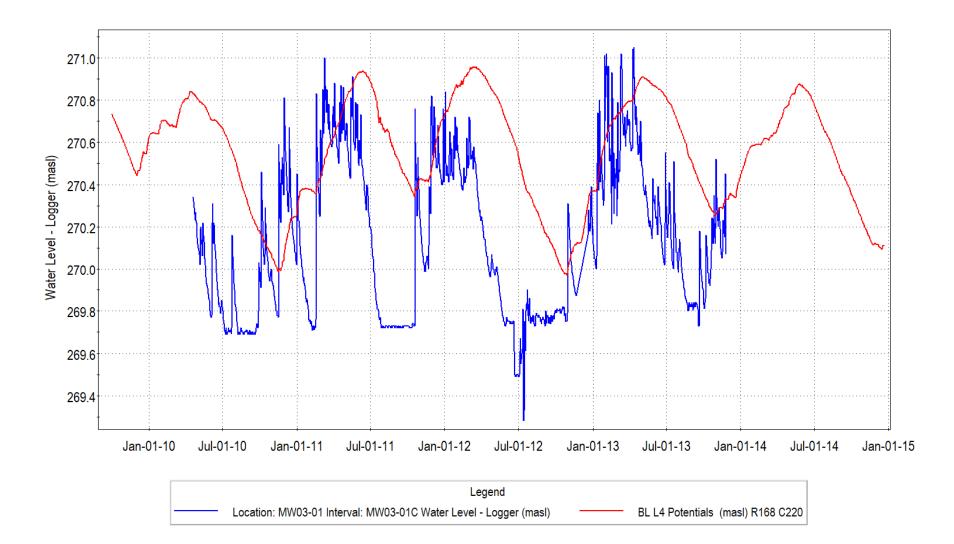

Impact According to (Dababilitation)	Description							Re	ference
Impact Assessment (Rehabilitation)	Description	Figure / Graph	Report	Section / Page					
Change in Wetland Area (ha):	No change.								
Change in Wetland Catebrant Area (ba)	Reduction in catchmen	tarea During opera	tions in Dhasas 1 ar	ad 2 the estempert a	raa will be reduced	to 14 E bo		C)A/A (Tatham	Drawing DD 7
Change in Wetland Catchment Area (ha):	(reduction of 11.7 ha).			SWA (Tatham, April 2020)	Drawing DP-3				
Change in Hydroperiod:	No change in hydroper	iod expected as quar	ry discharge maint	ains wetland water le	vels.				
Change in Water Budget:	Conditions (Figure 7.26, p. 187); Scenario P12 (Figure 8.33, p. 222); P3456 (Figure 8.65, p. 249); RHB1 (Figure 8.101, p. 278), and RHB2 (Figure 8.126, p. 300). The water budget results for Scenario RHB1 and RHB2 are reproduced below. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13203 (Earthfx Wetland 18) for each scenario are discussed in Section 8 of the main report.						Figure 1d and 1e	HHIAR (Earthfx, April 2020)	191 - 303
	Baseline (Existing)	GW Outflow (%) 5.98	GW Inflow (%) 2.42	∆ in Outflow (%) -	∆ in Inflow (%) -				
	Rehab Scenario 1	5.19	1.36	-0.79	-1.06				
	Rehab Scenario 2	6.68	3.53	0.70	1.11				
Potential Impact to Form and Function of Feature:	Proposed limit of extra	the pond and the wetland will remain in place. There will be no encroachment from the project into the wetlands. posed limit of extraction is >30 m from the wetland boundary. The extraction limit will be demarcated and fenced to sure site construction and operations do not extend beyond the proposed limits of the project .						NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2

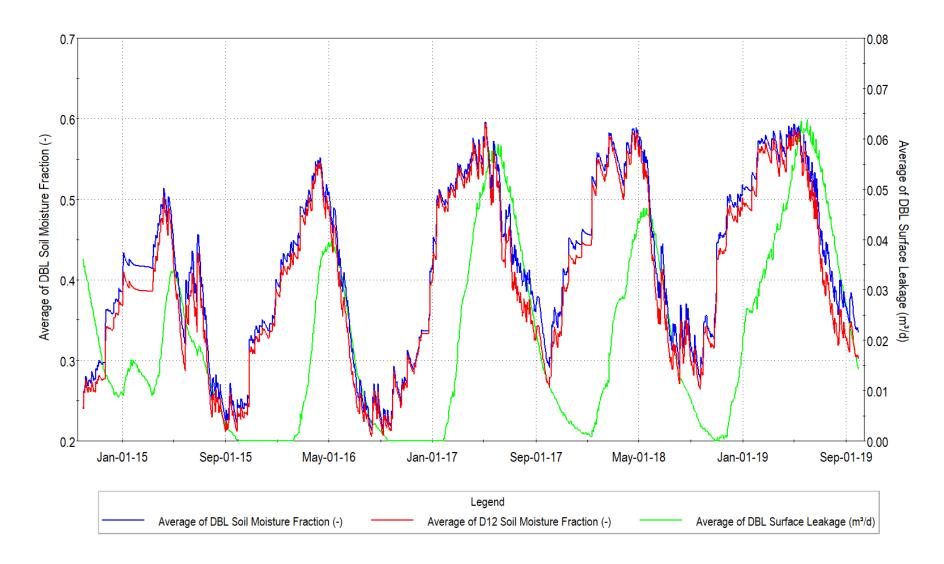
Mitigation (Rehabilitation)	Description	Figure / Graph	Reference		
Mitigation (Reliabilitation)	Description	Figure / Graph	Report	Section / Page	
	The wetland is supplied with water by pumping from the existing adjacent quarry. The proposed quarry Extension is not anticipated to have any impact on pumping or water quality related to discharge from the existing quarry. Pumping and discharge are recommended to occur at the same location at the upstream end of the tributary and in the same manner as existing pumping.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2	

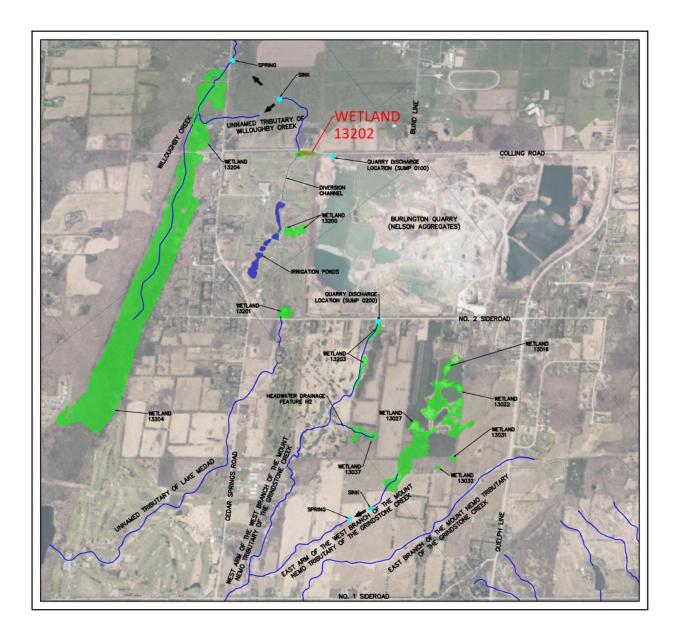


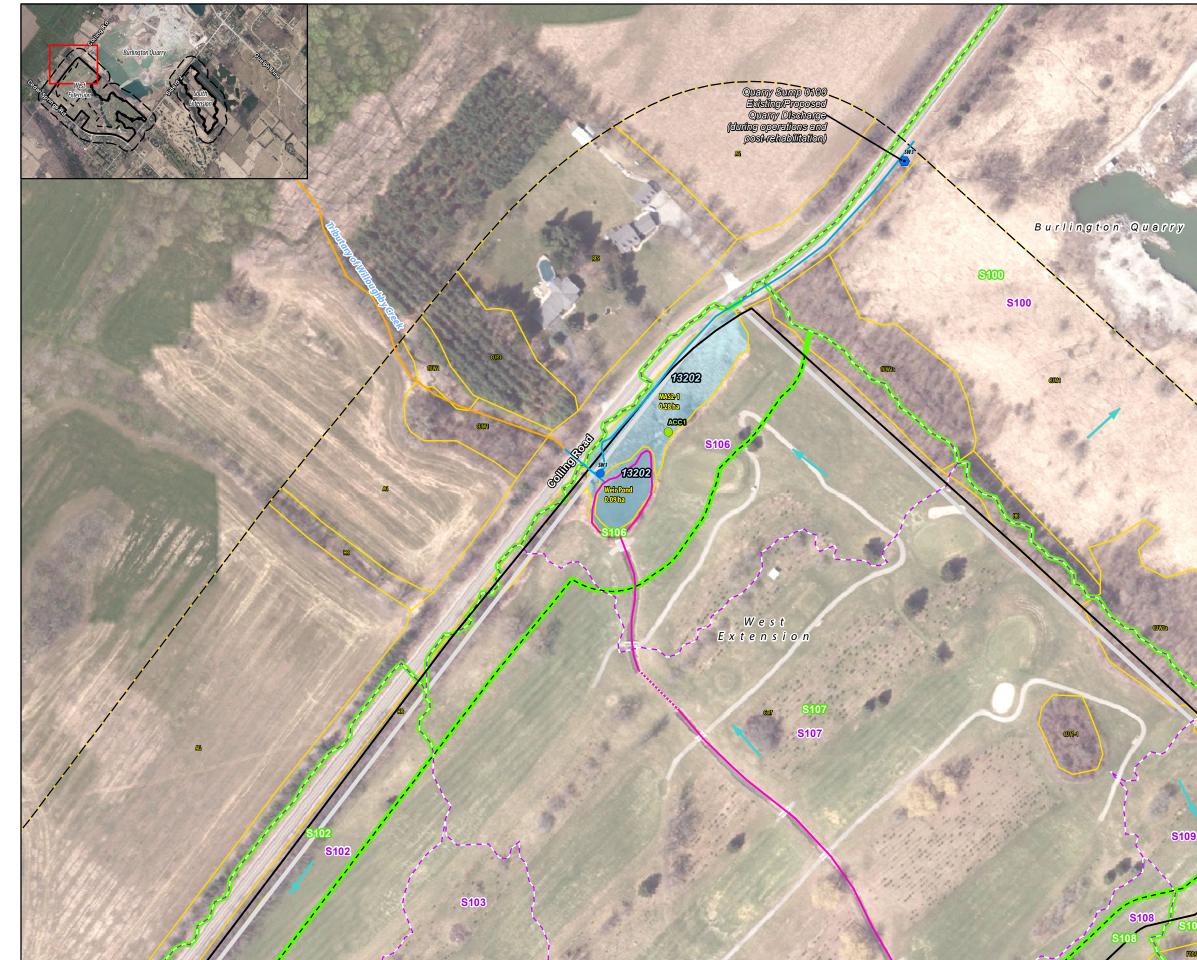



Groundwater Hydrographs Wetland 13203



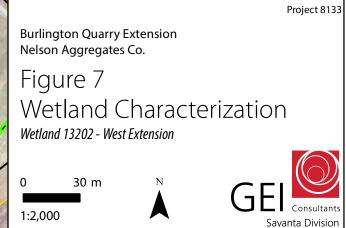






Change in Soil Moisture Conditions Wetland 13203

Legend


Licensed Boundary Limit of Extraction Limit of Extraction 120 m Adjacent Lands Subject Lands Amphibian Call Count Station (2019) Golf Course Irrigation Ponds and Channel Indirect Fish Habitat Direct Fish Habitat Existing Subcatchment Boundary (Tatham Engineering, 2020) Proposed Subcatchment Boundary - Operations and Post-Rehabilitation (Tatham Engineering, 2020 Wetland (Savanta, 2020) Ecological Land Classification (Savanta, 2019 & 2020) **Current Instrumentation** Staff Gauge & Surface Water Monitoring Station (Tatham Engineering) Manual Stream Flow Measurement (Tatham Engineering) ELC Legend AG, Agriculture CUM1, Mineral Cultural Meadow CUP3, Coniferous Plantation CUT1-1, Sumac Cultural Thicket CUW1, Mineral Cultural Woodland FOD5-5, Dry – Fresh Sugar Maple – Hickory Deciduous Forest HR, Hedgerow

MAS2-1, Cattail Mineral Shallow Marsh

RES, Residential

F0D5-6

NOTES: 1. Coordinate System: NAD 1983 UTM Zone 17N. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021.
 Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

res\2021 01 21 natural feature tech summary\8133_rpt_wetland_char_mapbook.mxd_Date **Page 121**uary 11, 202

Wetland 13202

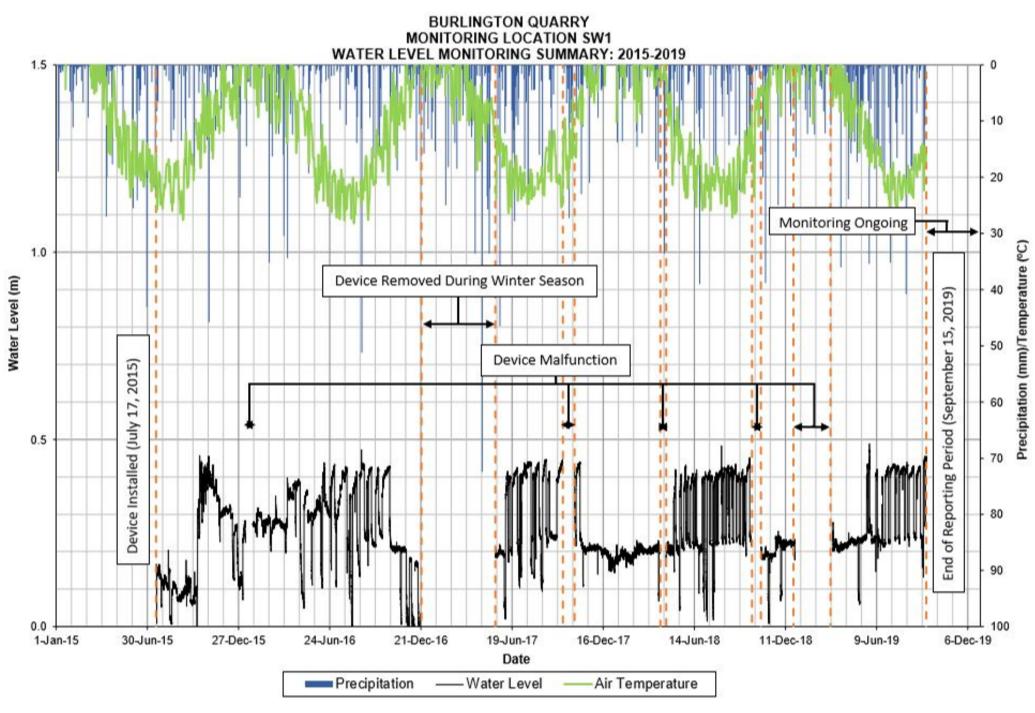
Wetland Characteristics	Description	Figure /
Wetland IDs:	MNRF -N/A	
	Earthfx - N/A	
	Tatham - 13202	
	Savanta - 13202	
	Golder (Background) - N/A	
Wetland Area (ha):	Savanta - 0.37	
Watershed:	Bronte Creek Watershed	
Sub-Watershed:	Willoughby Creek Watershed	
Located in Proposed Limit of Extraction:	No	
Located in Proposed License Boundary:	Yes	
Catchment Area (ha):	2.32 + quarry discharge (Sump 0100)	
Catchment ID:	S106	
Closed or Connected System:	On-line (connected to downstream watercourse)	
Condition:	Modified	
Bathymetry:	A bathymetric survey of Wetland 13202 has not been completed.	
Outlet:	Tributary of Willoughby Creek	
Hydroperiod:	Water level in Wetland 13202 and the weir pond maintained by quarry discharge. Water levels in Wetland 13202 and the weir pond are also manipulated by a weir structure operated by the Burlington Springs Golf and Country Club for irrigation of the golf course and to maintain water levels in the on-site irrigation/hazard ponds.	
Surface Water Monitoring:	ID: SW1 (Tatham)	Graph 1
	Installation Date: July 17, 2015	
	Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve)	
	Coordinates of Monitoring Station: Easting 589015.325, Northing 4805832.639	

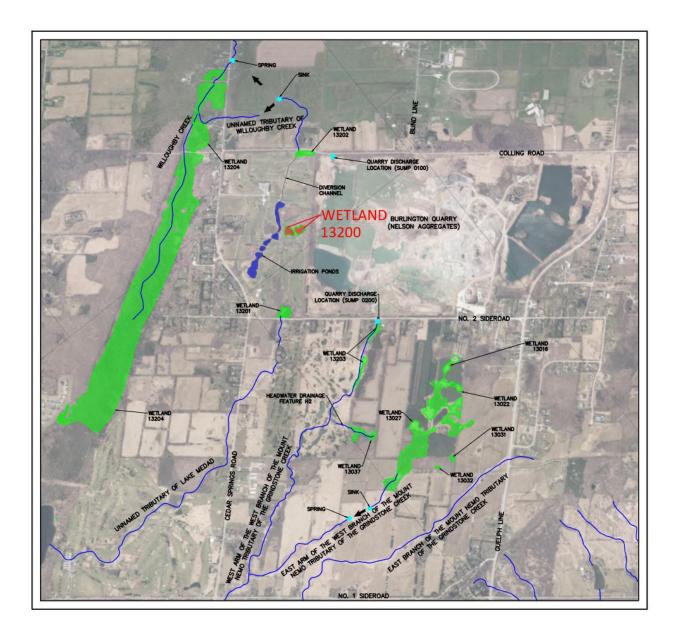
Natural Heritage and Habitat	Description	Figure / Graph	Reference	
Features	Description		Report	Section / Page
Wetland Name & Provincial Significance Evaluation:	Wetland 13202 – Other (it is completely dependent on pumping from the existing quarry; however it has been designed to demonstrate no negative impacts.)		NETR (Savanta, April 2020)	6.1.2
ELC Unit(s):	Pond: Weir Pond Cattail Mineral Shallow Marsh: MAS2-1		NETR (Savanta, April 2020)	Table 2
Regulated Habitat (MECP):	No		NETR (Savanta, April 2020)	6.7
Significant Wildlife Habitat:	None confirmed for amphibian breeding, despite survey effort through habitat assessments and call count surveys. Confirmed for species of conservation concern - Unicorn Clubtail.		NETR (Savanta, April 2020)	4.2.2; 4.2.5; 5.2.2; 5.2.5; 6.4; Table 19
Fish Habitat:	Weir Pond – part of the golf course irrigation ponds and channel MAS2-1 – Indirect fish habitat		NETR (Savanta, April 2020)	6.6
Habitat of Endangered and Threatened Species:	No species at risk salamanders observed, despite survey effort including habitat assessment.		NETR (Savanta, April 2020)	5.2.2

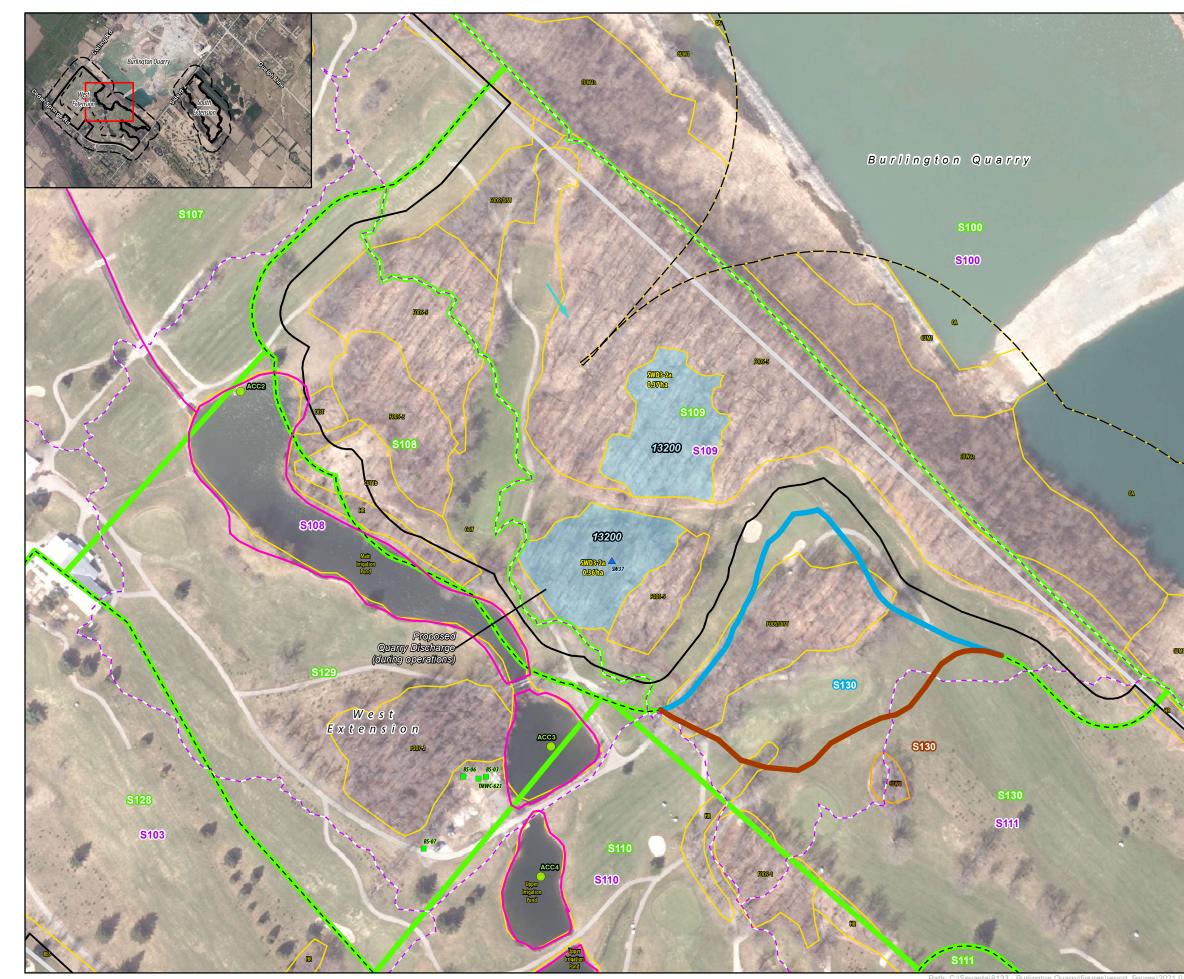
/ Craph	Ref	erence
/ Graph	Report	Section / Page
	SWA (Tatham,	Drawing DP-1
	April 2020)	
	SWA (Tatham, April 2020)	Drawing DP-1
	April 2020)	
	SWA (Tatham,	2.1.1, 3 and Appendix
	April 2020)	B
	SWA (Tatham,	2.1.1 and Appendix B
	April 2020)	

Groundwater Interaction	Description	Figure / Graph	Re	ference
Groundwater Interaction	Description		Report	Section / Page
Lithology:	Halton Till			
Hydraulic Conductivity:	Integrated Model (Earthfx) - The harmonic mean hydraulic conductivity, based on testing by Golder (2007) of 10 mini- piezometers, was 1.2x10 ⁻⁸ m/s. Model value for the vertical hydraulic conductivity was 1.6x10 ⁻⁷ m/s, about an order of magnitude higher, to account for limited flow through fractures in the till.			
Surface Water/Groundwater Interaction:	The low permeability of the Halton Till underlying the wetland is the dominant control on surface and groundwater interaction. The wetlands and streams are generally perched above the water table and isolated from the groundwater system by the low permeability till. None of the wetlands receive significant groundwater inflow and are thus isolated from any changes in the water table due to quarry development.			
Water Budget Results:	No detailed water budget was produced for this wetland. The wetland is close to Wetland 13032 (Earthfx Wetland 19) and similar in size. The water budget for this wetland should be similar. Simulated groundwater levels, groundwater discharge to riparian areas, and streamflow in the vicinity of Wetland 13032 (Earthfx Wetland 19) for baseline conditions is discussed in Section 7 of the main report			
Integrated Model Calibration:	The calibration of this wetland is not discussed in the Earthfx Report.			

Impact Assessment (Operations	Description	Figure / Grank	Cranh Reference	
Phases 1 & 2)	Description	Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change.			
Change in Wetland Catchment Area (ha):	No change. No extraction proposed in West Extension as part of Phases 1 and 2 of extraction.		SWA (Tatham, April 2020)	Drawing DP-2
Change in Hydroperiod:	No Change.			
Change in Water Budget:	Detailed water budgets were not prepared for this feature. Changes in streamflow at SW1 were discussed in Section 8.7.6. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of the wetland are discussed in Section 8 of the main report for each scenario a.		HHIAR (Earthfx, April 2020)	191 - 303
Potential Impact to Form and Function of Feature:	No potential impacts to Wetland 13202 and the weir pond under Phases 1 and 2 of operations.			


Mitigation (Operational Phases 1 &	Description	Figure / Graph	Reference		
2)	Description		Report	Section / Page	
Proposed Mitigation Measures:	No mitigation required under Phase 1 and 2 of operations. Existing quarry discharge to be maintained.				


Impact Assessment (Operations	Description	Figure / Creph	Re	ference
Phases 3 - 6)	Description	Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change.			
Change in Wetland Catchment Area (ha):	Reduction in catchment area. During operations in Phases 3 through 6 the catchment area will be reduced to 1.6 ha (reduction of 0.72 ha)		SWA (Tatham, April 2020)	Drawing DP-2
Change in Hydroperiod:	No change in hydroperiod expected as quarry discharge maintains wetland and weir pond water levels.			
Change in Water Budget:	Detailed water budgets were not prepared for this feature. Changes in streamflow at SW1 were discussed in Section 8.7.6. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of the wetland are discussed in Section 8 of the main report for each scenario.		HHIAR (Earthfx, April 2020)	191 - 303
Potential Impact to Form and Function of Feature:	Both the pond and the wetland will remain in place. There will be no encroachment from the project into the wetlands. Proposed limit of extraction is ≥30 m from the wetland boundary. A proposed berm will be constructed within the 30 m setback. The closest point of the berm will be 14 m from the wetland boundary. The extraction limit will be demarcated and fenced to ensure site construction and operations do not extend beyond the proposed limits of the project . The berm will be vegetated with common, native species (as approved by Conservation Halton) to ensure soil stability and prevention of erosion. The Weir Pond and the MAS2-1 are supplied with water by pumping from the existing adjacent quarry. The proposed quarry Extension is not anticipated to have any impact on pumping or water quality related to discharge from the existing quarry. Pumping and discharge are recommended to occur at the same location at the upstream end of the tributary and in the same manner as existing pumping.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2


Mitigation (Operational Phases 3 -	Description	Figure / Graph	Reference	
6)		Figure / Graph	Report	Section / Page
	The Weir Pond and the MAS2-1 are supplied with water by pumping from the existing adjacent quarry. The proposed quarry Extension is not anticipated to have any impact on pumping or water quality related to discharge from the existing quarry. Pumping and discharge are recommended to occur at the same location at the upstream end of the tributary and in the same manner as existing pumping.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2

Impact Accessment (Debabilitation)	Description	Figure / Craph	Re	ference
Impact Assessment (Rehabilitation)	Description	Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change.			
Change in Wetland Catchment Area (ha):	Reduction in catchment area. During operations in Phases 3 through 6 the catchment area will be reduced to 1.6 ha (reduction of 0.72 ha). Drainage area to remain 1.6 ha post rehabilitation.		SWA (Tatham, April 2020)	Drawing DP-3
Change in Hydroperiod:	Currently approved plan for Burlington Quarry is to cease discharge following operations creating a pit lake. Ceasing discharge from the quarry will adversely impact Wetland 13202 and the Tributary of Willoughby Creek. No change in hydroperiod expected if quarry discharge is maintained.			
Change in Water Budget:	Detailed water budgets were not prepared for this feature. Changes in streamflow at SW1 were discussed in Section 8.7.6. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of the wetland are discussed in Section 8 of the main report for each scenario.		HHIAR (Earthfx, April 2020)	191 - 303
Potential Impact to Form and Function of Feature:	Both the pond and the wetland will remain in place. There will be no encroachment from the project into the wetlands. Proposed limit of extraction is ≥30 m from the wetland boundary. A proposed berm will be constructed within the 30 m setback. The closest point of the berm will be 14 m from the wetland boundary. The extraction limit will be demarcated and fenced to ensure site construction and operations do not extend beyond the proposed limits of the project . The berm will be vegetated with common, native species (as approved by Conservation Halton) to ensure soil stability and prevention of erosion. The Weir Pond and the MAS2-1 are supplied with water by pumping from the existing adjacent quarry. The proposed quarry Extension is not anticipated to have any impact on pumping or water quality related to discharge from the existing quarry. Pumping and discharge are recommended to occur long-term at the same location at the upstream end of the tributary and in the same manner as existing pumping.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2

Mitigation (Rehabilitation)	Description	Eiguro / Graph	Reference	
Mitigation (Reliabilitation)	Description Figure / Graph		Report	Section / Page
	The Weir Pond and the MAS2-1 are supplied with water by pumping from the existing adjacent quarry. The proposed quarry Extension is not anticipated to have any impact on pumping or water quality related to discharge from the existing quarry. Pumping and discharge are recommended to occur long-term at the same location at the upstream end of the tributary and in the same manner as existing pumping. The cessation of quarry discharge will adversely impact Wetland 13202 and the Unnamed Tributary of Willoughby Creek.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2

Legend

Licensed Boundary Limit of Extraction Limit of Extraction 120 m Adjacent Lands Subject Lands Amphibian Call Count Station (2019) Golf Course Irrigation Ponds and Channel Existing Subcatchment Boundary (Tatham Engineering, 2020) Proposed Subcatchment Boundary - Operations and Post-Rehabilitation (Tatham Engineering, 2020 Proposed Subcatchment Boundary - Operations (Tatham Engineering, 2020) Proposed Subcatchment Boundary - Post-Rehabilitation (Tatham Engineering, 2020) Wetland (Savanta, 2020) Ecological Land Classification (Savanta, 2019 & 2020) Ecological Land Classification (Savanta, 2020) Current Instrumentation Mini Piezometer (Tatham Engineering) **Previous Instrumentation** Groundwater Monitoring Station (Golder) ELC Legend CUM1. Mineral Cultural Meadow CUT1, Mineral Cultural Thicket CUT1-1, Sumac Cultural Thicket CUW1, Mineral Cultural Woodland DIST, Disturbed FOD5-1, Dry-Fresh Sugar Maple Deciduous Forest FOD5-2, Dry- Fresh Sugar Maple-Beech Deciduous Forest FOD5-5, Dry – Fresh Sugar Maple – Hickory Deciduous Forest FOD7-2, Fresh-Moist Ash Lowland Deciduous Forest HR, Hedgerow OA, Open Aquatic RES, Residential SWD3-2, Silver Maple Mineral Deciduous Swamp

NOTES:

 Coordinate System: NAD 1983 UTM Zone 17N.
 Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021.
 Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

Project 8133 Burlington Quarry Extension Nelson Aggregates Co. Figure 8 Wetland Characterization Wetland 13200 - West Extension 0 30 m N 1:2,000 N

Path: C:\Savanta\8133 - Burlington Quarry\figures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_wetland_char_mapbook.mxd Date Page 1/28 uary 11, 2021

Wetland 13200

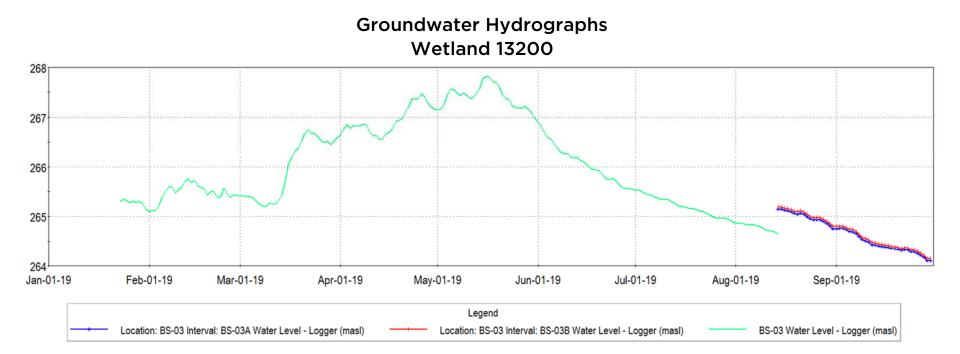
Wetland Characteristics	Description	Figure /
Wetland IDs:	MNRF -N/A	
	Earthfx - 22	
	Tatham - 13200	
	Savanta - 13200	
	Golder (Background) - N/A	
Wetland Area (ha):	Savanta - 0.73	
Watershed:	Bronte Creek Watershed	
Sub-Watershed:	Willoughby Creek Watershed	
Located in Proposed Limit of Extraction:	No	
Located in Proposed License Boundary:	No	
Catchment Area (ha):	7.38	
Catchment ID:	S109	
Closed or Connected System:	Isolated Feature	
Condition:	Natural	
Bathymetry:	A bathymetric survey of Wetland 13200 has not been completed.	
Outlet:	None	
Hydroperiod:	Monitoring station established April 22, 2020. Hydroperiod to be determined.	
Surface Water Monitoring:	ID: SW37 (Tatham)	
	Installation Date: April 22, 2020	
	Data Collection: Continuous water level and temperature and manual monthly water level measurements	
	Coordinates of Monitoring Station: Easting 589429.71, Northing 4805390.25	

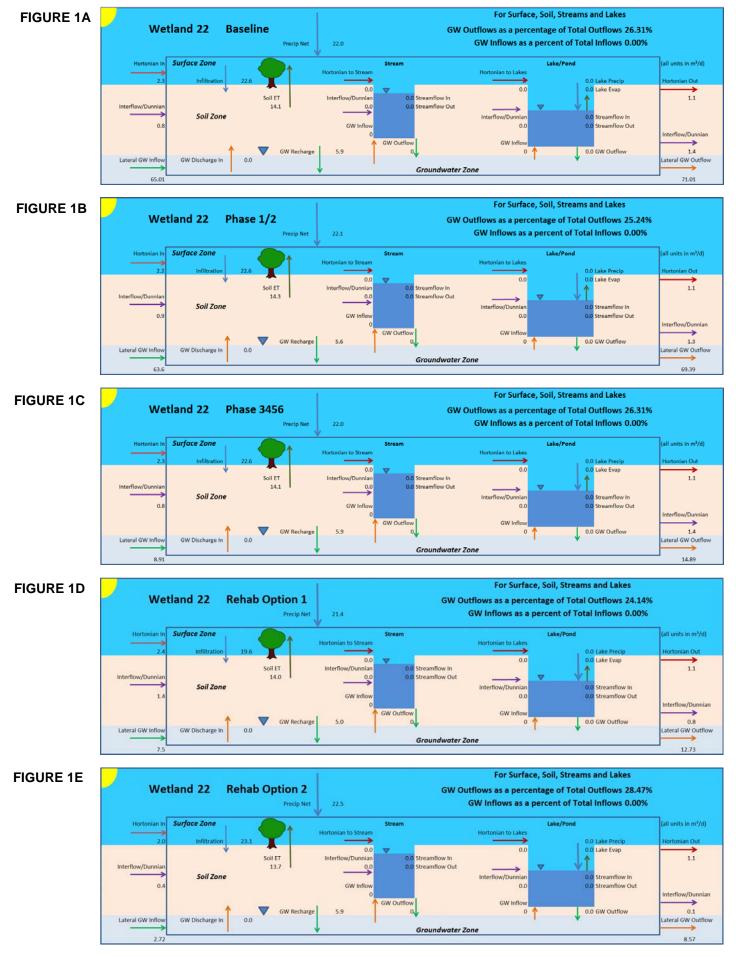
Natural Heritage and Habitat	Description	Figure / Graph	Reference	
Features	Description		Report	Section / Page
Wetland Name & Provincial Significance Evaluation:	Wetland 13200 - Other (considered not significant due to lack of amphibian breeding habitat, isolated and not connected to a PSW; however it has been designed to demonstrate no negative impacts.)		NETR (Savanta, April 2020)	6.1.2
ELC Unit(s):	Silver Maple Mineral Deciduous Swamp: SWD3-2a		NETR (Savanta, April 2020)	Table 2
Regulated Habitat (MECP):	No		NETR (Savanta, April 2020)	6.7
Significant Wildlife Habitat:	None confirmed for amphibian breeding, despite survey effort through habitat assessments. Salamander trapping and call count surveys were not completed due to absence of water.		NETR (Savanta, April 2020)	4.2.2; 5.2.2; Table 19
Fish Habitat:	None		NETR (Savanta, April 2020)	6.6
Habitat of Endangered and Threatened Species:	No species at risk salamanders observed, despite survey effort including habitat assessment.		NETR (Savanta, April 2020)	5.2.2

/ Graph	Reference		
/ Graph	Report	Section / Page	
	SWA (Tatham, April 2020)	Drawing DP-1	
	SWA (Tatham, April 2020)	Drawing DP-1	

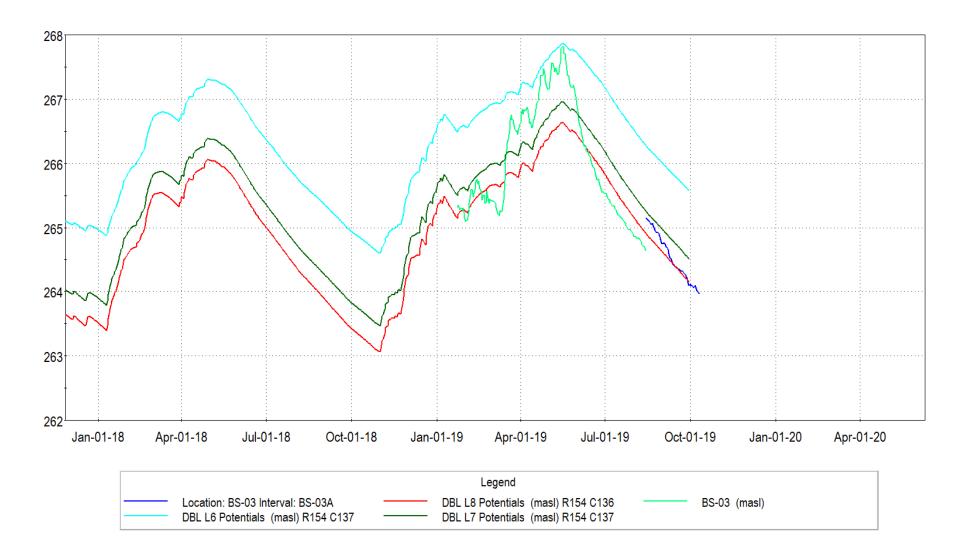
Groundwater Interaction	Description		Figure / Graph	Reference					
Groundwater Interaction	Description						Figure / Graph	Report	Section / Page
Lithology:	Halton Till								
Hydraulic Conductivity:	Integrated Model (Ear piezometers, was 1.2x magnitude higher, to a	10 ⁻⁸ m/s. Model valu							
Surface Water/Groundwater Interaction:	The low permeability of interaction. The wetlar system by the low per changes in the water t	ids and streams are g meability till. This we	,						
Shallow Groundwater (Mini-piezometer) Monitoring:	ID: SW37 (Tatham) Installation Date: April Data Collection: Conti Coordinates of Monito								
Groundwater Monitoring (Monitoring	Monitoring Well ID	Distance (Dir.)	Geologic Unit	Ground Elevation	Monitoring Elev	Average WL	Graph 1		
Wells):	BS-03A	131 (SSW)	Bedrock	271.73	-	264.53			
	BS-03B	131 (SSW)	Bedrock	271.73	-	264.57			
	BS-03	131 (SSW)	Bedrock	271.73	-	266.05			
Water Budget Results:	A detailed average water budget, as simulated by the integrated model, is provided in the main report for Baseline Conditions (Earthfx Figure 7.30, p. 189). The baseline water budget is reproduced in Figure 1a. The wetland is a net provider of groundwater. Simulated groundwater levels, groundwater discharge to riparian areas, and streamflow in the vicinity of Wetland 13200 (Earthfx Wetland 22) for baseline conditions are discussed in Section 7 of the main report.						Figure 1a	HHIAR (Earthfx, April 2020)	165 - 190
	Wetland 13200	GW Outflow (%)	GW Inflow (%)	7					
	Baseline (Existing)	26.31	0.00	1					
Integrated Model Calibration:	No mini-piezometers f show a good calibratic Report. Other nearby	n to the available mo	onitoring record (se	ee Graph 2). Wetland			Graph 2		

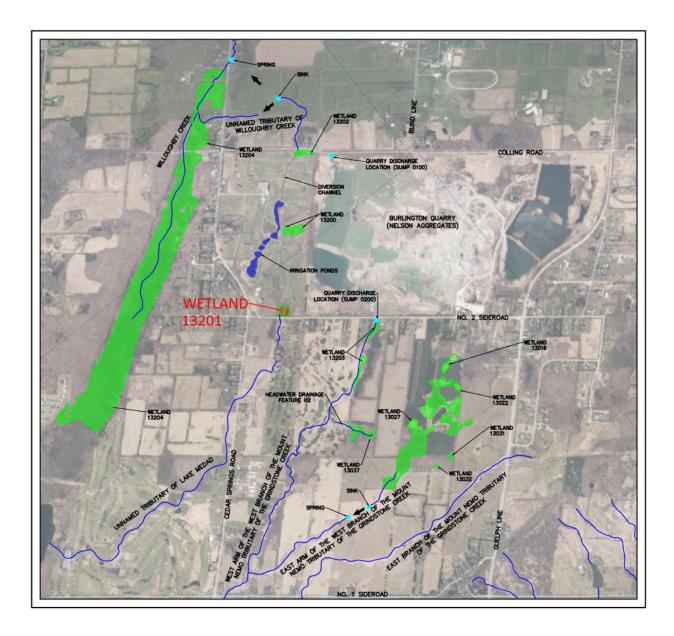
Impact Assessment (Operations	Description							Reference	
Phases 1 & 2)							Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change.								
Change in Wetland Catchment Area (ha):	No change. No extraction proposed in West Extension as part of Phases 1 and 2 of extraction.							SWA (Tatham, April 2020)	Drawing DP-2
Change in Hydroperiod:	No Change								
Change in Water Budget:	A detailed average water budget as simulated by the integrated model is provided in the Earthfx report for Baseline Conditions (Figure 7.30, p. 189); Scenario P12 (Figure 8.37, p. 224); P3456 (Figure 8.69, p. 251 Wetland 22); RHB1 (Figure 8.103, p. 279), and RHB2 (Figure 8.130, p. 301). The water budget results for Scenario P12 are reproduced in Figure 1b. Wetland 13200 (Earthfx Wetland 22) is located between the P3456 extraction area and the existing quarry. This wetland had no change in the water budget compared to baseline conditions during Phase 1 and 2 operations because it is perched year-round and there was no change in the contributing area. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13200 (Earthfx Wetland 22) for each scenario are discussed in Section 8 of the main report.						Figure 1b	HHIAR (Earthfx, April 2020)	191 - 303
	Wetland 13200	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)]			
	Baseline (Existing)	26.31	0.00	-	-	1			
			0.00	-1.07	0.00	1			
	Operations Ph 1 & 2	25.24	0.00	1.07	0.00				

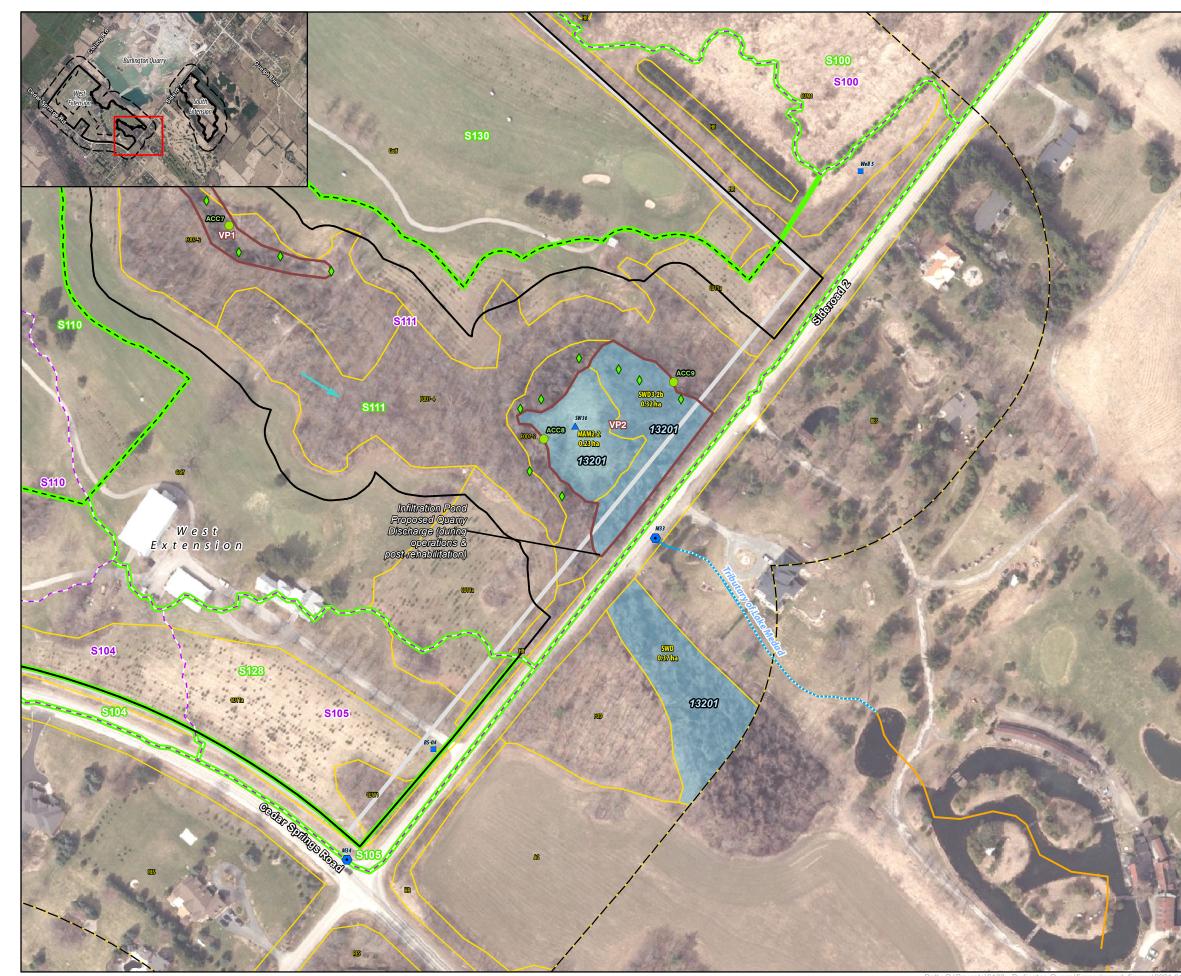

Mitigation (Operational Phases 1 &	Description	Figure / Graph	Reference		
2)			Report	Section / Page	
Proposed Mitigation Measures:	None required.				


Impact Assessment (Operations	Description						Figure / Craph	Reference				
Phases 3 - 6)							Figure / Graph	Report	Section / Page			
Change in Wetland Area (ha):	No change.											
Change in Wetland Catchment Area (ha):	Reduction in catchmen	t area. During opera	tions in Phases 3 th	nrough 6 the catchme	ent area will be rec	uced to 5.40 ha		SWA (Tatham,	Drawing DP-2			
	(reduction of 1.98 ha)							April 2020)				
Change in Hydroperiod:	Reduction due to reduction in catchment area. Change in hydroperiod to be determined (to be mitigated).											
Change in Water Budget:	A detailed average wat	er budget as simulat	ed by the integrate	ed model is provided	in the Earthfx repo	ort for Baseline	Figure 1c	HHIAR (Earthfx,	191 - 303			
	Conditions (Figure 7.30), p. 189); Scenario P.	12 (Figure 8.37, p.	224); P3456 (Figure	3.69, p. 251 Wetlar	id 22); RHB1 (Figure		April 2020)				
	8.103, p. 279), and RHE	82 (Figure 8.130, p. 3	01). The water bud	dget results for Scen	ario P3456 are repi	oduced in Figure						
	1c. Wetland 13200 (Ea	arthfx Wetland 22) is	located between th	ne P3456 extraction a	area and the existir	ig quarry. This						
	wetland had a minor ch											
	drainage area. Howeve											
	as required to maintain	its hydroperiod, as c										
	been represented in the	e model, so the Wetla										
	future conditions. Simu	ulated change in grou										
	change in streamflow ir											
	8 of the main report					-						
	Wetland 13200	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)							
	Baseline (Existing)	26.31	0.00	-	-							
	Operations Ph 3 - 6	26.31	0.00	0.00	0.00							
Change on Soil Moisture Conditions:	The Water Budget figures indicate that there is no groundwater seepage entering the wetland under baseline conditions,											
	so there will be no change under P3456 conditions.											
Potential Impact to Form and Function of	Both wetlands will rema	ain in place. There wi		NETR (Savanta,	7.2.1; 7.1.1; 7.1.2							
Feature:	of extraction is >30 m f		April 2020)									
	to ensure site construct											
	to these wetland units											
			J			J						
								1				

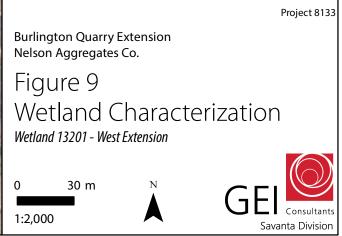
Mitigation (Operational Phases 3 -	Description	Figure / Graph	Reference		
6)	Description	Figure / Graph	Report	Section / Page	
	To mitigate this potential impact, flow to the wetlands will be supplemented by pumping from Quarry Sump 0100 directly into the wetland at specified rates and volumes to maintain the wetland hydroperiod. Wetland hydroperiod and shallow groundwater monitoring stations were installed in spring 2020. This data will be used to establish existing thresholds so existing conditions can be maintained throughout extraction operations.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2	


Import Accordment (Debabilitation)	Description						Figure / Craph	Reference		
Impact Assessment (Rehabilitation)	Description						Figure / Graph	Report	Section / Page	
Change in Wetland Area (ha):	No change.									
Change in Wetland Catchment Area (ha):	No change. Subcatchm	stated as part of ref			SWA (Tatham, April 2020)	Drawing DP-3				
Change in Hydroperiod:	No Change. Wetland is of rehabilitation.	perched and isolate	d from the groundv	vater system. Subca	tchment area will b	e reinstated as part				
Change in Water Budget:	A detailed average wath Conditions (Figure 7.30 8.103, p. 279), and RHB Figures 1d and 1e. Weth quarry. This wetland has perched year-round and groundwater levels (dra Wetland 13200 (Earthfx	, p. 189); Scenario P1 2 (Figure 8.130, p. 30 tland 13200 (Earthfx ad no significant char d the catchment area awdowns), groundwa	L2 (Figure 8.37, p. 2 D1). The water bud Wetland 22) is loca nge in the water bud will be reinstated a ater discharge to rip	224); P3456 (Figure 8 get results for Scena ited between the P3 dget compared to b as part of rehabilitation parian areas, and cha	8.69, p. 251 Wetland arios RHB1 and RHE 456 extraction area aseline conditions b on of the site. Simu nge in streamflow i	d 22); RHB1 (Figure 32 are presented in and the existing because it is ulated change in n the vicinity of	Figure 1d and 1e	HHIAR (Earthfx, April 2020)	191 - 303	
	Wetland 13200	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)]				
	Baseline (Existing)	26.31	0.00	-	-					
	Rehab Scenario 1	24.14	0.00	-2.17	0.00					
	Rehab Scenario 2	28.47	0.00	2.16	0.00]				
Potential Impact to Form and Function of Feature:	Both wetlands will rema of extraction is >30 m fr to ensure site construct to these wetland units v	rom the wetland bou tion and operations d	ndary. The licensed to not extend beyor	d boundary/extraction and the proposed limi	on limit will be dema ts of the project . T	arcated and fenced The drainage area		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2	


Mitigation (Rehabilitation)	Description	Figure / Graph	Reference		
	Description		Report	Section / Page	
Proposed Mitigation Measures:	Once operations are complete and the rehabilitation is implemented, the grade around the wetlands will be returned to existing conditions reinstating the catchment area to the wetland. Wetland hydroperiods and shallow groundwater monitoring stations were installed in spring 2020. This data will be used to establish existing thresholds so existing conditions can be maintained throughout extraction operations and replicated in post-operation / rehabilitated conditions.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2	



Integrated Model Calibration Wetland 13200


Legend

Licensed Boundary Limit of Extraction Limit of Extraction 120 m Adjacent Lands Subject Lands Amphibian Call Count Station (2019) Salamander Trap (2019) Salamander Habitat Assessment (2019) Indirect Fish Habitat Direct Fish Habitat | Existing Subcatchment Boundary (Tatham Engineering, 2020) Proposed Subcatchment Boundary - Operations and Post-Rehabilitation (Tatham Engineering, 2020 Wetland (Savanta, 2020) Ecological Land Classification (Savanta, 2019 & 2020) **Current Instrumentation** Groundwater Monitoring Station (EarthFx) Mini Piezometer (Tatham Engineering) Manual Stream Flow Measurement (Tatham Engineering) ELC Legend AG, Agriculture CUM1, Mineral Cultural Meadow CUT1, Mineral Cultural Thicket CUW1, Mineral Cultural Woodland FOD, Deciduous Forest FOD7-2, Fresh-Moist Ash Lowland Deciduous Forest FOD7-4, Fresh – Moist Black Walnut Lowland Deciduous Forest HR, Hedgerow MAM2-2, Reed-canary Grass Mineral Meadow Marsh RES, Residential SWD, Deciduous Swamp SWD3-2, Silver Maple Mineral Deciduous Swamp

NOTES:

1. Coordinate System: NAD 1983 UTM Zone 17N.

Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021.
 Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

e Page 138. ary 11, 202 Path: C:\Savanta\8133 - Burlington Quarry\figures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_wetland_char_mapbook.mxd Date

Wetland 13201

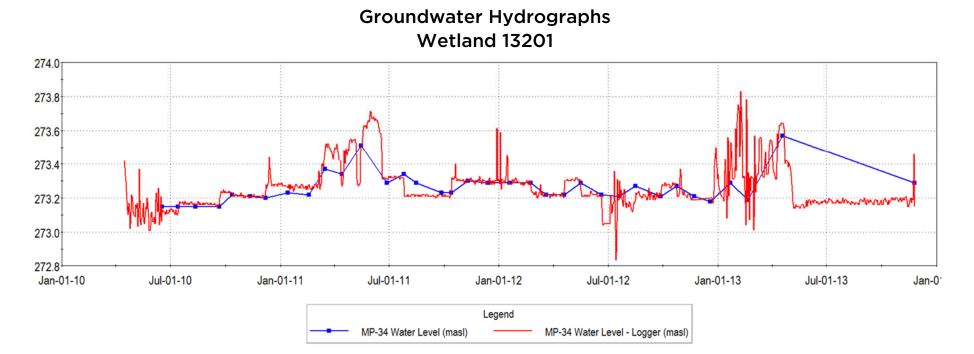
Wetland Characteristics	Description	Figure /
Wetland IDs:	MNRF -N/A	
	Earthfx - 21	
	Tatham - 13201	
	Savanta - 13201	
	Golder (Background) - N/A	
Wetland Area (ha):	Savanta - 0.92	
Watershed:	Bronte Creek Watershed	
Sub-Watershed:	Willoughby Creek Watershed	
Located in Proposed Limit of Extraction:	No	
Located in Proposed License Boundary:	No	
Catchment Area (ha):	14.85	
Catchment ID:	S111	
Closed or Connected System:	Isolated Feature (culvert under No. 2 Sideroad plugged and there is no evidence of a culvert or channel connection to the Unnamed Tributary of Lake Medad).	
Condition:	Modified	
Bathymetry:	A bathymetric survey of Wetland 13201 has not been completed.	
Outlet:	None	
Hydroperiod:	Monitoring station established April 22, 2020. Hydroperiod to be determined.	
Surface Water Monitoring:	ID: SW36 (Tatham)	
	Installation Date: April 22, 2020	
	Data Collection: Continuous water level and temperature and manual monthly water level measurements	
	Coordinates of Monitoring Station: Easting 589880.52, Northing 4804990.81	

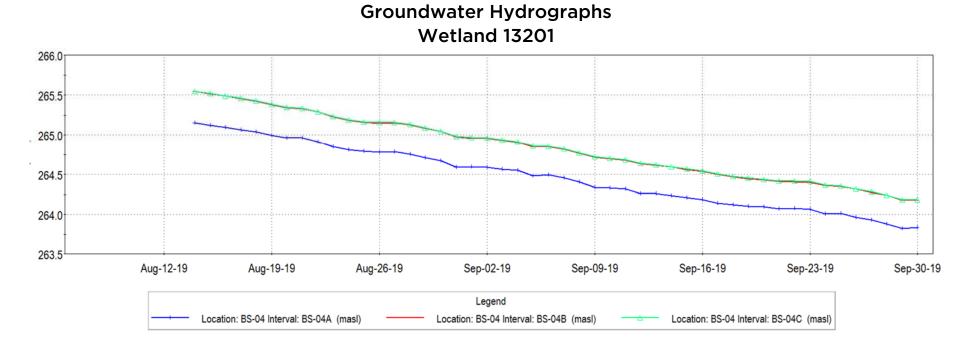
Natural Heritage and Habitat	Description	Figure / Craph	Reference		
Features	Description	Figure / Graph	Report	Section / Page	
Wetland Name & Provincial Significance Evaluation:	Wetland 13201 - Other (considered not significant due to lack of amphibian breeding habitat, isolated and not connected to a PSW; however it has been designed to demonstrate no negative impacts.)		NETR (Savanta, April 2020)	6.1.2	
ELC Unit(s):	Reed-canary Grass Mineral Meadow Marsh: MAM2-2 Silver Maple Mineral Deciduous Swamp: SWD3-2b		NETR (Savanta, April 2020)	Table 2	
Regulated Habitat (MECP):	No		NETR (Savanta, April 2020)	6.7	
Significant Wildlife Habitat:	None confirmed for amphibian breeding, despite survey effort through salamander habitat assessments, salamander trapping and call count surveys.		NETR (Savanta, April 2020)	4.2.2; 5.2.2; Table 19	
Fish Habitat:	None		NETR (Savanta, April 2020)	6.6	
Habitat of Endangered and Threatened Species:	No species at risk salamanders observed, despite survey effort including salamander habitat assessment and salamander trapping.		NETR (Savanta, April 2020)	5.2.2	

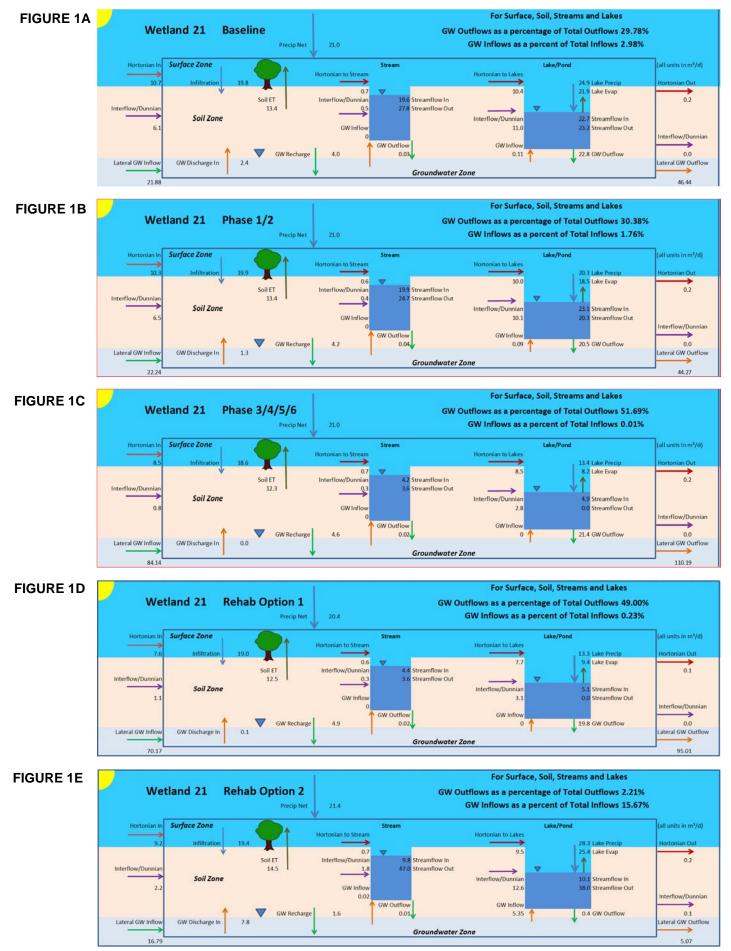
/ Graph		erence
/ Graph	Report	Section / Page
	SN/A (Tatham	Drawing DD 1
	SWA (Tatham, April 2020)	Drawing DP-1
	SWA (Tatham, April 2020)	Drawing DP-1

	Description							Re	Reference	
Groundwater Interaction	Description						Figure / Graph	Report	Section / Page	
Lithology:	Halton Till									
Hydraulic Conductivity:	Integrated Model (Ear piezometers, was 1.2x magnitude higher, to a	10 ⁻⁸ m/s. Model valu	e for the vertical hy							
Surface Water/Groundwater Interaction:	The low permeability of interaction. The wetlan system by the low per changes in the water t									
Shallow Groundwater (Mini-piezometer) Monitoring:	ID: SW36 (Tatham) Installation Date: April 22, 2020 Data Collection: Continuous water level and temperature and manual monthly water level measurements Coordinates of Monitoring Station: Easting 589880.52, Northing 4804990.81									
Background Shallow Groundwater (Mini-	Mini-piezometer ID	Ground Elevation	Bottom Elevation	Average WL	Logger	Manual Meas.				
piezometer) Monitoring:	Golder MP34	273.66	273.15	173.26	2010 - 2013	2010 - 2013	-			
Groundwater Monitoring (Monitoring	Monitoring Well ID	Distance (Dir.)	Geologic Unit	Ground Elevation	Monitoring Elev	Average WL	Graphs 1 & 2			
Wells):	BS-04A	144 (SW)	Bedrock	284.87	-	264.34				
	BS-04B	144 (SW)	Bedrock	284.87	-	264.69	-			
	BS-04C	144 (SW)	Bedrock	284.98	-	264.70	-			
Water Budget Results:	A detailed average wa Conditions (Earthfx Fi provider of groundwa vicinity of Wetland 13	gure 7.29, p. 189). Tl ter. Simulated groun	ne baseline water bu dwater levels, grour	udget is reproduced ndwater discharge to	in Figure 1a. The w riparian areas, and	etland is a net streamflow in the	Figure 1a	HHIAR (Earthfx, April 2020)	165 - 190	
	Wetland 13201	GW Outflow (%)	GW Inflow (%)	7						
	Baseline (Existing)	29.78	2.98							
Integrated Model Calibration:	The model calibration 22 is not discussed in						Graph 3			

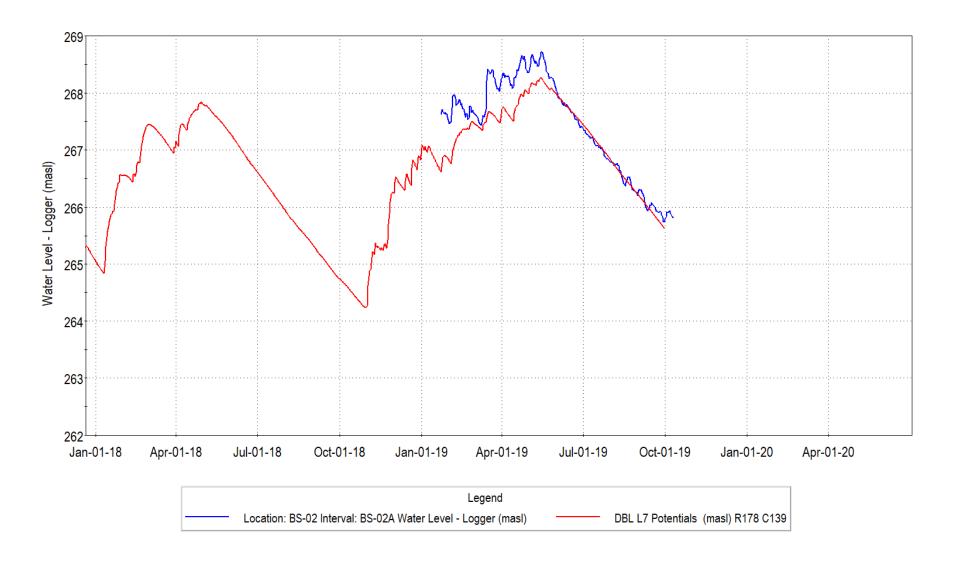
Impact Assessment (Operations	Description	Description							ference
Phases 1 & 2)	Description	Figure / Graph	Report	Section / Page					
Change in Wetland Area (ha):	No change.								
Change in Wetland Catchment Area (ha):	No change. No extract	lo change. No extraction proposed in West Extension as part of Phases 1 and 2 of extraction.						SWA (Tatham,	Drawing DP-2
								April 2020)	
Change in Hydroperiod:	No Change								
Change in Water Budget:	A detailed average wat Conditions (Figure 7.29 budget results for Scen edge of the West Exter maintain its hydroperio represented in the mod conditions. Simulated of in streamflow in the vic main report.	, p. 189); Scenario P ario P12 are reprodu nsion area. This weth d, as described in the lel, so the Wetland 13 change in groundwat	12 (Figure 8.36, p.) iced in Figure 1b. and will be monitor e Tatham, 2020 rep 3201 (Earthfx Weth ter levels (drawdow	224); P3456 (Figure & Wetland 13201 (Earth ed and receive suppl ort. The planned sup and 21) water budge vns), groundwater dis	8.68, p. 251 Wetlan Ifx Wetland 21) is le emental inflows as oplementation has r t is not fully represence charge to riparian	d 22). The water ocated at the south required to not been entative of future areas, and change	Figure 1b	HHIAR (Earthfx, April 2020)	191 - 303
	Wetland 13201	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)	7			
	Baseline (Existing)	29.78	2.98	-	-				
	Operations Ph 1 & 2	30.38	1.76	-0.60	-1.22	1			
Potential Impact to Form and Function of	No wetlands will be rem	noved and the wetlar	nds subcatchment	will be maintained. Th	nere will be no encr	roachment from the			
Feature:	project into the wetland	d.							

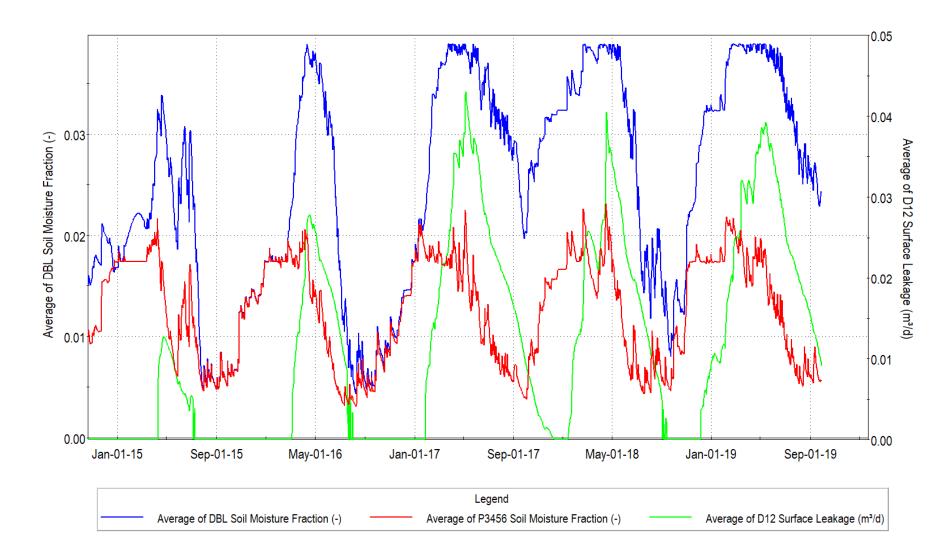

Mitigation (Operational Phases 1 &	-	Figure / Graph	Reference		
2)			Report	Section / Page	
Proposed Mitigation Measures:	None required.				

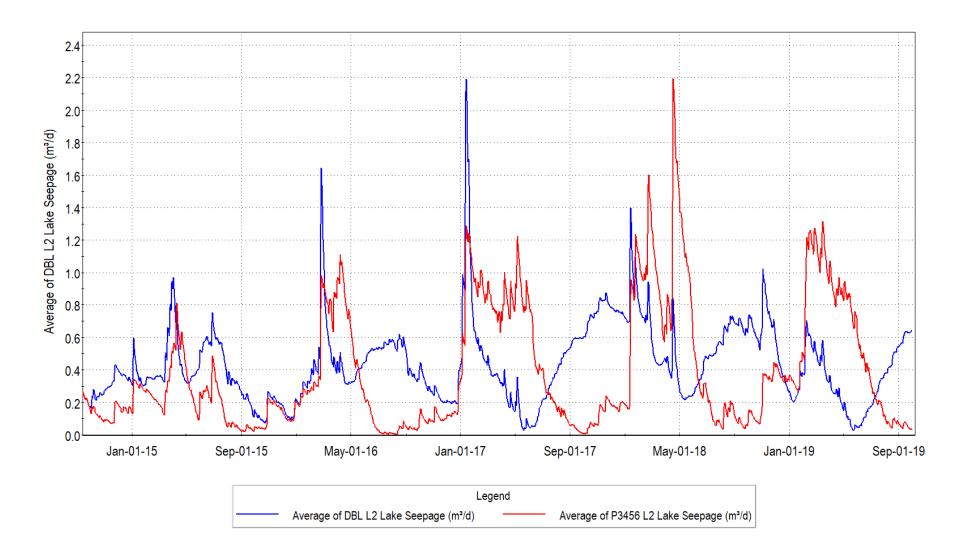

Impact Assessment (Operations	Description						Figure / Granh	Re	ference
Phases 3 - 6)	Description						Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change.								
Change in Wetland Catchment Area (ha):	Reduction in catchment (reduction of 7.25 ha)	area. During operat	tions in Phases 3 th	nrough 6 the catchm	ent area will be redu	uced to 7.6 ha		SWA (Tatham, April 2020)	Drawing DP-2
Change in Hydroperiod:	Reduction due to reduc	tion in catchment are	ea. Change in hydi	roperiod to be deter	mined (to be mitiga	ted).			
Change in Water Budget:	Reduction due to reduction in catchment area. Change in hydroperiod to be determined (to be mitigated). A detailed average water budget as simulated by the integrated model is provided in the Earthfx report for Baseline Conditions (Figure 7.29, p. 189); Scenario P12 (Figure 8.36, p. 224); P3456 (Figure 8.68, p. 251 Wetland 22). The water budget results for Scenario P3456 are reproduced in Figure 1c. Wetland 13201 (Earthfx Wetland 21) is located at the south edge of the West Extension area. This wetland will be monitored and receive supplemental inflows as required to maintain its hydroperiod, as described in the Tatham, 2020 report. The planned supplementation has not been represented in the model, so the Wetland 13201 (Earthfx Wetland 21) water budget is not fully representative of future conditions. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13201 (Earthfx Wetland 21) for each scenario are discussed in Section 8 of the main report.						Figure 1c	HHIAR (Earthfx, April 2020)	191 - 303
	Wetland 13201	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)]			
	Baseline (Existing)	29.78	2.98	-	-				
	Operations Ph 3 - 6	51.69	0.01	21.91	-2.97				
Change on Soil Moisture Conditions:	The predicted soil mois Wetland 21 is shown in 21 than the other wetla Baseline conditions, the moisture conditions. Un seepage. These chang the spring, and lower le total inflows is only 2.98	Graph 5. The chang nds because the head wetland receives run der P3456 conditions es (due to lower wat akage in the fall (Gra	e in soil moisture a dwater catchment noff and interflow f s the change in cat er availability and f uph 5). It is importa	nd pond seepage is area will be reduced from a larger catchm chment area reduce the drop in the wate	somewhat more cor by the development ent resulting in high s the soil moisture a table) cause highe	mplex in Wetland at of P3456. Under aer average soil and groundwater r pond leakage in	Graph 4 & 5		
Potential Impact to Form and Function of	Both wetlands will rema	ain in place. There wi	ll be no encroachm	ent from the project	into the wetlands.	The proposed limit		NETR (Savanta,	7.2.1; 7.1.1; 7.1.2
Feature:	of extraction is >30 m fr to ensure site construct to these wetland units v	ion and operations d	lo not extend beyo	nd the proposed lim	its of the project .	The drainage area	1	April 2020)	

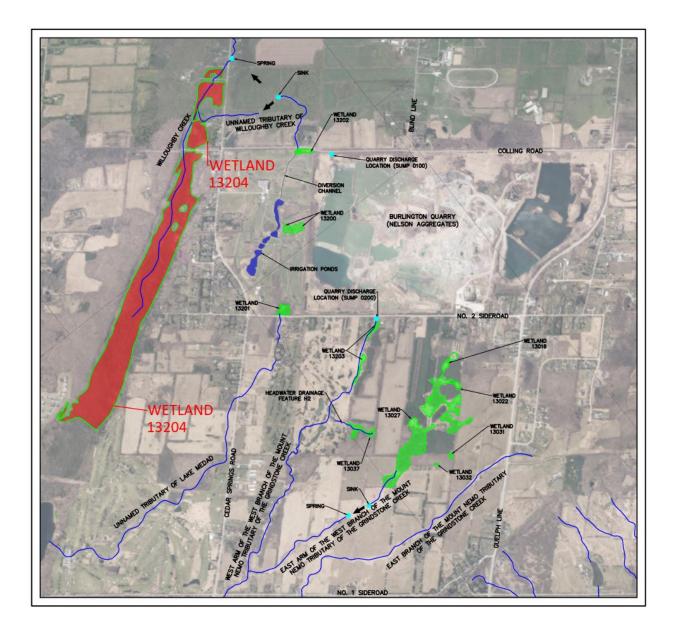

6)	Description	Figure / Graph	Reference		
	Description	Figure / Graph	Report	Section / Page	
	To mitigate this potential impact, flow to the wetlands will be supplemented by a bottom draw outlet constructed in the southeast corner of the proposed infiltration pond and an outlet pipe with a control valve will be installed to discharge water into the roadside ditch along No. 2 Sideroad, feeding the wetland. The bottom draw outlet, outlet pipe and control valve will remain post extraction as part of the rehabilitation of the site. Wetland hydroperiod and shallow groundwater monitoring stations were installed in spring 2020. This data will be used to establish existing thresholds so existing conditions can be maintained throughout extraction operations and replicated in post-operation / rehabilitated conditions.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2	

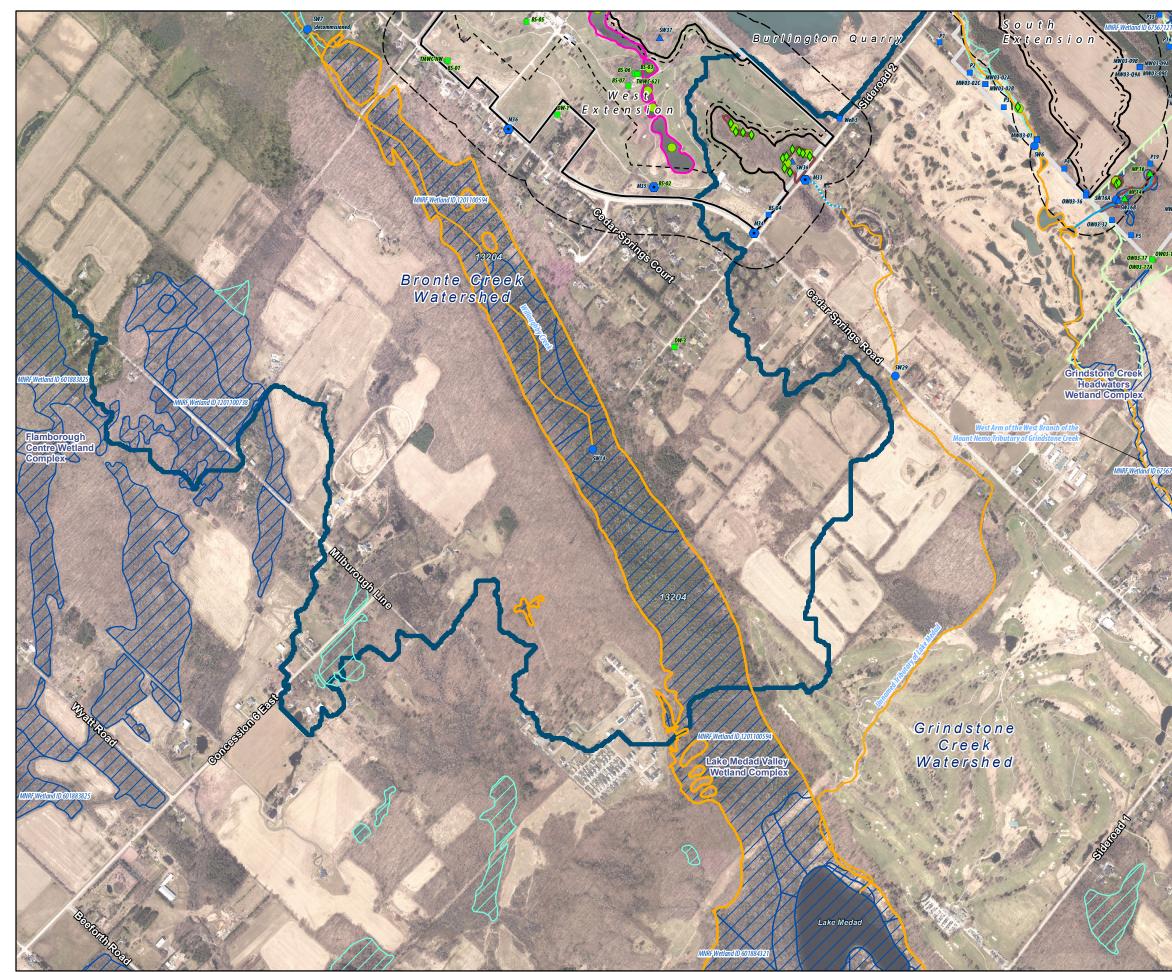
Impact Accordment (Debabilitation)	Description						Figure / Graph	Re	ference
Impact Assessment (Rehabilitation)	Description					Figure / Graph	Report	Section / Page	
Change in Wetland Area (ha):	No change.								
Change in Wetland Catchment Area (ha):	Reduction in catchment (reduction of 7.25 ha)								Drawing DP-3
Change in Hydroperiod:	Reduction due to reduc								
Change in Water Budget:	A detailed average water budget as simulated by the integrated model is provided in the Earthfx report for Baseline Conditions (Figure 7.29, p. 189); Scenario P12 (Figure 8.36, p. 224); P3456 (Figure 8.68, p. 251 Wetland 22). The water budget results for Scenario RHB1 and RHB2 are reproduced in Figures 1d and 1e. Wetland 13201 (Earthfx Wetland 21) is located at the south edge of the West Extension area. This wetland will be monitored and receive supplemental inflows as required to maintain its hydroperiod, as described in the Tatham, 2020 report. The planned supplementation has not been represented in the model, so the Wetland 13201 (Earthfx Wetland 21) water budget is not fully representative of future conditions. Simulated change in groundwater levels (drawdowns), groundwater discharge to riparian areas, and change in streamflow in the vicinity of Wetland 13201 (Earthfx Wetland 21) for each scenario are discussed in Section 8 of the main report.						Figure 1d and 1e	HHIAR (Earthfx, April 2020)	191 - 303
	Wetland 13201	GW Outflow (%)	GW Inflow (%)	∆ in Outflow (%)	∆ in Inflow (%)]			
	Baseline (Existing)	26.31	0.00	-	-	1			
	Rehab Scenario 1	49.00	0.23	19.22	-2.75	1			
	Rehab Scenario 2	2.21	15.67	-27.57	12.69				
Potential Impact to Form and Function of Feature:	Both wetlands will rema of extraction is >30 m fr to ensure site construct to these wetland units v	rom the wetland bou ion and operations d	ndary. The license o not extend beyo	d boundary/extraction nd the proposed limi	on limit will be dem ts of the project . T	arcated and fenced The drainage area		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2


Mitigation (Rehabilitation)	Description	Figure / Graph	Report	ference Section / Page
Proposed Mitigation Measures:	To mitigate this potential impact, flow to the wetlands will be supplemented by a bottom draw outlet constructed in the southeast corner of the proposed infiltration pond and an outlet pipe with a control valve will be installed to discharge water into the roadside ditch along No. 2 Sideroad, feeding the wetland. The bottom draw outlet, outlet pipe and control valve will remain post extraction as part of the rehabilitation of the site. Wetland hydroperiods and shallow groundwater monitoring stations were installed in spring 2020. This data will be used to establish existing thresholds so existing conditions can be maintained throughout extraction operations and replicated in post-operation / rehabilitated conditions.		NETR (Savanta, April 2020)	7.2.1; 7.1.1; 7.1.2



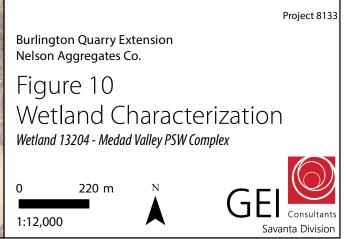

Integrated Model Calibration Wetland 13201




Change in Soil Moisture Conditions Wetland 13201

Legend

Licensed Boundary Limit of Extraction L _____ Limit of Extraction L _____ 120 m Adjacent Lands Subject Lands Lake Medad Valley Wetland Complex Amphibian Call Count Station (2019) Salamander Trap (2019) Salamander Habitat Assessment (2019) Golf Course Irrigation Ponds and Channel Indirect Fish Habitat Direct Fish Habitat Provincially Significant Wetland (LIO/MNRF, 2020) Wetland - Not Evaluated per OWES (MNRF/LIO, 2020) MECP Jefferson Salamander Regulated Habitat Watershed Boundary (Conservation Halton) Current Instrumentation Groundwater Monitoring Station (EarthFx) Mini Piezometer (Tatham Engineering)


- Staff Gauge & Surface Water Monitoring Station (Tatham Engineering)
- Manual Stream Flow Measurement (Tatham Engineering)

Previous Instrumentation

- Groundwater Monitoring Station (Golder)
- Mini Piezometer (Golder)

NOTES: 1. Coordinate System: NAD 1983 UTM Zone 17N.

Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021; © Conservation Halton, 2021.
 Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

e **Page 151**uary 11, 202

Wetland 13204

Wetland Characteristics	Description	Figure /
Wetland IDs:	MNRF - 1201100594 (OGF 1200821993, 1200821992, 1200821982, 1200821988, 67340473, 1200821978, 67196301,	
	Earthfx - Medad Valley	
	Tatham - 13204	
	Savanta - Lake Medad Wetland	
	Golder (Background) - N/A	
Wetland Area (ha):	LIO/MNRF - 48.5	
Watershed:	Bronte Creek Watershed	
Sub-Watershed:	Willoughby Creek Watershed	
Located in Proposed Limit of Extraction:	No	
Located in Proposed License Boundary:	No	
Catchment Area (ha):	844 + quarry discharge (Sump 0100)	
Catchment ID:	N/A	
Closed or Connected System:	On-line (connected to downstream watercourse)	
Condition:	Natural	
Bathymetry:	No bathymetric data available for the Lake Medad PSW.	
Outlet:	Willoughby Creek	
Hydroperiod:	Seasonal	
Surface Water Monitoring:	ID: SW14 (Tatham)	Graph 1
	Installation Date: October 2, 2014	
	Data Collection: Continuous water level and temperature and manual monthly water level measurements	
	Coordinates of Monitoring Station: Easting 589226.754, Northing 4804106.857	

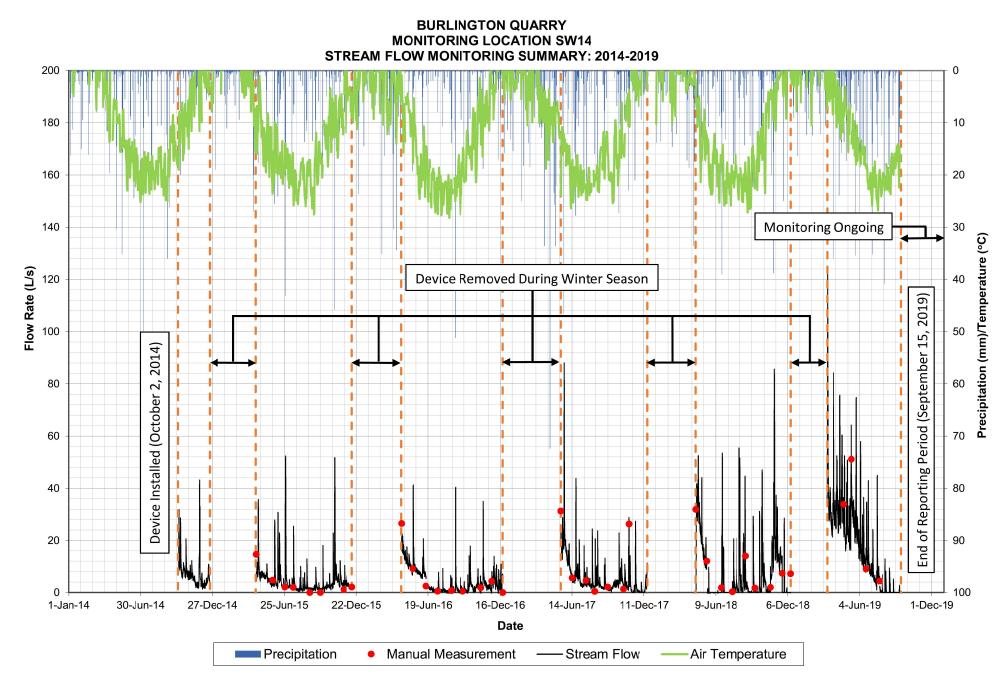
Natural Heritage and Habitat	Description	Figure / Graph	Reference		
Features	Description	Figure / Graph	Report	Section / Page	
Wetland Name & Provincial Significance Evaluation:	Lake Medad Valley Wetland Complex - Provincially Significant		NETR (Savanta, April 2020)	6.1.2	
ELC Unit(s):	Unknown – outside of 120 m adjacent lands				
Regulated Habitat (MECP):	No				
Significant Wildlife Habitat:	Unknown - outside of 120 m adjacent lands				
Fish Habitat:	Unknown – outside of 120 m adjacent lands				
Habitat of Endangered and Threatened Species:	Unknown - outside of 120 m adjacent lands				

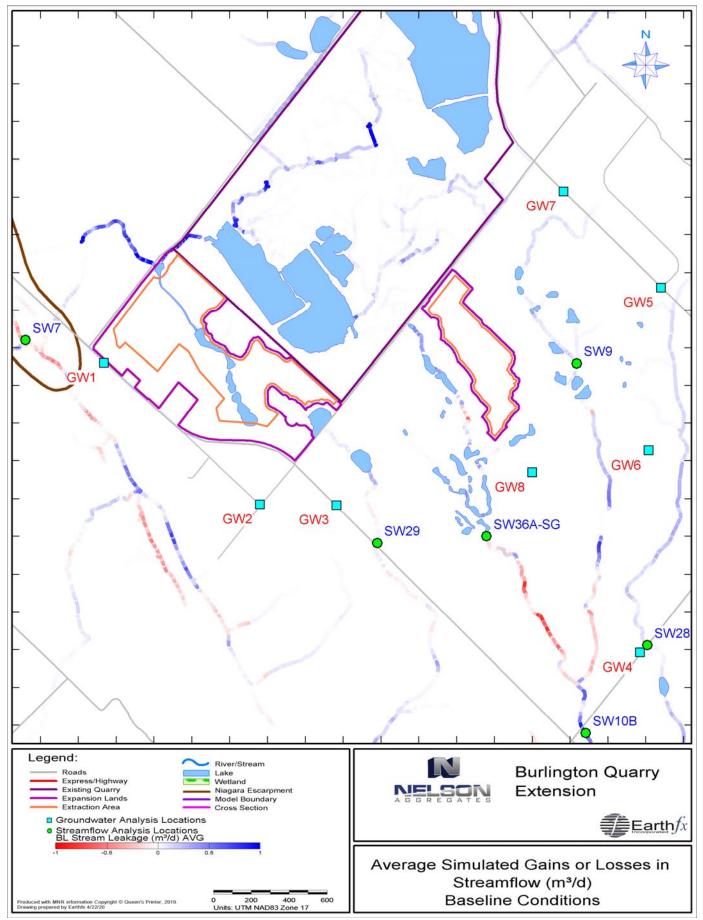
/ Graph		Reference			
/ Graph	Report	Section / Page			
	SWA (Tatham, April 2020)	2.1.1, 3 and Appendix B			

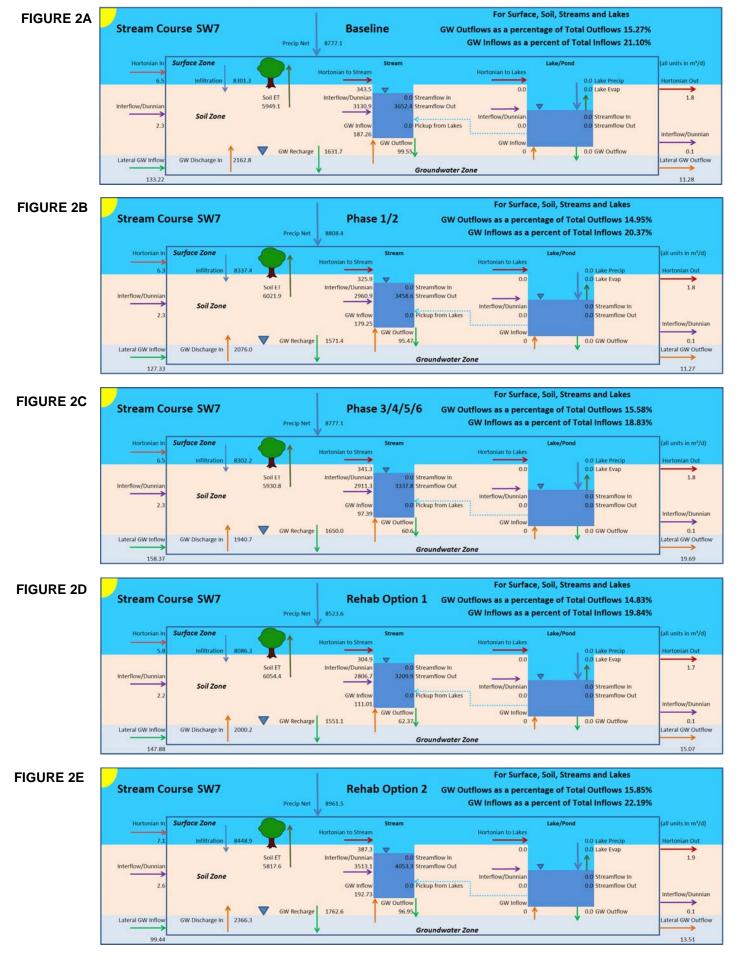
Croundwater Interaction	Description		Re	eference	
Groundwater Interaction	Description	Figure / Graph	Report	Section / Page	
Lithology:	The Medad Valley is a partly-buried gorge that carried meltwater from the receding ice for a period of time (Karrow, 1987). The infill deposits are likely coarse-grained glaciofluvial deposits overlain by organic deposits. While there is limited borehole information in the Medad Valley, there is some evidence that the sand deposits are thicker in the valley to the north and south of the site.				
Hydraulic Conductivity:	Integrated Model (Earthfx) - Model values for the horizontal hydraulic conductivity of the MIS sands were 5.0x10 ⁻⁵ m/s and 2.5x10 ⁻⁵ m/s for vertical hydraulic conductivity.	Image: Section of the secon of the second of the section of the section of the s			
Surface Water/Groundwater Interaction:	The Medad Valley is a local groundwater discharge zone. Flow is supplemented by groundwater discharge to springs on the flanks of the valley. The GSFLOW model indicated that groundwater discharge exceeds groundwater recharge in this area. The model also indicated that lowering the water table in the quarry vicinity has limited effect on the major areas of groundwater discharge, such as the Medad Valley, which are already at a lower elevation than the quarry. The model also indicated that, while the Medad Valley is generally a groundwater discharge area, there are reaches of the main stream in the centerline of the valley that lose water to the groundwater system (see figure 7.21 in Earthfx report, reproduced below). This demonstrates that the incised Medad wetlands and streams are isolated from and behave differently than the streams and wetlands of the upland plateau (where the quarry is located). Despite these losing conditions, there is still a net gain of water in the stream between gauges SW14 and SW07.				
Water Budget Results:	A detailed Baseline water budget (to stream gauge SW7) was produced for this wetland and it is discussed in the Watercourse Characterization Table for Willoughby Creek.	Figure 2a			
Integrated Model Calibration:	Model calibration focused on matching observed streamflow. The calibration to streamflow is presented in Earthfx Section 19.4. The figure shows the calibration to SW2.	Graph 2	HHIAR (Earthfx, April 2020)	19.4	

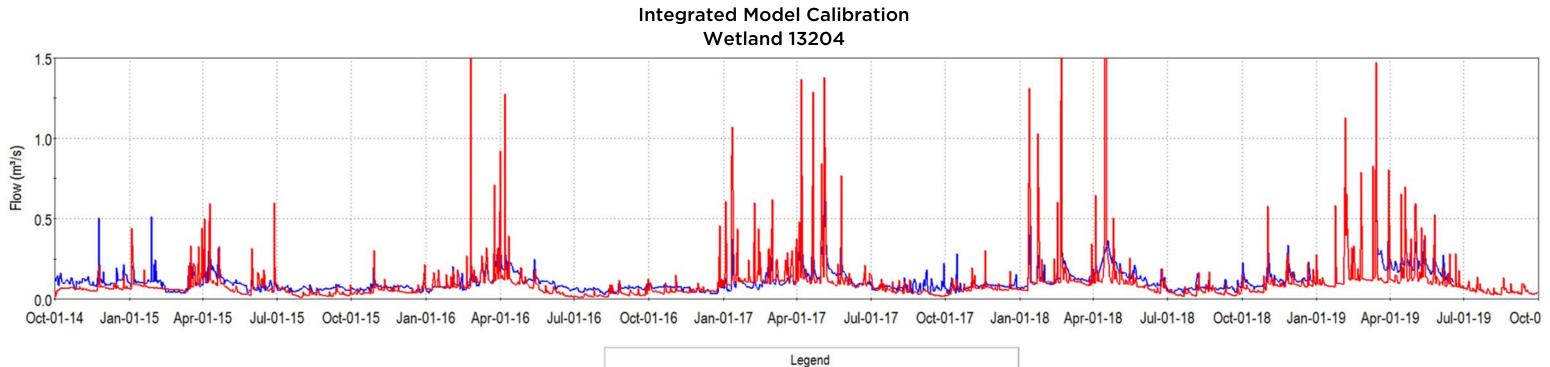
Phases 1 & 2)	Description	Figure / Graph	Re	eference	
	Description	Figure / Graph	Report	Section / Page	
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.				
Change in Wetland Catchment Area (ha):	No Change as a result of extraction in Phase 1. Catchment area remains unaltered.				
Change in Hydroperiod:	No Change. Subcatchment area remains unaltered.				
Change in Water Budget:	A detailed Baseline water budget (to stream gauge SW7) was produced for this wetland and it is discussed in the Watercourse Characterization Table for Willoughby Creek.	Figure 2b			
Potential Impact to Form and Function of Feature:	No wetlands will be removed and the wetlands subcatchment will be protected. There will be no encroachment from the project into the wetland. The proposed limit of extraction is >120 m from the wetland boundary. Licensed boundary will be demarcated and fenced to ensure site construction and operations do not extend beyond the proposed limits of the project.				

Mitigation (Operational Phases 1 & 2)	Description	Figure / Graph	Ref Report	erence Section / Page
	None required.			

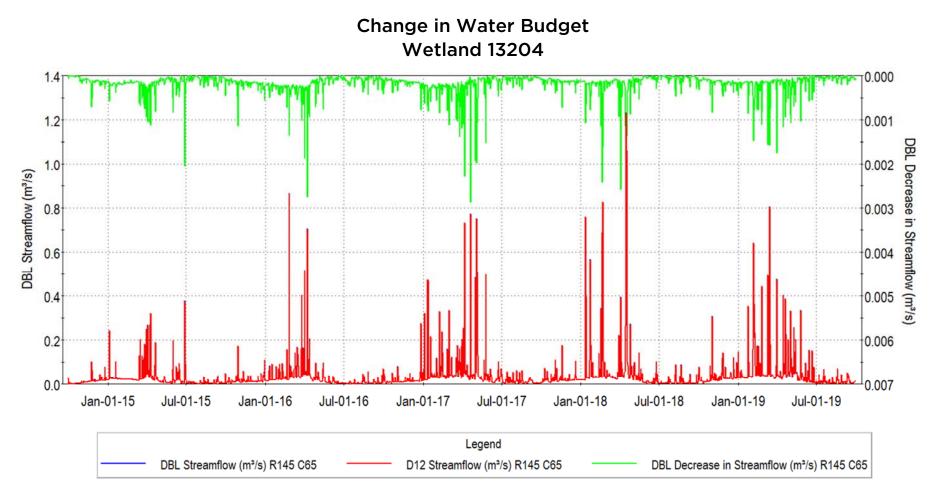

Impact Assessment (Operations	Description	Figure / Graph	Re	ference
Phases 3 - 6)	Description	Figure / Graph	Report	Section / Page
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.			
Change in Wetland Catchment Area (ha):	Reduction in catchment area. During operations in Phases 3 through 6 the catchment area will be reduced by 18.6 ha (reduction of 2%).			
Change in Hydroperiod:	Insignificant reduction due to reduction in catchment area. Potential reduction due to groundwater drawdown to be mitigated through construction of infiltration pond.			
Change in Water Budget:	A detailed Baseline water budget (to stream gauge SW7) was produced for this wetland and it is discussed in the Watercourse Characterization Table for Willoughby Creek. Changes in streamflow at SW7 in the Medad Valley were generally small. Figures 8.11 (p. 203) and Figure 8.49 (p. 237) compare streamflow under Phase 12 and Phase 3456, respectively, to baseline flows. The figures are reproduced in Graphs 3 and 4. The small changes indicate that changes to the Medad wetland are also likely to be small.	Figure 2c and Graphs 3 & 4		
Change on Soil Moisture Conditions:	The total change in surface leakage between Baseline and P3456 in catchment SW7 is shown in Graph 5. A small amount of groundwater seepage will be intercepted by P3456 and discharged to the Medad Valley just downstream of SW7. This change in seepage is relatively uniform over time and will not be observable because it is highly diffuse.	Graph 5		
Potential Impact to Form and Function of Feature:	Potential adverse impacts to wetland hydroperiod due to reduction in catchment area and groundwater drawdown to be mitigated.			

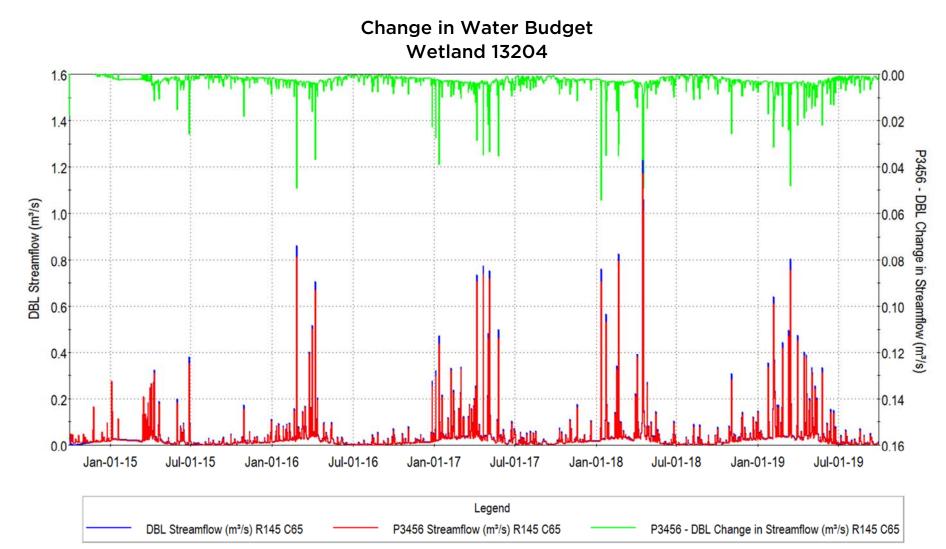

Mitigation (Operational Phases 3 -	Description	Figure / Graph	Ref	ierence
6)		rigule / Olaph	Report	Section / Page
Proposed Mitigation Measures:	Construction of infiltration pond is intended to maintain seepage to GW in the vicinity West Extension to maintain GW			
	levels and GW discharge to the Medad Valley.			

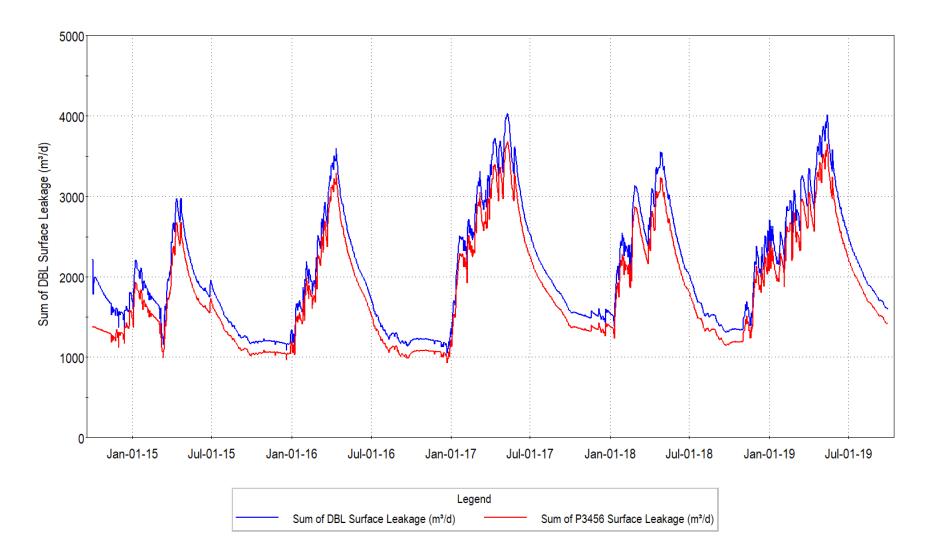

Impact Assessment (Rehabilitation)	Description	Figure / Graph	Reference		
	Description	Figure / Graph	Report	Section / Page	
Change in Wetland Area (ha):	No change. Wetland located greater than 120 m from licensed boundary.				
Change in Wetland Catchment Area (ha):	Reduction in catchment area. During operations in Phases 3 through 6 the catchment area will be reduced by 18.6 ha (reduction of 2%).				
Change in Hydroperiod:	Insignificant reduction due to reduction in catchment area. Potential reduction due to groundwater drawdown to be mitigated through construction of infiltration pond.				
Change in Water Budget:	See Change in Water Budget described under Impact Assessment (Phases 3 through 6).				
Potential Impact to Form and Function of Feature:	Potential adverse impacts to wetland hydroperiod due to reduction in catchment area and groundwater drawdown to be mitigated.				


Mitigation (Rehabilitation)	Description	Figure / Graph	Ref	ference
		Figure / Graph	Report	Section / Page
Proposed Mitigation Measures:	Construction of infiltration pond is intended to maintain seepage to GW in the vicinity West Extension to maintain GW			
	levels and GW discharge to the Medad Valley.			

WETLAND 13204 - GRAPH 1







SW2 (m3/sec) DBL Streamflow (m³/s) R83 C38

Attachment 2 – Watercourse Characterization

Watercourse Characterization Summaries Proposed Burlington Quarry Extension, Nelson Aggregates Co.

Prepared for:

April 2021 Version 1.0

April 2021

Nelson Aggregate Co. 2433 No. 2 Sideroad Burlington, Ontario L7P 0G8

Attention: Mr. Quinn Moyer, President

RE: Burlington Quarry Watercourse Characterization Summaries

Dear Mr. Moyer,

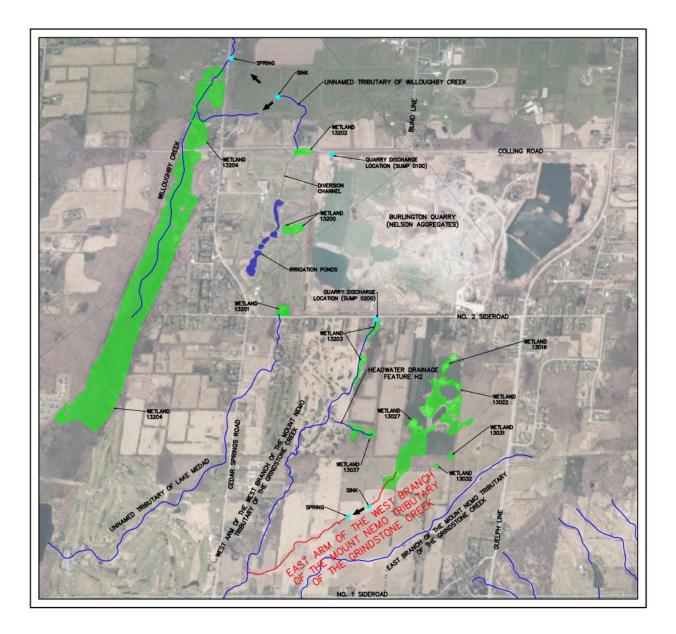
Earthfx Incorporated, Savanta Inc. and Tatham Engineering Limited are pleased to provide Nelson Aggregates Co. with the enclosed watercourse characterization summaries in support of the Proposed Burlington Quarry Extension. The watercourse characterization summaries have been prepared in response to comments received by the Ministry of Natural Resources and Forestry.

The watercourse characterization summaries have been prepared to summarize the watercourse information provided in the Level 1 and Level 2 Hydrogeological Impact Assessment, Level 1 and Level 2 Natural Environment Technical Report, and Surface Water Assessment. The hope is the watercourse characterization summaries will aid in the review of the reports and expedite the review process.

Regards,

Dirk Kassenaar, M.Sc., P.Eng. President, Eartfx Incorporated

Shannon Catton, MSc. Branch Manager & Senior Ecologist, Savanta Inc.


1 and 1mm

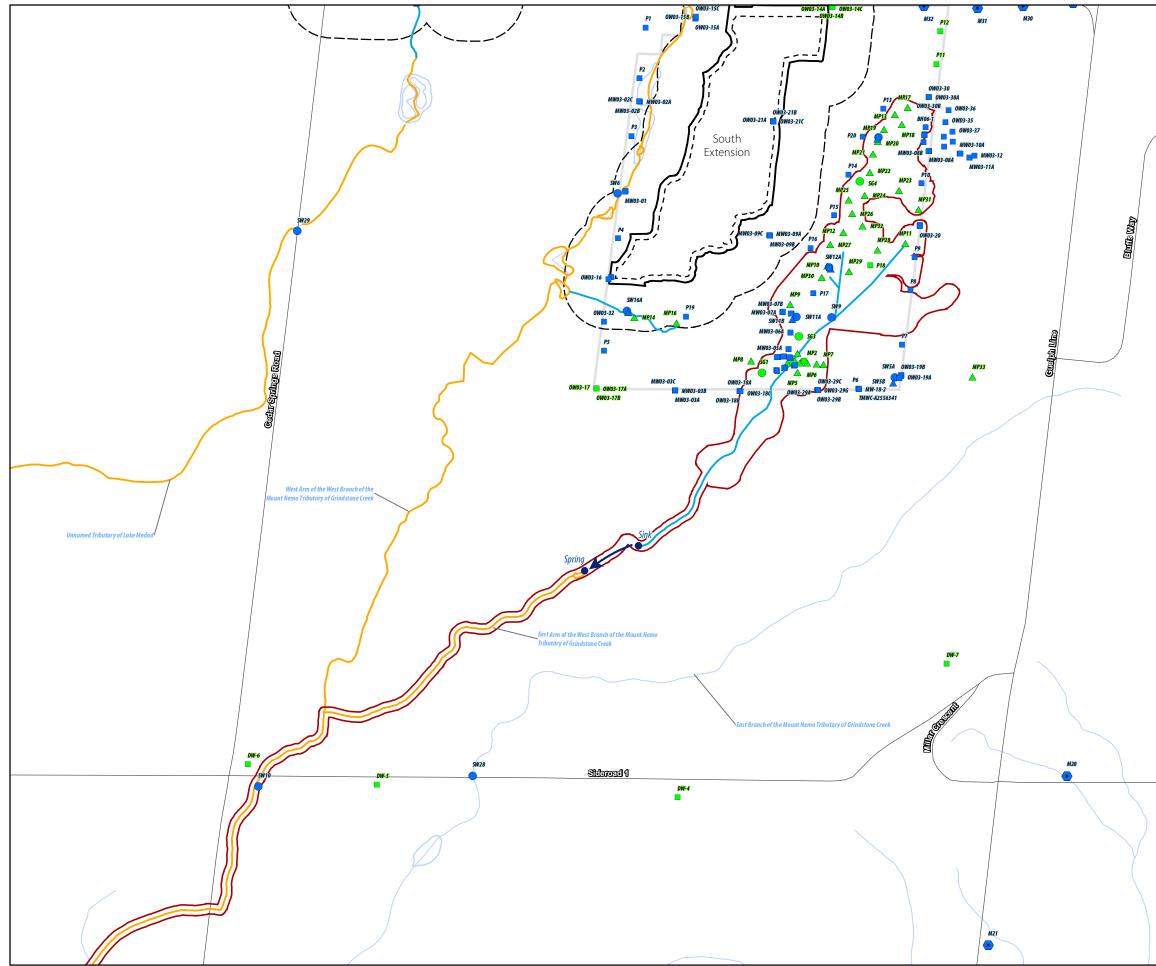

Daniel Twigger, B.Sc.Eng., P.Eng. Senior Engineer, Group Leader, Tatham Engineering Limited

Table of Contents

EAST ARM OF THE WEST BRANCH	1
HEADWATER DRAINAGE FEATURE H2	22
UNNAMED TRIBUTARY OF LAKE MEDAD	
UNNAMED TRIBUTARY OF WILLOUGHBY CREEK	54
WEST ARM OF THE WEST BRANCH	75
WILLOUGHBY CREEK	97

EAST ARM OF THE WEST BRANCH

Legend

- Licensed Boundary
- Limit of Extraction
- []] 120 m Adjacent Lands
- Subject Lands
- East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek
- ------ Road
- Indirect Fish Habitat
- Direct Fish Habitat
- Watercourse
- Waterbody
- Wetland (Savanta, 2020)

Current Instrumentation

- Groundwater Monitoring Station (EarthFx)
- ▲ Mini Piezometer (Tatham Engineering)
- Staff Gauge & Surface Water Monitoring Station (Tatham Engineering)
- Manual Stream Flow Measurement (Tatham Engineering)

Previous Instrumentation

- Groundwater Monitoring Station (Golder)
- ▲ Mini Piezometer (Golder)
- Staff Gauge & Surface Water Monitoring Station (Golder)

NOTES: 1. Coordinate System: NAD 1983 UTM Zone 17N. 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021. 3. Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

Project 8133

M19

Burlington Quarry Extension Nelson Aggregates Co.

Figure 16 Watercourse Characterization *East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek* 180 m 0

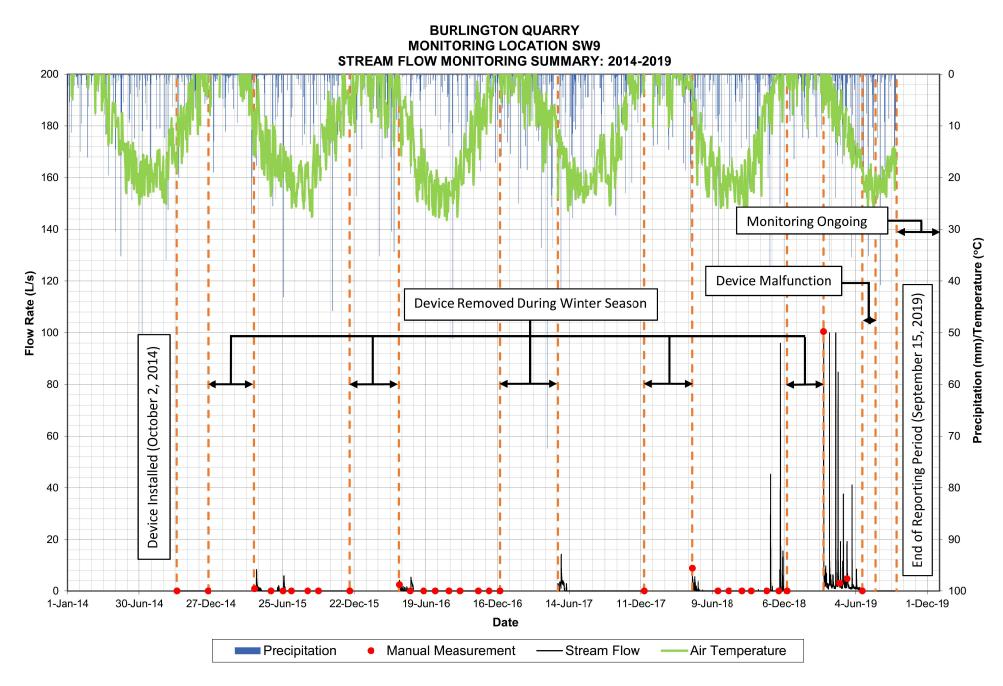
1:10,000

East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek

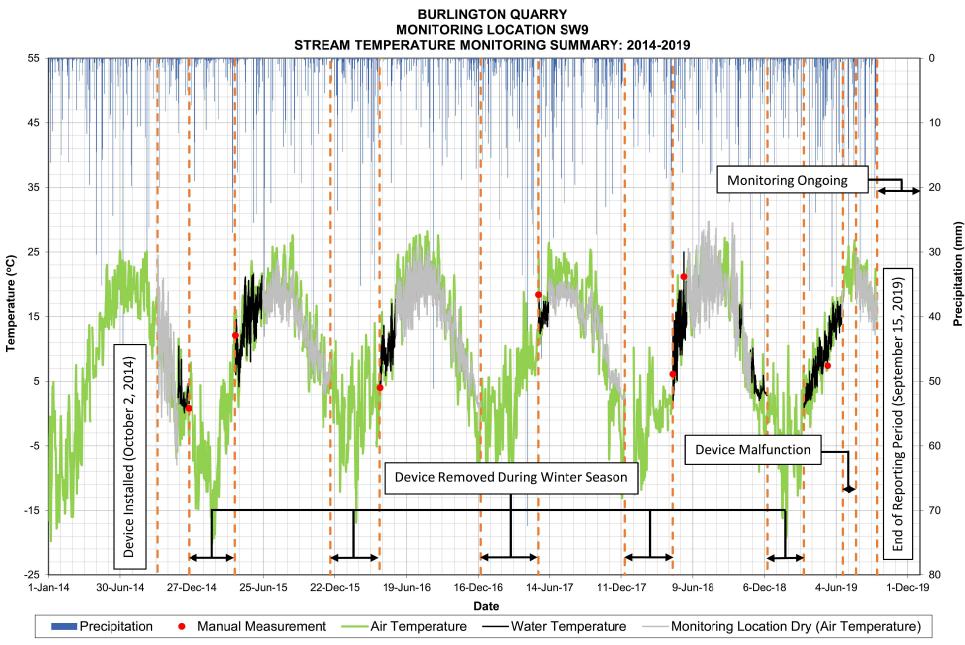
Surface Water Characteristics	Description					Figure / Graph /	R	eference
Surface Water Characteristics	Description					Table	Report	Section / Page
Watercourse Name:	East Arm of the West	Branch of the Mount N	Nemo Tributary of (Grindstone Creek				
Watershed:	Grindstone Creek							
Sub-Watershed:	Mount Nemo Tributar	y of Grindstone Creek						
Located in Proposed Limit of Extraction:	No							
Located in Proposed License Boundary:	No							
Catchment Area (ha):	85 ha (at confluence v	with West Arm)						
Catchment ID:	N/A							
Primary Source(s) of Flow:	Surface runoff							
Discharge from Quarry / PTTW:	No							
Conditions of PTTW:	Not Applicable							
Surface Water Monitoring:	ID: SW9 (Tatham)					Graphs 1 & 2	SWA (Tatham,	2.1.2 and Appendix C
	Installation Date: Octo	Installation Date: October 2, 2014					April 2020)	
		Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve)						
	Coordinates of Monito	Coordinates of Monitoring Station: Easting 591235.384, Northing 4805317.071						
Streamflow Conditions:	Intermittent						SWA (Tatham, April 2020)	2.1.2 and Appendix C
Average Daily Flow (SW9):		Average Daily Streamflow (L/s) Notes:					SWA (Tatham,	2.1.2 and Appendix C
	Month	Minimum	Average	Maximum	Minimum - lowest daily average		April 2020)	
	January	N/A	N/A	N/A	streamflow recorded for period of			
	February	N/A	N/A	N/A	record			
	March	1.2	9.1	62.1	Average - average daily streamflow			
	April	0.0	2.6	27.1	recorded for period of record			
	May	0.0	1.2	13.2	Maximum - maximum daily average			
	June	0.0	0.3	5.1	streamflow recorded for period of			
	July	0.0	0.0	1.2	record			
	August	0.0	0.0	0.0	N/A - data not available as device			
	September	0.0	0.0	0.0	removed from watercourse during			
	October	0.0	0.0	0.0	winter months			
	November	0.0	0.5	36.3				
	December	0.0	0.2	9.7				

Surface Water Characteristics	Description		Figure / Graph /					
						Table	Report	Section / Page
Watercourse Thermal Regime (SW9):		Average Daily Water	Temperature (°C)		Notes:	Graph 2	SWA (Tatham,	2.1.2 and Appendix C
	Month	Minimum	Average	Maximum	Minimum - lowest daily average		April 2020)	
	January	N/A	N/A	N/A	streamflow recorded for period of			
	February	N/A	N/A	N/A	record			
	March	1.0	2.6	6.5	Average - average daily streamflow			
	April	1.5	8.0	15.9	recorded for period of record			
	May	6.9	12.2	19.1	Maximum - maximum daily average			
	June	11.5	15.6	19.6	streamflow recorded for period of			
	July	16.8	17.1	17.7	record			
	August	Dry	Dry	Dry	N/A - data not available as device			
	September	Dry	Dry	Dry removed from watercourse during				
	October	Dry	Dry	Dry	winter months			
	November	2.4	4.5	10.1				
	December	3.5	4.6	5.9				

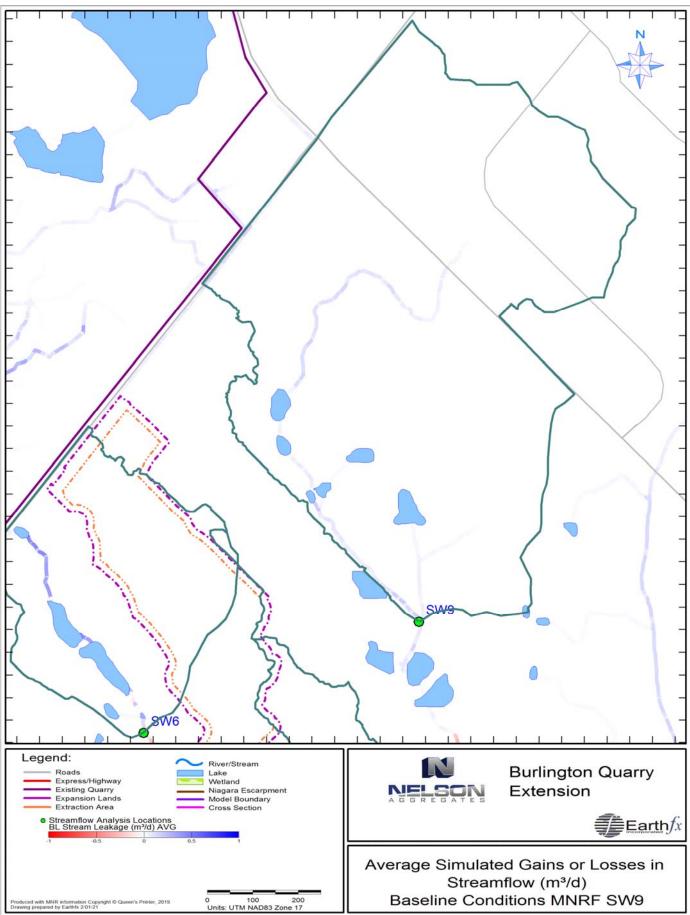
Fich 9 Fich Unbitat Fostures	Description	Figure / Graph /	Re	ference
Fish & Fish Habitat Features	Description	Table	Report	Section / Page
Fish Habitat (Direct/Indirect and Assumed/Confirmed):	 The upstream reaches of the East Arm (from the headwaters to approximately 540 m downstream from the Subject Lands) are considered to be indirect fish habitat. These headwater areas are ephemeral to intermittent and have been observed to dry up completely in summer. Approximately 540 m downstream of the Subject Lands, the watercourse enters a karst sink, where it flows underground for approximately 162 m before discharging to a surface pond. No fish movement is expected to be possible through the 162 m long underground flow path, therefore, given that the upstream area is intermittent and dries out completely, and there is no upstream fish movement, fish are not present in the upper reaches. This upstream reach provides indirect contributing habitat functions to support the downstream fish community. The remainder of the watercourse downstream from the karst outflow provides direct fish habitat. Fish have been previously captured by MNRF at the online pond at karst discharge and are assumed to be present through the watercourse downstream. 		NETR (Savanta, April 2020)	44 - 45 and Figure 9b
Fish Species Present:	Stantec (2010) previously reported that in 2006, MNRF captured several different age classes of Fathead Minnow, Bluntnose Minnow, Brook Stickleback and Green Sunfish in the pond at the karst discharge point.		NETR (Savanta, April 2020)	44 - 45 and Figure 9b
Fish Community Thermal Regime:	Warm/Cool (based on fish species present)		NETR (Savanta, April 2020)	44 - 45 and Figure 9b
Fish Habitat Types Present:	 The headwater wetlands, swales and drainage ditches on the Subject Lands provide indirect habitat that supports the downstream direct fish community. Habitat functions of these areas include flow conveyance and regulation, water quality maintenance and organic allochthonous inputs and potentially seasonal benthic drift. No investigations were completed in the downstream (off-site reaches) providing direct fish habitat. 		NETR (Savanta, April 2020)	44 - 45 and Figure 9b
Habitat Uses by Known Fish Community:	The local fish community likely uses the off-site habitat for the complete range of life history processes including spawning, nursery, foraging and overwintering.		NETR (Savanta, April 2020)	44 - 45 and Figure 9b
Known Barriers to Fish Movement:	The karst inlet and associated 162 m long underground reach are assumed to provide a barrier to upstream fish movement.		NETR (Savanta, April 2020)	44 - 45 and Figure 9b

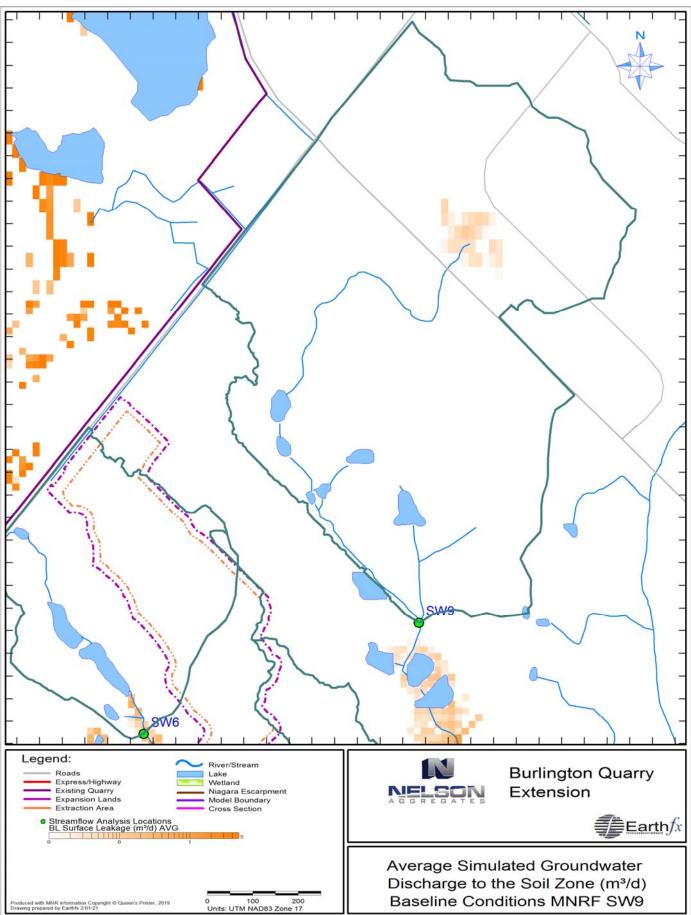

	Decemination		Figure / Graph /	Re	ference		
Groundwater Interaction	Description				Table	Report	Section / Page
Underlying Deposits:	Halton Till. The harmoni 1.2x10 ⁻⁸ m/s. Model valu account for limited flow	ue for the vertical hy					
Surface Water / Groundwater Interactions:	Seasonal groundwater c months equates to 0.1 L freshet.		Figures 1 & 2				
Water Budget Results (SW9):	The baseline condition w 3a.	vater budget results	from the integrated	model at monitoring location SW9 are presented in Figure	Figure 3a		
	Condition	GW Out	GW In				
	Baseline (Existing)	23.13%	0.15%				
Water Budget Results (600m Downstream of SW9):	The baseline condition w presented in Figure 4a.	vater budget results	from the integrated	model 600 m downstream of monitoring location SW9 are	Figure 4a		
	Condition	GW Out	GW In				
	Baseline (Existing)	22.18%	0.75%				
Integrated Model Calibration:	observed streamflow at	SW9 are presented nd simulated results	in Earthfx (p. 414) fa s are very flashy. Th	ly to the east of the South extension. Simulated and or WY2017 to WY2019. Flow in the stream is intermittent e observed data also contain gaps. The match to the		HHIAR (Earthfx, April 2020)	411 - 414

Impact Assossment	Description		Figure / Graph /	Reference				
Impact Assessment	Description					Table	Report	Section / Page
Direct Alterations to Watercourse:	No direct alterations to	this watercourse are	proposed.		NETR (Savanta, April 2020)	75		
Change in Primary Source of Flow:	Modeling predicted less Lands. This was predict than 1%.							
Change in Watercourse Catchment Area:	Catchment area to rem	ain undisturbed, no c	hange in catchme	nt area.				
Simulated Streamflow Change (Integrated Model Results):	The Earthfx report disc appended (GRaph 5) re location SW9. Decreas Very small decreases in is reproduced for Phase positive values indicatir spring but higher in the	blue) flows at e right Y axis. re (Graph 6) w (with	HHIAR (Earthfx, April 2020)	198 - 203 and 230 - 237				
	spring but nighter in the	summer and fail per		esults at Monitoring L	ocation SW9			
Water Budget Results (Operational Phases & 2):	The Operational Phases in Figure 3b.	s 1 and 2 water budge	et results from the	integrated model at r	nonitoring location SW9 a	re presented Figure 3b		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	23.13%	0.15%	-	-			
	Phases 1 & 2	22.51%	0.00%	-0.62%	-0.15%			
Water Budget Results (Operational Phases 3 Through 6):	The Operational Phases presented in Figure 3c.	s 3 through 6 water b	udget results from	the integrated mode	at monitoring location SN	V9 are Figure 3c		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	23.13%	0.15%	-	-			
	Phases 3 through 6	23.27%	0.10%	0.14%	-0.05%			
Water Budget Results (Rehabilitation Scenario 1):	The Rehabilitation Scer Figure 3d.	nario 1 water budget	results from the in	tegrated model at mo	nitoring location SW9 are	presented in Figure 3d		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	23.13%	0.15%	-	-			
	Rehab Scenario 1	22.39%	0.12%	-0.74%	-0.03%			
Water Budget Results (Rehabilitation Scenario 2):	The Rehabilitation Scer Figure 3d.	nario 2 water budget	results from the int	tegrated model at mo	nitoring location SW9 are	presented in Figure 3e		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	23.13%	0.15%	-	-			
	Rehab Scenario 2	23.81%	0.28%	0.68%	0.13%			

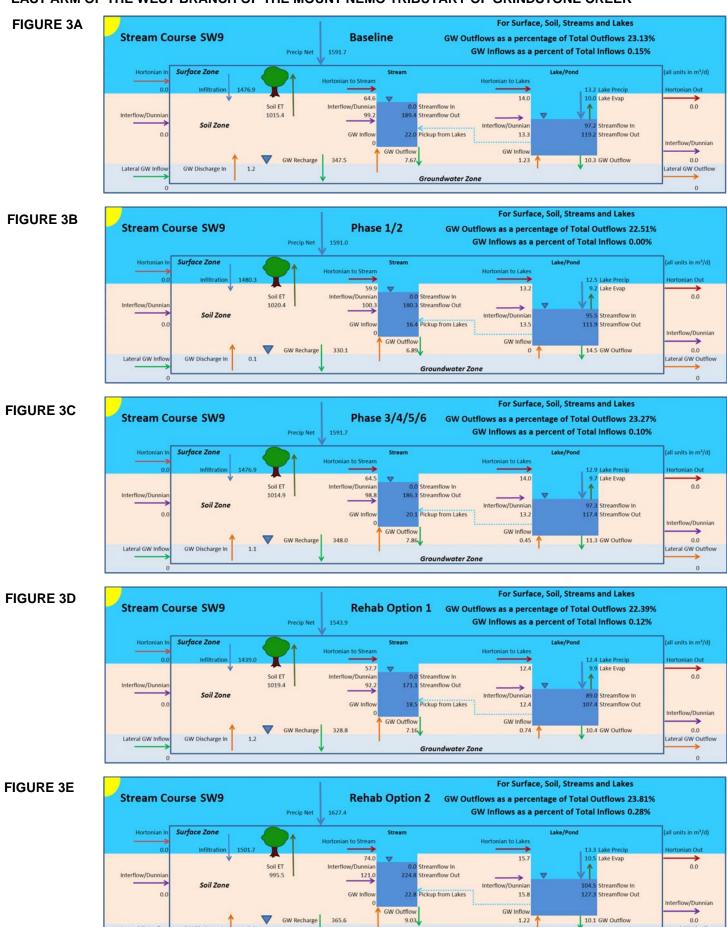

	Description						Figure / Graph /	Reference	
Impact Assessment	Description						Table	Report	Section / Page
		Water B	udget Results 600	m Downstream of Mo	nitoring Location S	N9			•
Water Budget Results (Operational Phases & 2):		The Operational Phases 1 and 2 water budget results from the integrated model 600 m downstream of monitoring location SW9 are presented in Figure 4b.							
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	22.18%	0.75%	-	-				
	Phases 1 & 2	22.32%	0.00%	0.14%	-0.75%				
Vater Budget Results (Operational Phases Through 6):	3 The Operational Phases location SW9 are prese		udget results from	the integrated model	600 m downstream	of monitoring	Figure 4c		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	22.18%	0.75%	-	-				
	Phases 3 through 6	22.67%	0.43%	0.49%	-0.32%				
Water Budget Results (Rehabilitation Scenario 1):	The Rehabilitation Scer SW9 are presented in F		results from the in	tegrated model 600 m	downstream of mor	itoring location	Figure 4d		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	22.18%	0.75%	-	-				
	Rehab Scenario 1	21.68%	0.52%	0.50%	-0.23%				
Water Budget Results (Rehabilitation Scenario 2):	The Rehabilitation Scenario 2 water budget results from the integrated model 600 m downstream of monitoring location SW9 are presented in Figure 4e.						Figure 4e		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	22.18%	0.75%	-	-				
	Rehab Scenario 2	23.16%	0.61%	0.98%	-0.14%				
Change in Groundwater Contributions to Watercourse:	The Baseline groundwa seepage is lost. The ch periods of time when le	ange in stream leaka	ge between Baseli	ne and P12 conditions	is shown in Graph 9	. There are short	Graphs 8 and 9		
Change in Watercourse Thermal Regime:	Negative changes on w Arm will remain undistu		not expected give	en that the wetlands a	nd catchment area fe	eeding the East			
Change in Water Quality:	Negative changes on w remain undisturbed.	ater quality are not e	expected given tha	t the wetlands and cat	chment area feeding	g the East Arm will			
Potential Impact to Form and Function of Feature:	A reduction of less than the feature, but this red the range of natural flu	luction is not expected				-			
Potential Impact to Identified Species and Habitat:	A reduction of less than the feature, but this rec change is within the ran	luction is not expecte	ed to negatively im						

Mitigation	Description	Figure / Graph /	Reference	
Mitigation	Description	Table	Report	Section / Page
Direct Alteration Mitigation:	No direct alterations are proposed.		NETR (Savanta, April 2020)	75
Source Water Mitigation:	None required.			
Groundwater Contribution Mitigation:	None required.			
Erosion Mitigation:	None required.			
Thermal Mitigation:	None required.			
Water Quality Mitigation:	None required.			


EAST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK - GRAPH 1


EAST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK - GRAPH 2

* Grey data indicates the monitoring location was dry and therefore the recorded values are respresentative of the air temperature.



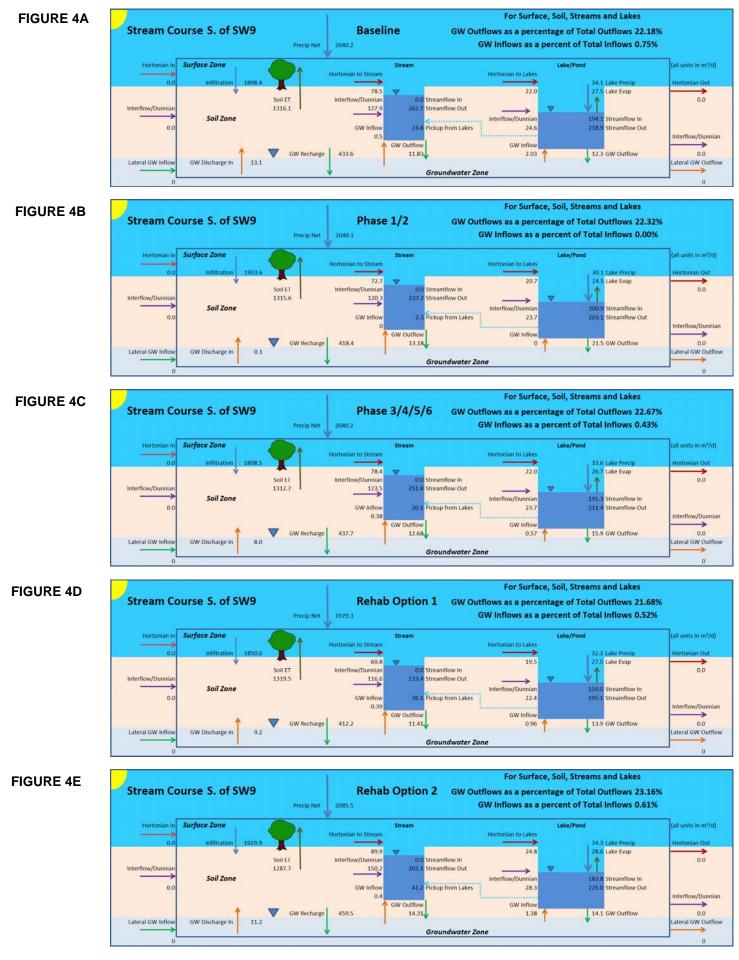
EAST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK - FIGURE 1

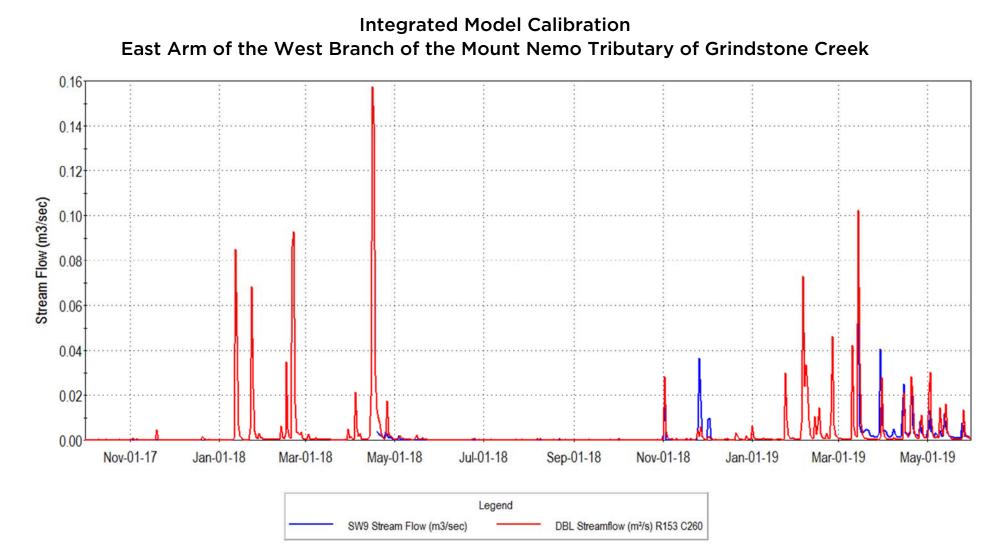
EAST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK - FIGURE 2

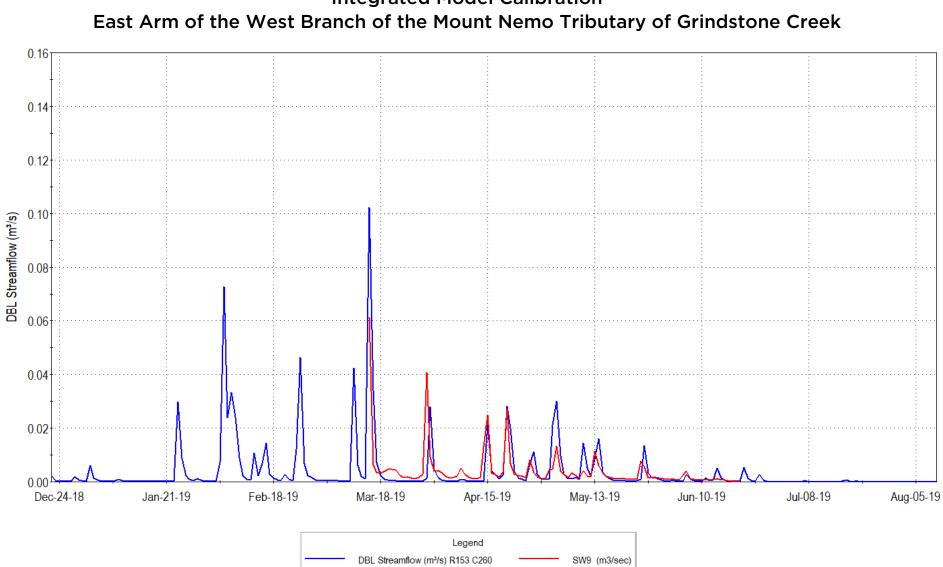
EAST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK

Groundwater Zon

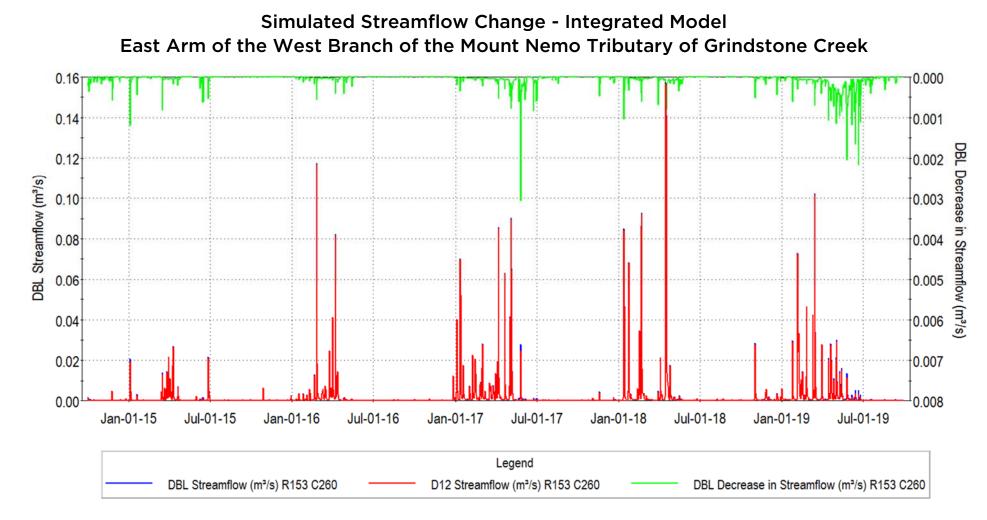
GW Discharge In

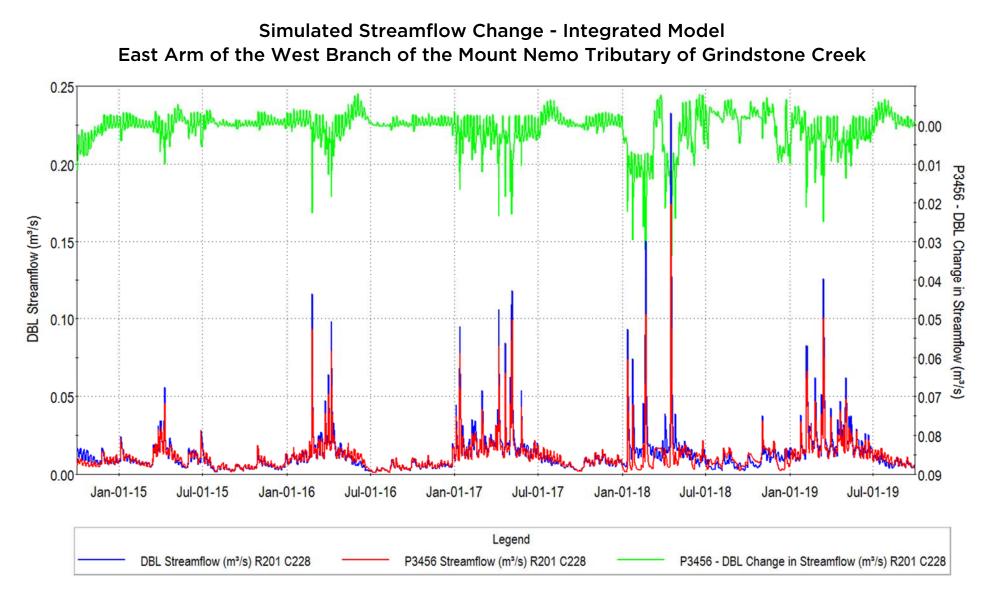

3.4

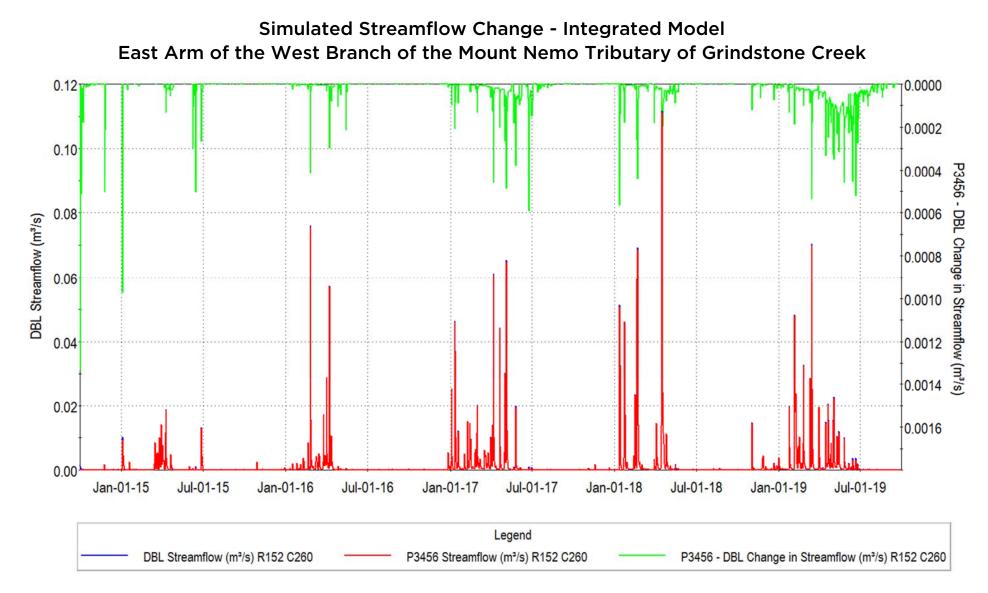

Lateral GW Inflo

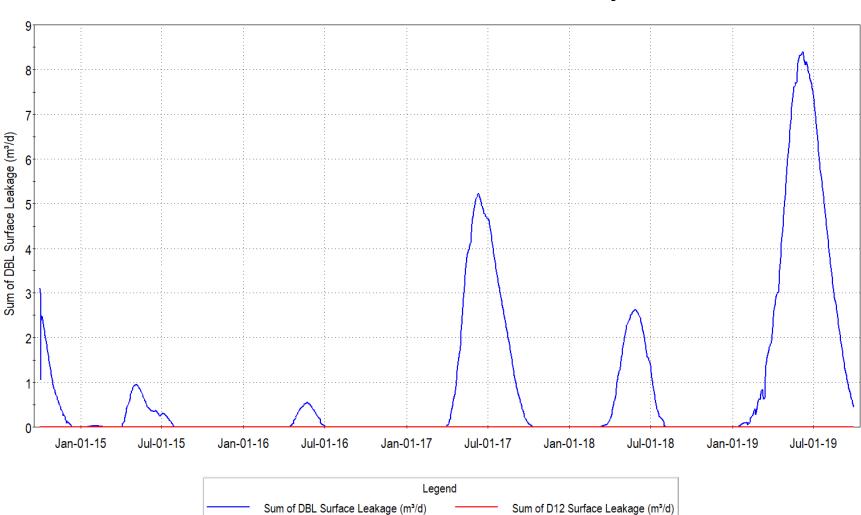

ateral GW Outflo

0

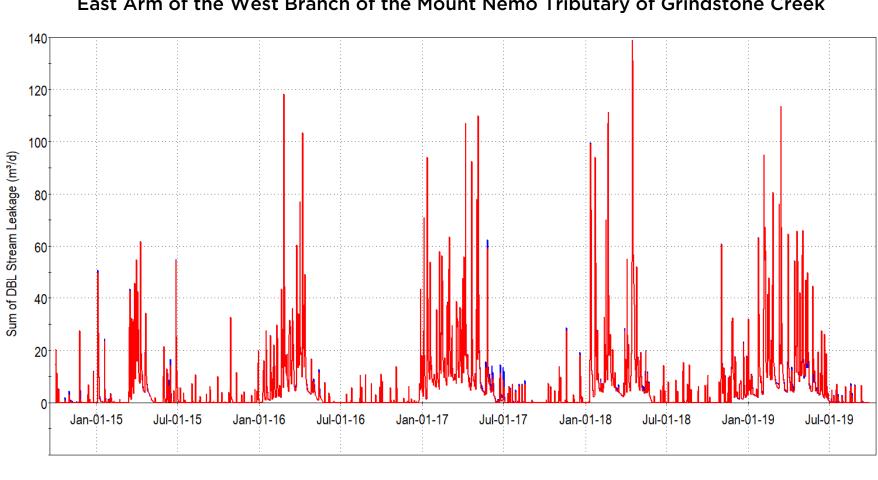

EAST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK

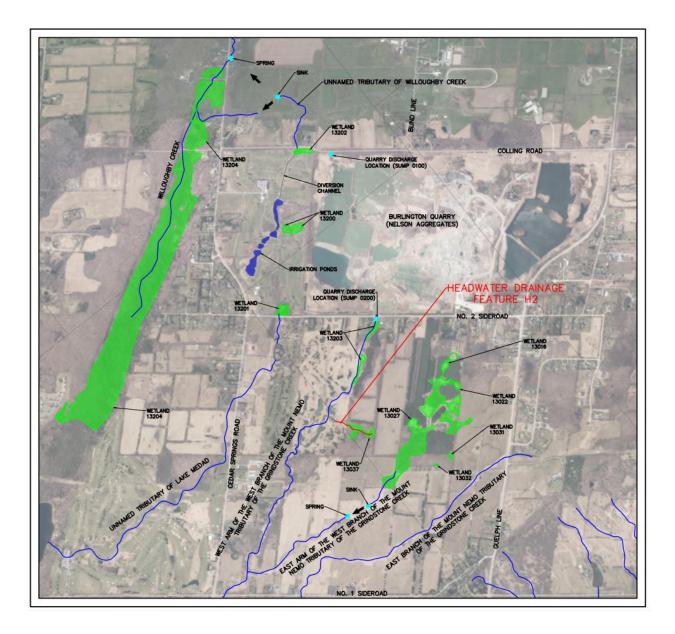


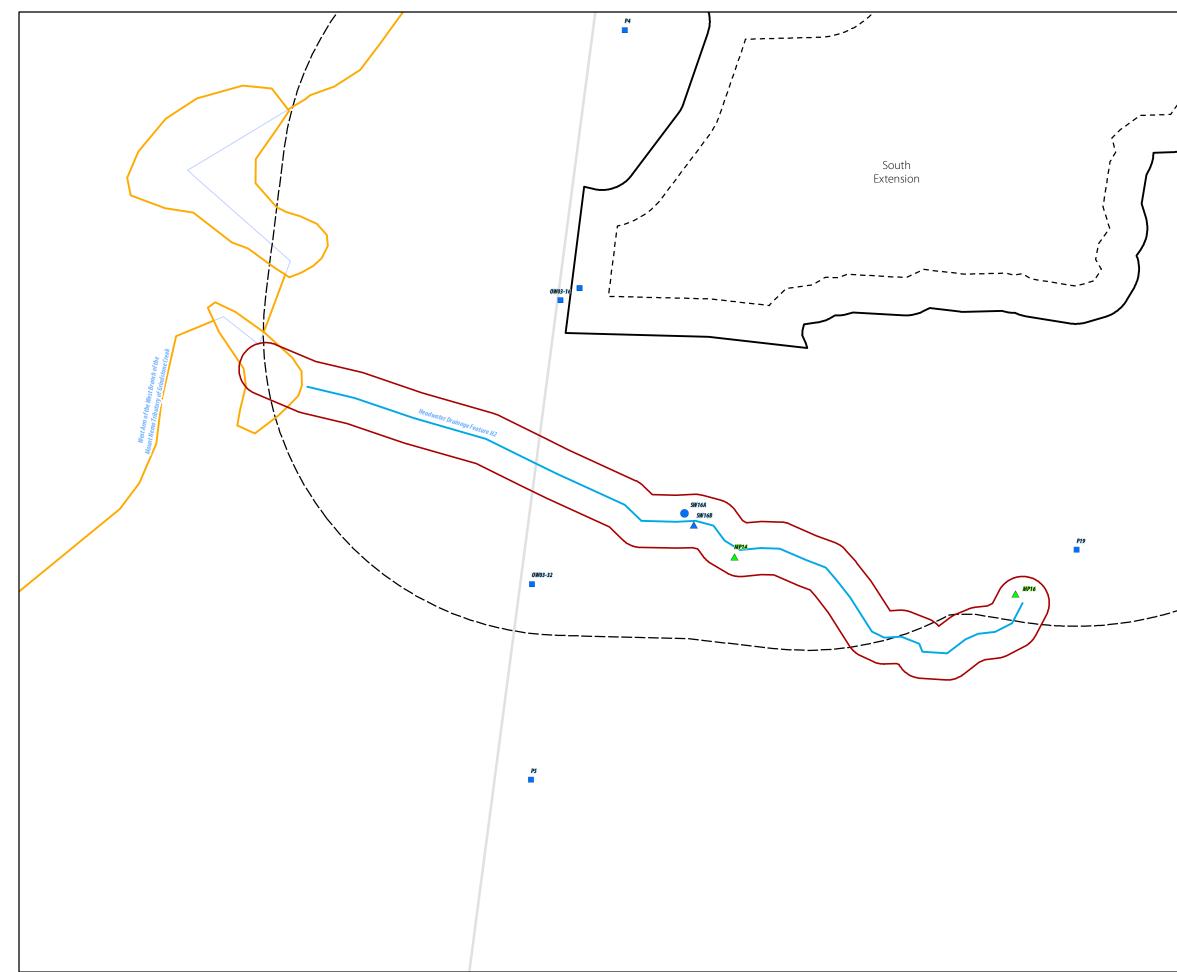




Integrated Model Calibration




Change in Groundwater Contributions to Watercourse East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek



Change in Groundwater Contributions to Watercourse East Arm of the West Branch of the Mount Nemo Tributary of Grindstone Creek

HEADWATER DRAINAGE FEATURE H2

Legend

- Licensed Boundary
- Limit of Extraction
- []] 120 m Adjacent Lands
- Subject Lands
- Headwater Drainage Feature H2
- Indirect Fish Habitat
- Direct Fish Habitat
- Watercourse
- Wetland (Savanta, 2020)

Current Instrumentation

- Groundwater Monitoring Station (EarthFx)
- Mini Piezometer (Tatham Engineering)
- Staff Gauge & Surface Water Monitoring Station (Tatham Engineering)

Previous Instrumentation

Mini Piezometer (Golder)

NOTES: 1. Coordinate System: NAD 1983 UTM Zone 17N. 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021. 3. Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019. Project 8133 Burlington Quarry Extension Nelson Aggregates Co. Figure 17

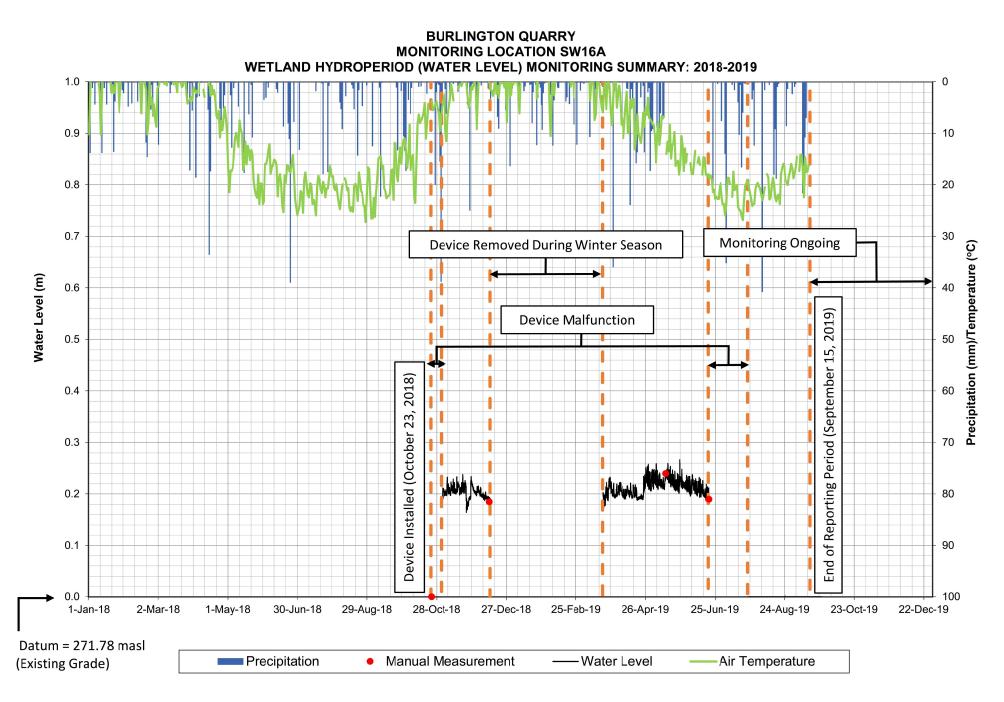
Watercourse Characterization Headwater Drainage Feature H2

25 m 0 1:1,500

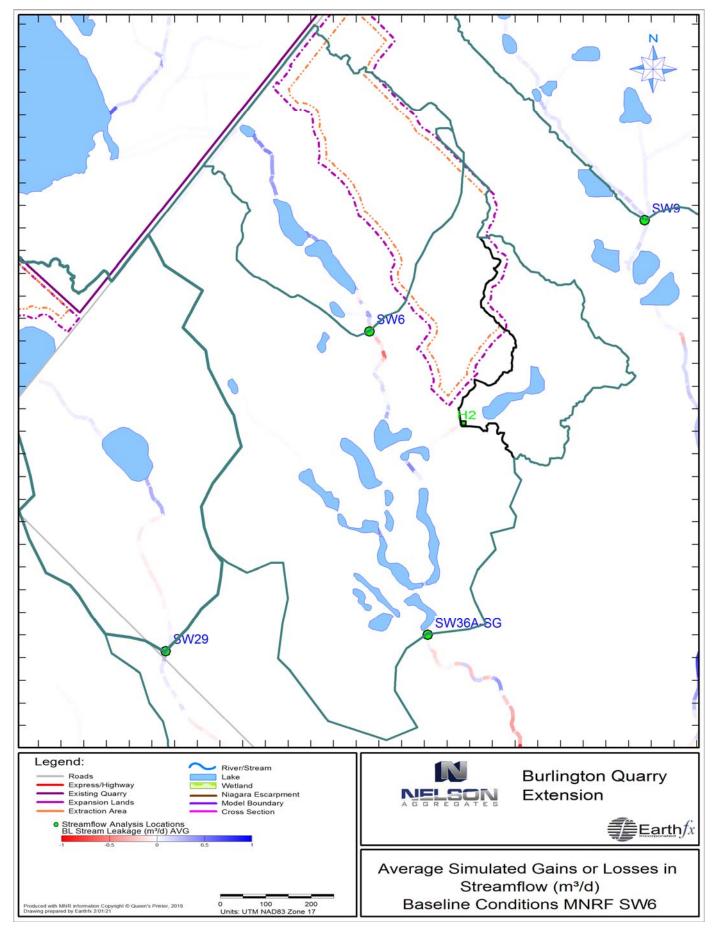
Path: C:\Savanta\8133 - Burlington Quarry\figures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_watercourse_char_mapbook.mxd CPage: 23 April 8, 2021

Surface Water Characteristics	Description					/ Figure Ta					
Watercourse Name:	Headwater Drainage Fe	ature H2									
Watershed:	Grindstone Creek Wate	rshed									
Sub-Watershed:	West Arm of the West I	Branch of the Mount	Nemo Tributary of (Grindstone Creek							
Located in Proposed Limit of Extraction:	No										
Located in Proposed License Boundary:	No										
Catchment Area (ha):	10 ha										
Catchment ID:	S125 and S126										
Primary Source(s) of Flow:	Surface runoff										
Discharge from Quarry / PTTW:	No										
Conditions of PTTW:	Not applicable										
Surface Water Monitoring:	ID: SW39 (Tatham)										
	Installation Date: March	25, 2021									
				-	streamflow measurements and						
	calibration data (water	calibration data (water level converted to flow using rating curve)									
	Coordinates of Monitori	ing Station: Easting	590856.53, Northing	590856.53							
Streamflow Conditions:	Intermittent										
	in this feature. Average	e daily flow will be ea It in the early summe	stablished from the r er, as early as May 25	monitoring data co 5 th , and has remair	the spring of 2021 to monitor streamflow ollected moving forward. It is noted, ned dry until as late as December 25 th .	<i>v</i>					
Watercourse Thermal Regime (SW16A):	Δ	verage Daily Water	Temperature (°C)		Notes:	Graph 1					
	Month	Minimum	Average	Maximum	Minimum - lowest daily average						
	January	N/A	N/A	N/A	streamflow recorded for period of						
	February	N/A	N/A	N/A	record						
	March	-6.3	2.6	20.5	Average - average daily streamflow						
	April	-5.9	6.8	24.4	recorded for period of record						
	May	0.7	12.0	31.7	Maximum - maximum daily average						
	June	8.2	16.5	30.3	streamflow recorded for period of						
	July	Dry	Dry	Dry	record						
	August	Dry	Dry	Dry	N/A - data not available as device						
	September	Dry	Dry	Dry	removed from watercourse during						
	October	Dry	Dry	Dry	winter months						
	November	-5.3	5.2	26.4							
	December	-1.5	2.7	5.5							

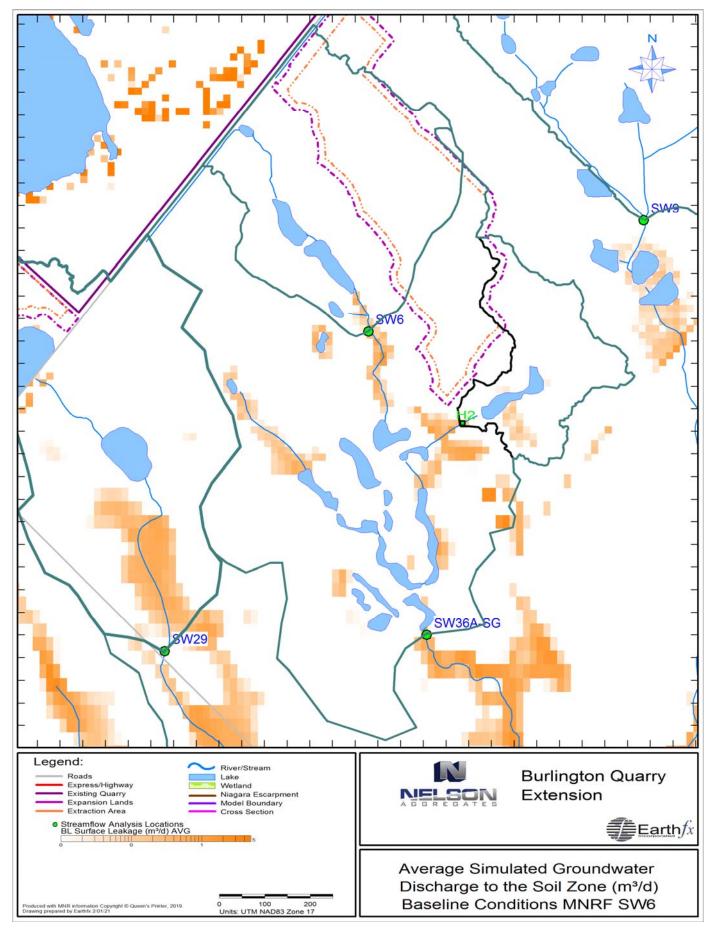
e / Graph /	Reference								
Table	Report	Section / Page							
	SWA (Tatham,	Drawing DP-1							
	April 2020)	210							
	SWA (Tatham,	2.1.2 and Appendix C							
	April 2020)								


Fich & Fich Habitat Factures	Description	Figure / Graph /	Re	ference
Fish & Fish Habitat Features	Description	Table	Report	Section / Page
Fish Habitat (Direct/Indirect and Assumed/Confirmed):	1) The portion of the Headwater Drainage Feature H2 on the Subject Lands does not appear to provide direct fish habitat, based on the presence of a barrier to movement at the downstream end, intermittent nature (dries out in summer), and generally small size of the feature. No fish were observed in the feature during headwater drainage feature investigations in 2019.		NETR (Savanta, April 2020)	39 and 40
	2) The off-site (downstream) reach of this feature consists of an excavated, linear ditch on the adjacent golf course property. It runs for approximately 90 m before draining into an online golf course pond on the West Arm of the West Branch. There is a high probability that this pond contains fish, which could potentially have access to the channelized portion of this headwater drainage feature. However, based on low flows observed in 2019 and lack of suitable wetted width and depth to support fish, it has been assessed as providing indirect fish habitat.			
Fish Species Present:	Fish are assumed to not directly use the headwater drainage feature. No information on fish species in the online pond at the downstream end of the feature is known to exist. Pumpkinseed and Brook Stickleback are known to be present in upstream reaches of the West Arm of the West Branch.		NETR (Savanta, April 2020)	39 and 40
Fish Community Thermal Regime:	Fish are assumed to not directly use the headwater drainage feature.		NETR (Savanta, April 2020)	39 and 40
Fish Habitat Types Present:	The feature provides indirect fish habitat contributing to the downstream West Arm of the West Branch. On the Subject Lands, the feature consists of a headwater wetland and an approximately 50-m long, low flow channel running through a wooded area, before flowing into the off-site channelized reach on the adjacent property.		NETR (Savanta, April 2020)	39 and 40
Habitat Uses by Known Fish Community:	No direct use by fish is expected to occur. Indirect habitat functions provided by the feature include water storage and release (headwater wetlands), water quality maintenance, conveyance of flow, sediment transport and organic inputs.		NETR (Savanta, April 2020)	39 and 40
Known Barriers to Fish Movement:	There is a culvert at the Subject Lands property line that provides a barrier to upstream fish movement.		NETR (Savanta, April 2020)	39 and 40

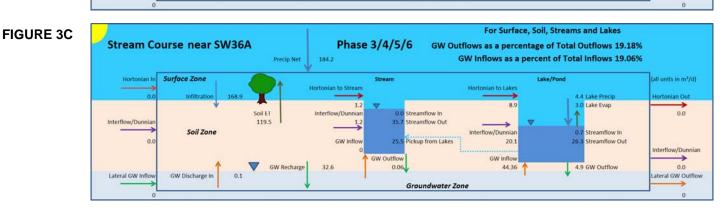
Groundwater Interaction	Description		Figure / Graph /	Re	ference		
Groundwater Interaction	Description		Table	Report	Section / Page		
Underlying Deposits:	Halton Till. The harmoni 1.2x10 ⁻⁸ m/s. Model valu account for limited flow	ue for the vertical hy	ydraulic conductivit				
Surface Water / Groundwater Interactions:				ater seepage under baseline conditions during spring ts maximum during and immediately following the spring	Figures 1 & 2		
Water Budget Results:	The baseline condition w	ater budget results	from the integrated	d model are presented in Figure 3a.	Figure 3a		
	Condition	GW Out	GW In				
	Baseline (Existing)	18.07%	1.11%	1			
Integrated Model Calibration:	This area was not discus	sed in the model ca	libration due to the	lack of observations.			


Impact Assessment	Description		Figure / Graph /						
	Description						Table	Report	Section / Page
Direct Alterations to Watercourse:	No direct alterations to	this headwater drain	nage feature are pro	oposed.				NETR (Savanta,	80
								April 2020)	
Change in Primary Source of Flow:	No change in surface w								
	The headwater drainage								
	groundwater system. T		age feature is prima	neability of the till					
Change in Watercourse Catchment Area:	Catchment area to rema	ain undisturbed, no c	change in catchmer	nt area.					
Simulated Streamflow Change (Integrated	The Earthfx report discu						Graphs 2 & 3	HHIAR (Earthfx,	198 - 203 and 230 -
Model Results):	was not discussed, but	-						April 2020)	237
	(green) are plotted in re			le shown on the right	Y axis. Very small c	decreases in			
	streamflow, primarily in	winter and spring, a	re predicted.						
Water Budget Results (Operational Phases	L The Operational Phases	1 and 2 water budg	et results from the	integrated model are	presented in Figure	e 3b.	Figure 3b		
& 2):									
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow	1			
	Baseline (Existing)	18.07%	1.11%	-	-	-			
	Phases 1 & 2	18.57%	0.00%	0.50%	-1.11%	-			
Water Budget Results (Operational Phases						aure 3c Its noted	Figure 3c		
Through 6):	the rehabilitation of the					gure del ris noted			
- .	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow	1			
	Baseline (Existing)	18.07%	1.11%		<u></u>	-			
	Phases 3 though 6	19.18%	19.06%	1.11%	17.95%	-			
Water Budget Results (Rehabilitation	The Rehabilitation Scen						Figure 3d		
Scenario 1):	The Rendbillation Scen	ano i water budget	results from the ini	legraled model are pr	esented in Figure S	и.	Figure Su		
	C a ra alibi a ra	CIM/ Outflaws	C) A/ In flam.			1			
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow	-			
	Baseline (Existing)	18.07%	1.11%	-	-	-			
	Rehab Scenario 1	18.25%	18.43%	0.18%	17.32%				
Water Budget Results (Rehabilitation	The Rehabilitation Scen	ario 2 water budget	results from the int	tegrated model are pr	esented in Figure 3	e.	Figure 3e		
Scenario 2):				_		-			
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	18.07%	1.11%	-	-				
	Rehab Scenario 2	19.04%	17.37%	0.97%	16.26%				
Change in Groundwater Contributions to	Under Baseline conditio						Graphs 4 and 5		
Watercourse:	(more under wet years)				-				
	between the stream and								
	leakage is from the stre leakage into the stream				ere is a very minor	amount of upwards			
			nown as negative it	eakage in blue).					
Change in Watercourse Thermal Regime:	Negative changes on w	ater temperature are	e not expected give	en that the wetlands a	nd catchment area	feeding the		1	
	Headwater Drainage Fe								
Change in Water Quality:	Negative changes on w	ater quality are not e	expected given that	t the wetlands and ca	chment area feedir	ng the Headwater		1	1
Change in Water Quality:Negative changes on water quality are not expected given that the wetlands and catchment area feedDrainage Feature H2 will remain undisturbed.						<u> </u>			

Impact Association	Description	Figure / Graph /	Reference	
Impact Assessment	Description	Table	Report	Section / Page
Potential Impact to Form and Function of	A 1% or 0.1 L/s reduction in groundwater discharge to the headwater wetland may have a corresponding 1% reduction in		NETR (Savanta,	80
	the volume of water conveyed downstream to the West Arm of the West Branch. The feature is predicted to continue to provide indirect fish habitat functions supporting the downstream watercourse as it will continue to convey flow downstream on a seasonal basis. The 0.1 L/s reduction in surface flow into the online pond on the West Arm of the West Branch (where Headwater Drainage Feature H2 drains) is not expected to have a measurable effect on direct fish habitat in the pond or watercourse.		April 2020)	
Potential Impact to Identified Species and Habitat:	No impacts to species or habitat in the downstream West Arm of the West Branch are predicted.		NETR (Savanta, April 2020)	80


Mitiantica	Description	Figure / Graph /	Reference	
Mitigation	Description	Table	Report	Section / Page
Direct Alteration Mitigation:	No direct alterations are proposed; therefore, no mitigation is required.		NETR (Savanta, April 2020)	80
Source Water Mitigation:	No alterations to surface water catchment area; therefore, no mitigation is required.		NETR (Savanta, April 2020)	80
Groundwater Contribution Mitigation:	Given the minor nature of proposed changes in groundwater discharge to the wetland, no mitigation is proposed to supplement flows. However, the feature will continue to be monitored throughout the operations period, as specified in the AMP. If adverse effects on flow and/or wetland function are observed as a result of quarry extraction, mitigation (e.g., pumping from the quarry to the headwater wetland) could be implemented, if needed, to maintain ecological and biophysical functions of the feature.		NETR (Savanta, April 2020)	80
Erosion Mitigation:	None required.			
Thermal Mitigation:	None required.			
Water Quality Mitigation:	None required.			

HEADWATER DRAINAGE FEATURE H2 - FIGURE 1



HEADWATER DRAINAGE FEATURE H2 - FIGURE 2

HEADWATER DRAINAGE FEATURE H2

GW Outflo

0.06

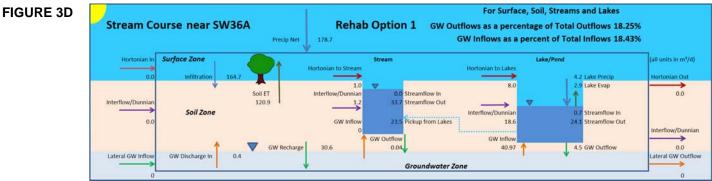
Groundwater Zone

GW Recharge

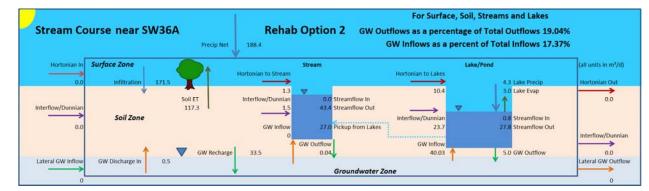
GW Discharge In

Lateral GW Inflo

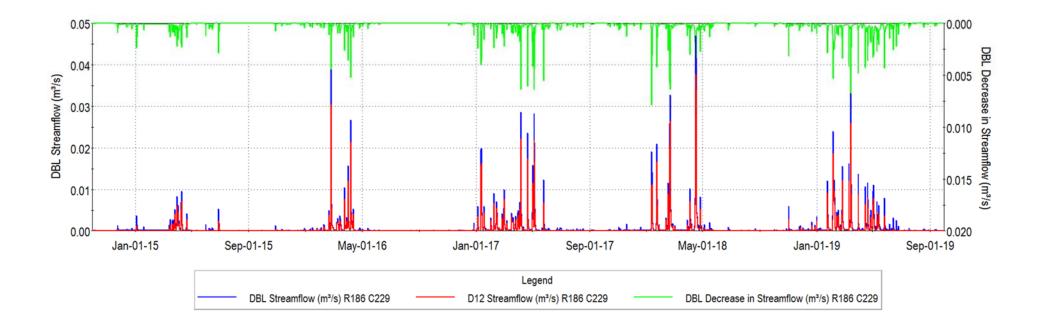
30.8


GW Inflow

0 1


4.6 GW Outflow

0.0


ateral GW Outfl

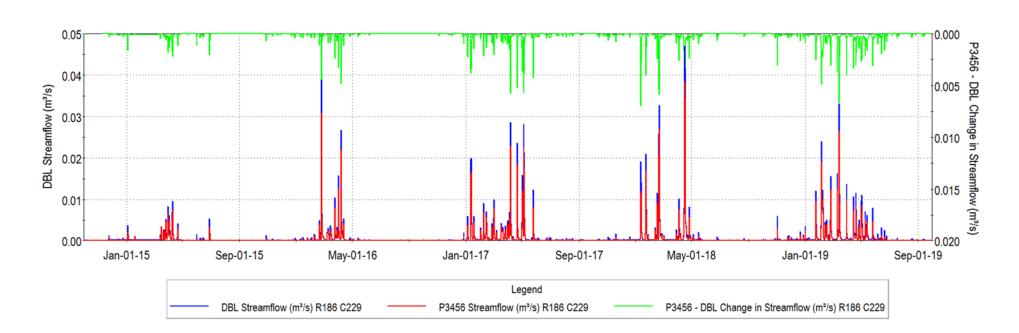
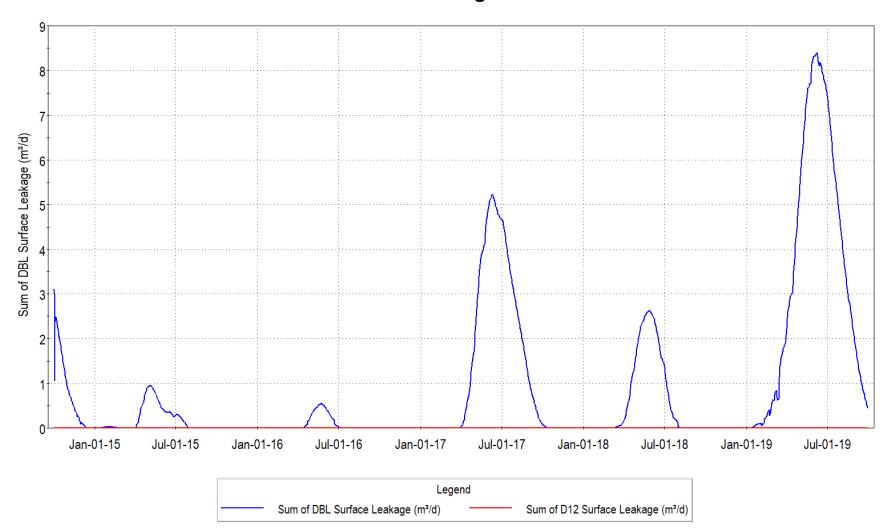
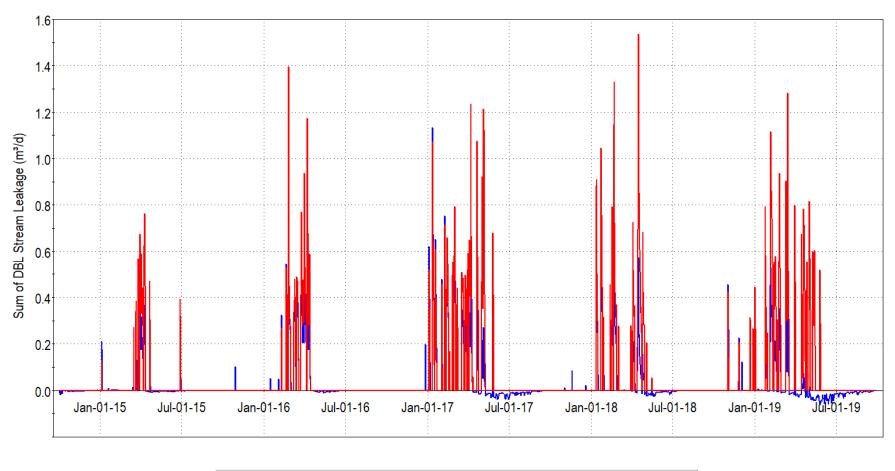
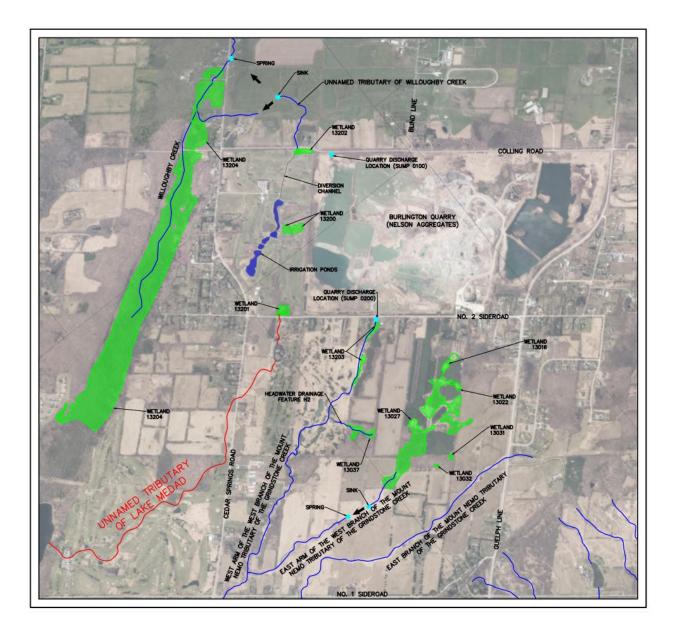


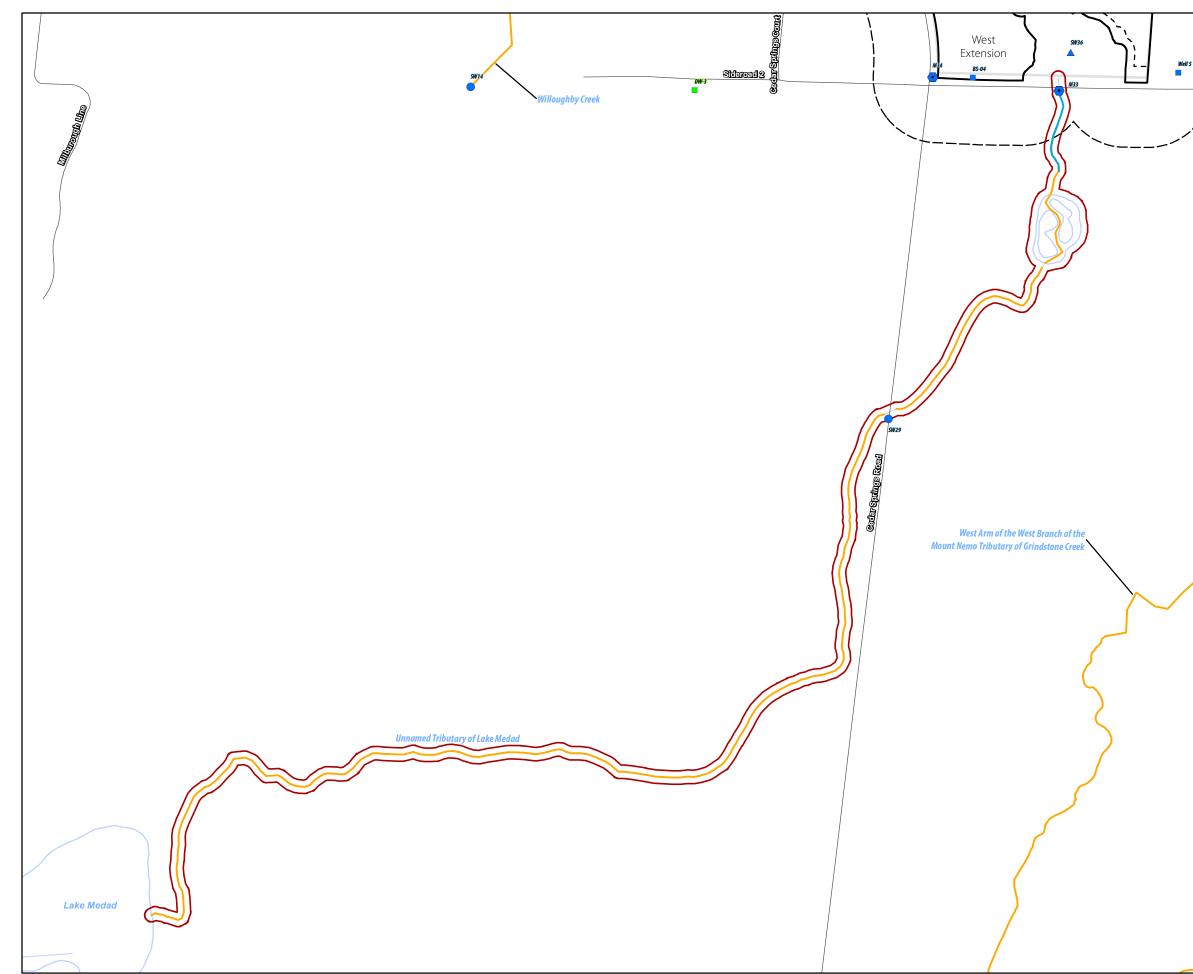
FIGURE 3E





Simulated Streamflow Change - Integrated Model Headwater Drainage Feature H2


Change in Groundwater Contributions to Watercourse Headwater Drainage Feature H2



Change in Groundwater Contributions to Watercourse Headwater Drainage Feature H2

UNNAMED TRIBUTARY OF LAKE MEDAD

Legend

- Licensed Boundary
- I__I Limit of Extraction
- []] 120 m Adjacent Lands
- Subject Lands
- Unnamed Tributary of Lake Medad
- ------ Road ----- Indirect Fish Habitat
- Direct Fish Habitat
- Watercourse
- Uwaterbody
- Wetland (Savanta, 2020)

Current Instrumentation

- Groundwater Monitoring Station (EarthFx)
- Mini Piezometer (Tatham Engineering)
- Staff Gauge & Surface Water Monitoring Station (Tatham Engineering)
- Manual Stream Flow Measurement (Tatham Engineering)

Previous Instrumentation

Groundwater Monitoring Station (Golder)

1:7,000

NOTES: 1. Coordinate System: NAD 1983 UTM Zone 17N.

2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021. 3. Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.

Burlington Quarry Extension Nelson Aggregates Co.

Figure 14 Watercourse Characterization Unnamed Tributary of Lake Medad 130 m 0

Path: C:\Savanta\8133 - Burlington Quarry\figures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_watercourse_char_mapbook.mxd CPage 37 April 8, 2021

Unnamed Tributary of Lake Medad

Surface Water Characteristics	Description	Description					Reference	
Surface water Characteristics	Description						Report	Section / Page
Watercourse Name:	Unnamed Tributary of	f Lake Medad						
Watershed:	Grindstone Creek Wa	tershed						
Sub-Watershed:	Lake Medad	Lake Medad						
Located in Proposed Limit of Extraction:	No	No						
Located in Proposed License Boundary:	No	No						
Catchment Area (ha):	138 ha (at Lake Meda	d)						
Catchment ID:	N/A							
Primary Source(s) of Flow:	Surface runoff							
Discharge from Quarry / PTTW:	No							
Conditions of PTTW:	Not applicable							
Surface Water Monitoring:	ID: SW29 (Tatham)	ID: SW29 (Tatham) Installation Date: October 25, 2018					SWA (Tatham, April 2020)	2.1.2, Appendix C and Appendix H
	Data Collection: Cont	Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve)						
	Coordinates of Monito	Coordinates of Monitoring Station: Easting 590180.497, Northing 4804363.89						
Streamflow Conditions:	Intermittent						SWA (Tatham, April 2020)	2.1.2 and Appendix C
Average Daily Flow (SW29):		Average Daily Streamflow (L/s) Notes				Graphs 1	SWA (Tatham,	2.1.2 and Appendix C
	Month	Minimum	Average	Maximum	Minimum - lowest daily average streamflow recorded for period of record Average - average daily streamflow recorded for period of record Maximum - maximum daily average streamflow recorded for period of record		April 2020)	
	January	N/A	N/A	N/A				
	February	N/A	N/A	N/A				
	March	3.3	7.3	21.1				
	April	1.9	4.6	8.6				
	Мау	1.0	2.8	5.8				
	June	0.0	0.6	2.2				
	July	0.0	0.0	0.2				
	August	0.0	0.0	0.0	N/A - data not available as device			
	September	0.0	0.0	0.0	removed from watercourse during winter months			
	October	0.0	0.0	0.0				
	November	0.2	0.9	4.4				
	December	0.4	0.8	2.2				

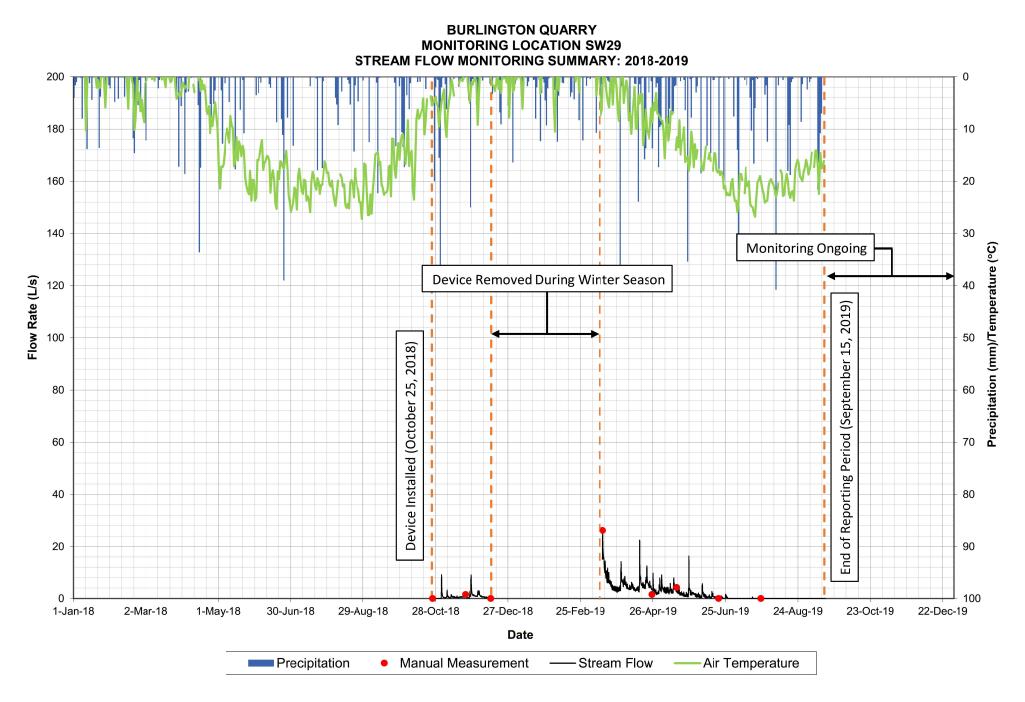
Unnamed Tributary of Lake Medad

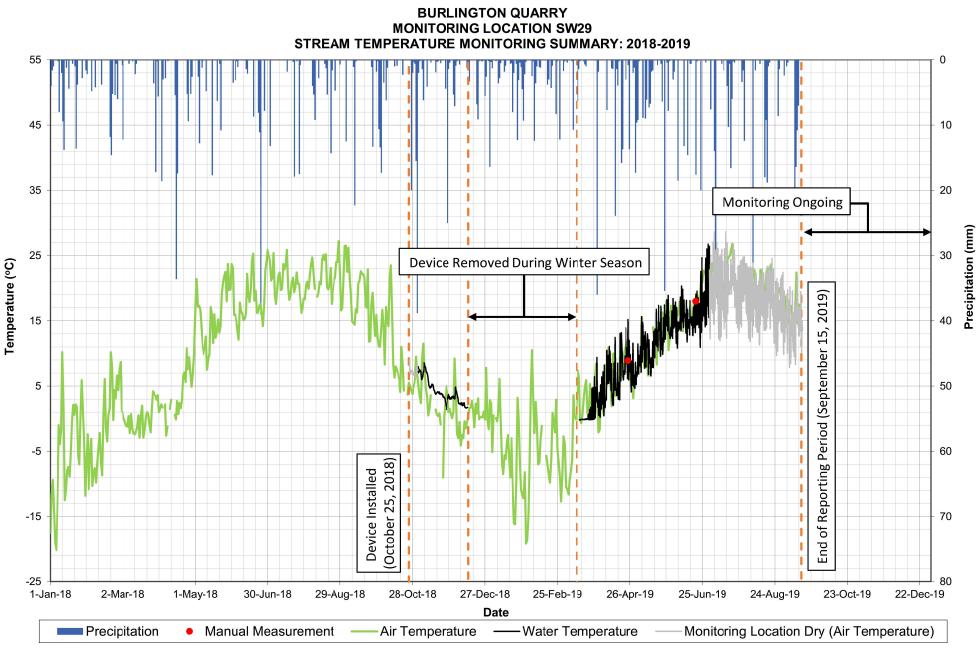
Surface Water Characteristics	Description	Figure / Graph /	Reference					
	Description					Table	Report	Section / Page
Watercourse Thermal Regime (SW29):		Average Daily Water	Temperature (°C)		Notes:	Graph 2	SWA (Tatham, April 2020)	2.1.2 and Appendix C
	Month	Minimum	Average	Maximum	Minimum - lowest daily average streamflow recorded for period of	-		
	January	N/A	N/A	N/A		eriod of		
	February	N/A	N/A	N/A	record			
	March	-0.6	0.6	9.0	Average - average daily streamflow			
	April	-0.1	6.2	14.8	recorded for period of rec	ord		
	May	4.9	11.4	18.6	Maximum - maximum daily	y average		
	June	10.4	15.5	26.4	streamflow recorded for p	eriod of		
	July	11.6	18.8	28.3	record			
	August	Dry	Dry	Dry	N/A - data not available a	s device		
	September	Dry	Dry	Dry	removed from watercours	e during		
	October	Dry	Dry	Dry	winter months			
	November	-3.9	3.0	8.2				
	December	1.3	2.2	4.5				
Water Quality (SW29):	Water Quality Sample Results					Table 1	SWA (Tatham,	2.4 and Appendix H
	Parameter	Units	Minimum	Average	Maximum		April 2020)	
	Turbidity	NTU	11.3	11.8	12.3			
	TDS	mg/L	437	469	500			
	TSS	mg/L	7.67	10.49	13.30			
	COD	mg/L	32	32	32			
	BOD5	mg/L	1.3	1.4	1.5			
	DOC	mg/L	8.1	9.8	11.4			
	рН		7.8	7.9	8			
	Alkalinity	mg/L	257	312	366			
	Conductivity	μ s /cm	648	763	878			
	Phosphorus	ug/L	<50	77	104			
	Ammonia	mg/L	0.01	0.05	0.08			
	Hardness	mg/L	271	305	338			

Unnamed Tributary of Lake Medad

Fish 9 Fish Ushitat Fasturas	Description	Figure / Graph /	Reference		
Fish & Fish Habitat Features	Description	Table	Report	Section / Page	
Fish Habitat (Direct/Indirect and Assumed/Confirmed):	1) The uppermost reach of the watercourse (i.e., within 150 m downstream from the head of the watercourse at Sideroad No. 2) does not appear capable of providing direct fish habitat, based on aerial photo analysis, given a lack of a defined channel. Therefore, this portion of the watercourse is assumed to provide indirect fish habitat.		NETR (Savanta, April 2020)	45 and Figure 9a	
	2) The remainder of the watercourse (i.e., beyond 150 m downstream from Sideroad No. 2) is assumed to provide direct fish habitat, although no fish community sampling is known to have been completed to confirm this assumption. There is a series of online ponds associated with the adjacent golf course approximately 150 m downstream from Sideroad No. 2 and there is a high probability that these ponds contain fish, as they appear to be permanent features.				
Fish Species Present:	No information on fish species present is known to exist.				
Fish Community Thermal Regime:	No information on fish community thermal regime is known to exist. Based on the presence of large, online ponds on the adjacent golf course, it is expected that a primarily warmwater fish community would be present.				
Fish Habitat Types Present:	No information on fish habitat types is known to be available for this watercourse.				
Habitat Uses by Known Fish Community:	The local fish community likely uses the off-site habitat for the complete range of life history processes including spawning, nursery, foraging and overwintering (in the online ponds or Lake Medad, given the intermittent nature of the watercourse).				
Known Barriers to Fish Movement:	There are no known barriers to fish movement in this watercourse.				

	Description		Figure / Graph /	Re	Reference		
Groundwater Interaction	Description	Table	Report	Section / Page			
Underlying Deposits:	Halton Till. The harmoni 1.2x10 ⁻⁸ m/s. Model val account for limited flow	ue for the vertical h					
Surface Water / Groundwater Interactions:	Seasonal groundwater c months equates to 1 L/s freshet.			Figures 1 & 2			
Water Budget Results:	The baseline condition v	vater budget results	from the integra	Figure 3a			
	Condition	GW Out	GW In				
	Baseline (Existing)	21.81%	5.06%				
Integrated Model Calibration:	flashy watershed respon WY2019. The model slig diversions of streamflow	se. Simulated and o ghtly underpredicts v to the golf course the other gauges sh	observed streamf the baseflows an ponds and rates o nowed a similar p	Both the model and the observations suggest an intermittent, low at SW29 are presented in Earthfx (p. 415) for WY2017 to d overpredicts the peak flows. Uncertainty regarding the of irrigation may be contributing to the poorer match at this attern with very good matches to the east and west of the	Graph 3	HHIAR (Earthfx, April 2020)	19.4.2 (page 415)


Unnamed Tributary of Lake Medad

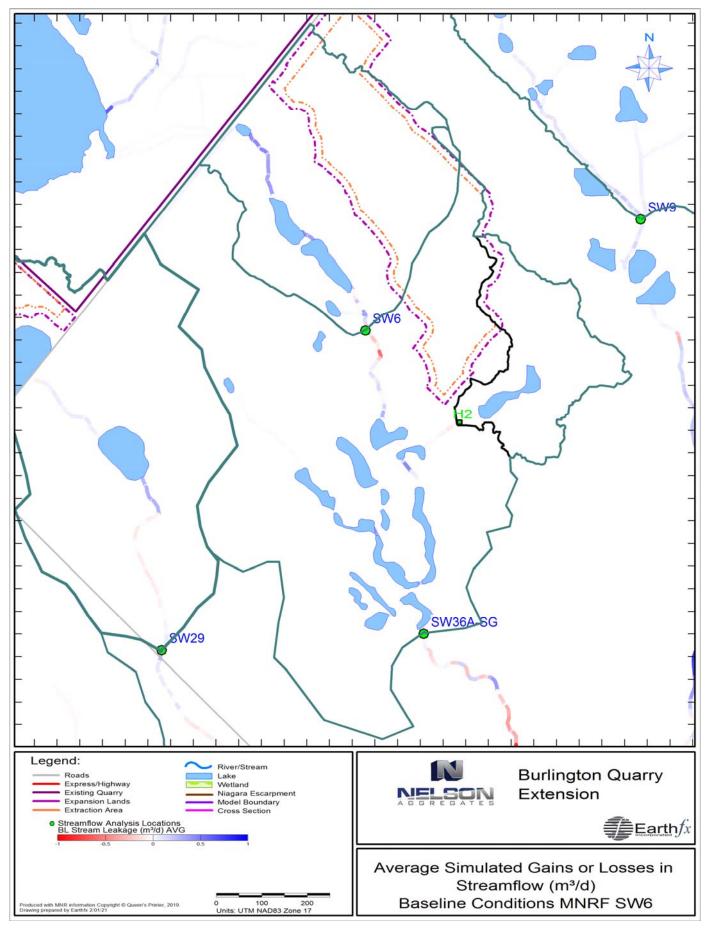

Impact Accossment	Description		Figure / Graph	/ R				
Impact Assessment	Description					Table	Report	Section / Page
Direct Alterations to Watercourse:	No direct alterations to	this watercourse are	e proposed.				NETR (Savanta,	78
							April 2020)	
Change in Primary Source of Flow:					re is no evidence of a conne			
					are perched above the water			
	they generally lose rath the low permeability of			r system. The stream	s are primarily located in Hal	ton Till, so		
	the low permeability of							
Change in Watercourse Catchment Area:	Culvert under No. 2 Sid	eroad is plugged and	d there is no eviden	ice of a culvert or wat	ercourse immediately downs	tream. As		
	such, extraction in west	extension will not a	Iter the catchment	area of the Unnamed	Tributary of Lake Medad.			
Simulated Streamflow Change (Integrated	The Earthfx report discu	usses changes in sim	ulated streamflow	under the different qu	arry expansion phases. Gra	oh 4 Graphs 4 & 5	HHIAR (Earthfx,	198 - 230 and 230 -
Model Results):					12 (blue) flows at location S		April 2020)	237
	Decreases in flow (gree		ry small					
	decreases in streamflov	v, primarily in winter	and spring, are pre	edicted Phase 12 area				
Water Budget Results (Operational Phases	1 The Operational Phases	1 and 2 water budg	et results from the	integrated model are	presented in Figure 3b.	Figure 3b		
& 2):						_		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	21.81%	5.06%	-	_			
	Phases 1 & 2	22.22%	2.30%	0.41%	-2.76%			
Water Budget Results (Operational Phases						Figure 3c		
Through 6):								
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	21.81%	5.06%	-	-			
	Phases 3 through 6	23.94%	1.91%	2.13%	-3.15%			
Water Budget Results (Rehabilitation	The Rehabilitation Scen					Figure 3d		
Scenario 1):		and I water budget			esented in Figure 5d.	Figure Su		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	21.81%	5.06%		<u>∕₀∆ 0 vv innovv</u>			
	Rehab Scenario 1	22.35%	3.34%	0.54%	-1.72%			
Water Budget Decults (Debabilitation	The Rehabilitation Scen							
Water Budget Results (Rehabilitation Scenario 2):	The Renabilitation SCEN	ano∠ water budget	results from the Int	legraled model are pr	esenteu în Figure se.	Figure 3e		
	Condition	CIM/ Outflow	C) // Inflow		% CW/ loflow			
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	21.81%	5.06%	-	-			
	Rehab Scenario 2	16.70%	10.90%	-4.21%	5.84%			
Change in Groundwater Contributions to Watercourse:					conditions is shown in Graph ater levels due to the excava	-		
					anges reflect a lowering of th			
	table. Groundwater see	-		-				
					,			
Change in Watercourse Thermal Regime:	No negative impacts on							
Change in Water Quality:	No negative impacts on	water quality expec	ted.					

Unnamed Tributary of Lake Medad

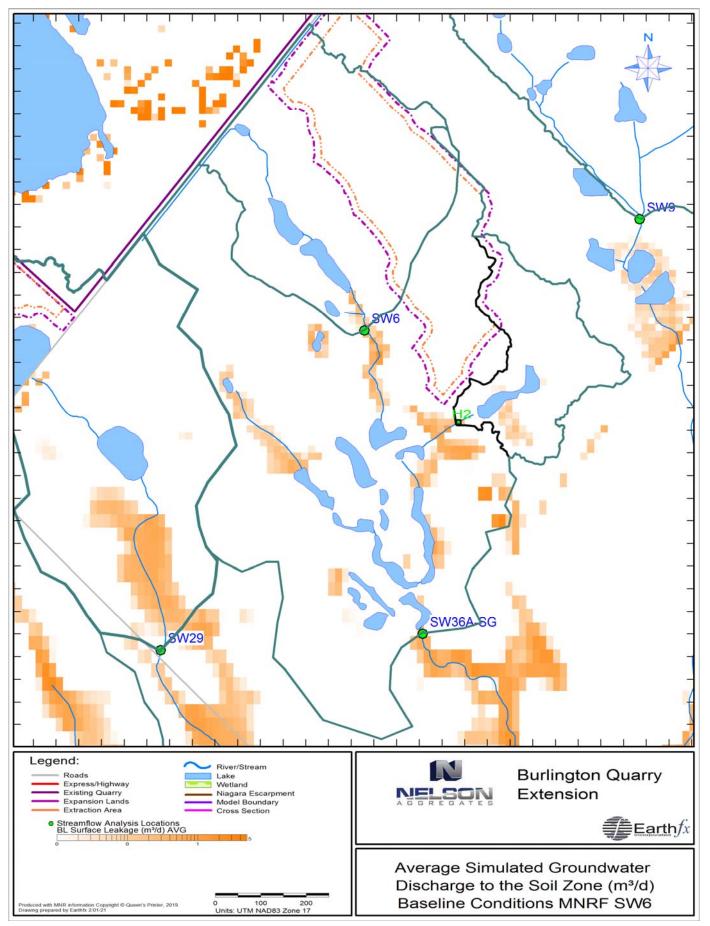
Impact Assessment	Description	Figure / Graph /	Reference	
Impact Assessment	Description	Table	Report	Section / Page
	Unmitigated flow reductions could have negative impacts on habitat availability during low flow (baseflow) periods through reductions in wetted width and depth and limiting movements throughout the watercourse.		NETR (Savanta, April 2020)	78
	Unmitigated flow reductions could have negative impacts on fish species in the watercourse (e.g., lack of access to sufficient habitat, concentrating fish in residual features, increased competition for resources, increased vulnerability to predators).		NETR (Savanta, April 2020)	78

Mitigation	Description	Figure / Graph /	Reference		
Mitigation	Description	Table	Report	Section / Page	
Direct Alteration Mitigation:	No direct alterations are proposed; therefore, no mitigation is required.		NETR (Savanta, April 2020)	75	
Source Water Mitigation:	None required. Primary source of flow is surface runoff and catchment area will not be altered.				
Groundwater Contribution Mitigation:	None required. Groundwater contributions under baseline conditions equate to 1 L/s or less and overall percent change predicted at approximately 3%.				
Erosion Mitigation:	None required.				
Thermal Mitigation:	None required.				
Water Quality Mitigation:	None required.				

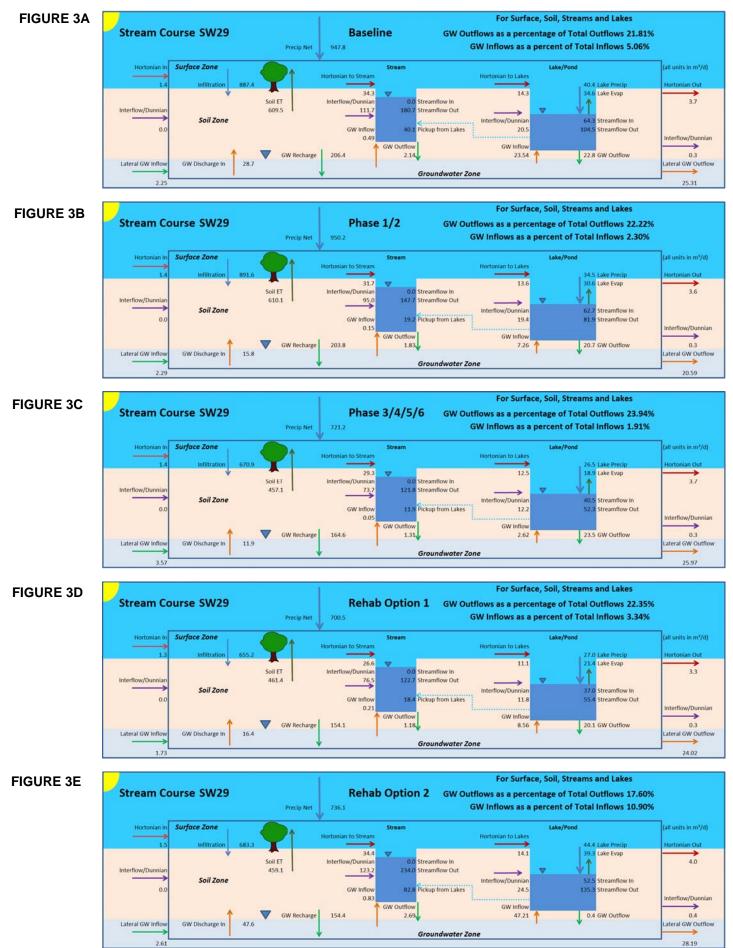
* Grey data indicates the monitoring location was dry and therefore the recorded values are respresentative of the air temperature.

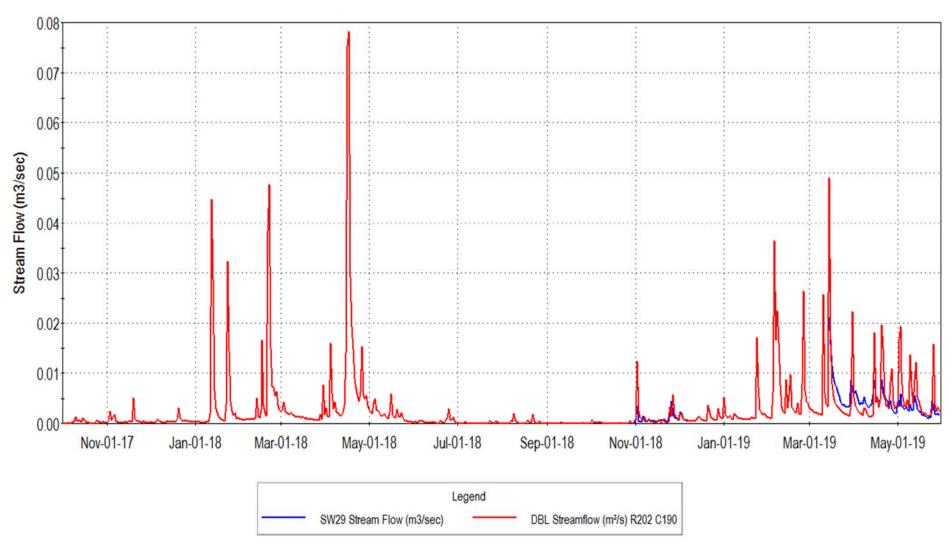

TRIBUTARY OF LAKE MEDAD - TABLE 1

BURLINGTON QUARRY TATHAM ENGINEERING PROJECT NO.: 113187 SURFACE WATER MONITORING

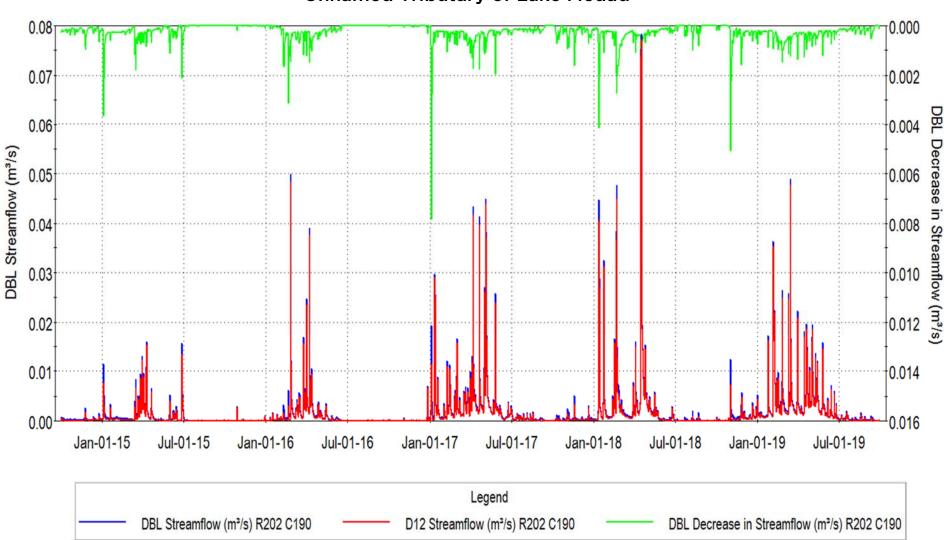

WATER QUALITY SAMPLE RESULTS

					nitoring Locat																			
		mple Date:	24-Oct-18	24-Apr-19	19-Jun-19	25-Sep-19	20-May-20	15-Jul-20	16-Sep-20	11-Nov-20	Maximum	Minimum	Average											
Parameter:	Units:	M.D.L.	CM/JG	CM/JG	СМ	СМ	JG	JG/JH/JM	JH/JM	JG/JH														
M-Alkalinity (pH 4.5)		2		257	366						366	257	311.5											
Ammonia (as N)	mg/L	0.01		0.01	0.08						0.08	0.01	0.05											
BOD (5 day)	mg/L	1	4 -	1.3	1.5	1.5					1.5	1.3	1.4											
Bicarbonate		1		255							255	255	255											
Carbonate		1		2							2	2	2											
Conductivity	μS/cm	1		648	878						878	648	763											
Dissolved Organic Carbon	mg/L	0.4		8.1	11.4						11.4	8.1	9.8											
Field pH	pH	N/A			8.3						8.3	8.3	4.2											
Field Temp	°C	N/A														18						18.0	18.0	9.0
Aluminum	ug/L	1												113	79						113	79	96	
Antimony	ug/L	0.5		<0.5	<0.5						<0.5	<0.5	0.5											
Arsenic	ug/L	1		<1	1						1	1	1											
Barium	ug/L	1		36	34						36	34	35											
Beryllium	ug/L	0.5		<0.5	<0.5						<0.5	<0.5	0.5											
Bismuth	ug/L	1		<1	<1						<1	<1	1											
Boron Cadmium	ug/L ug/L	0.1		10 <0.1	<2 <0.1						10 <0.1	10 <0.1	0.1											
Calcium		500		71900	92100						92100	71900	82000											
Carcium	ug/L ug/L	300		<1	92100						92100	<1	02000											
Cesium	ug/L	1		<1	<1						<1	<1	1											
Chromium	ug/L	1		5	7						7	-1	6											
Cobalt	ug/L	0.1		0.2	0.3						0.3	0.2	0.25											
Copper	ug/L	1		2	4						4	2	3											
Europium	ug/L	1		<1	<1						<1	<1	1											
Gallium	ug/L	1		<1	<1						<1	<1	1											
Iron	ug/L	20		232	511					511	232	372												
Lanthanum	ug/L	1		<1	<1						<1	<1	1											
Lead	ug/L	0.1		0.5	0.5					0.5	0.5	0.5												
Lithium	ug/L	5		<5	<5						<5	<5	5											
Magnesium	ug/L	5		22200	26300						26300	22200	24250											
Manganese	ug/L	10	DRY	51	529	DRY	DRY	DRY	DRY	DRY	529	51	290											
Mercury	ug/L	0.1		<0.1	<0.1						<0.1	<0.1	0.1											
Molybdenum	ug/L	1		<1	1						1	1	1											
Nickel	ug/L	1		3	4						4	3	4											
Niobium	-	50)		50	50	<1 <50	<1 104						<1 104	<1 104	77							
Phosphorus Potassium	ug/L ug/L									1					l	1			2510	324				
Rubidium	ug/L	1		<1	<1		1				<1	<1	1417											
Scandium	ug/L	1		<1	<1						<1	<1	1											
Selenium	ug/L	0.5		0.7	<0.5						0.7	0.7	0.6											
Silicon	ug/L	2		2600	2280						2600	2280	2440											
Silver	ug/L	0.1		<0.1	<0.1						<0.1	<0.1	0.1											
Sodium	ug/L	1000		31500	66400						66400	31500	48950											
Strontium	ug/L	1		432	483						483	432	458											
Sulphur	ug/L	800		11100	5920						11100	5920	8510											
Tellurium	ug/L	1		<1	<1						<1	<1	1											
Thallium	ug/L	0.1		<0.1	<0.1						<0.1	<0.1	0.1											
Thorium	ug/L	1		<1	<1						<1	<1	1											
Tin	ug/L	1		<1	<1						<1	<1	1											
Titanium		1		3	2						3	2	2.5											
Tungsten	ug/L	1		<1	<1						<1	<1	1											
Uranium	ug/L	1		<1	<1						<1	<1	1											
Vanadium	ug/L	1		2	2						2	2	2											
Yttrium		ŀ						<1	<1	1														
Zinc	-	1	-	<1 21						21	21	11												
Zirconium pH		1		<1 7.97	<1 7.8						<1 8.0	<1 7.8	1 7.9											
рн Total Hardness (as CaCO3)		N/A		271	7.8						338	7.8	7.9											
Chemical Oxygen Demand		mg/L 0.1 mg/L 5 mg/L 3		32	338						338	32	305											
Total Dissolved Solids			437	500						500	437	469												
Total Suspended Solids		0.67		13.3	7.67						13.30	7.67	10.49											
Turbidity	NTU	0.07		13.3	11.3						13.30	11.3	10.49											
Tublatty	NIO	5.1		12.5	11.5						12.5	11.5	11.0											

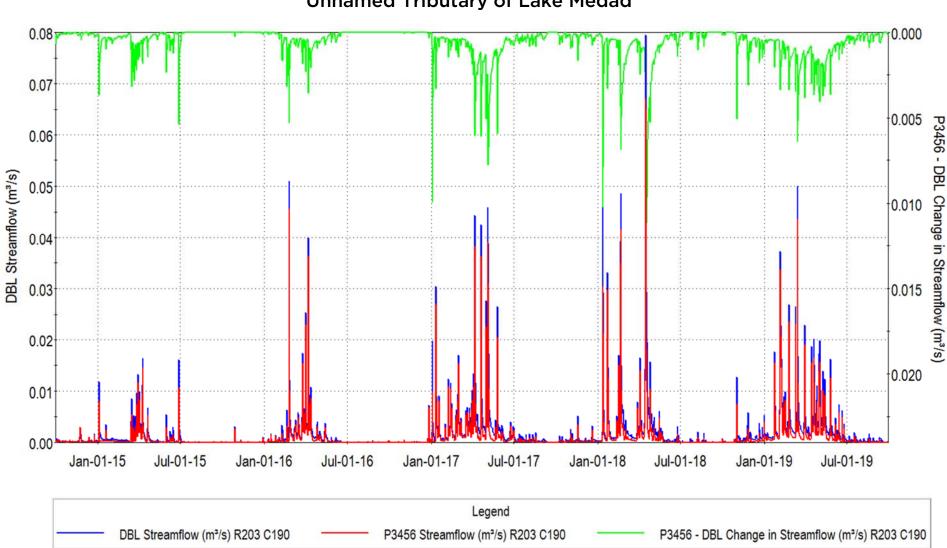

TRIBUTARY OF LAKE MEDAD - FIGURE 1

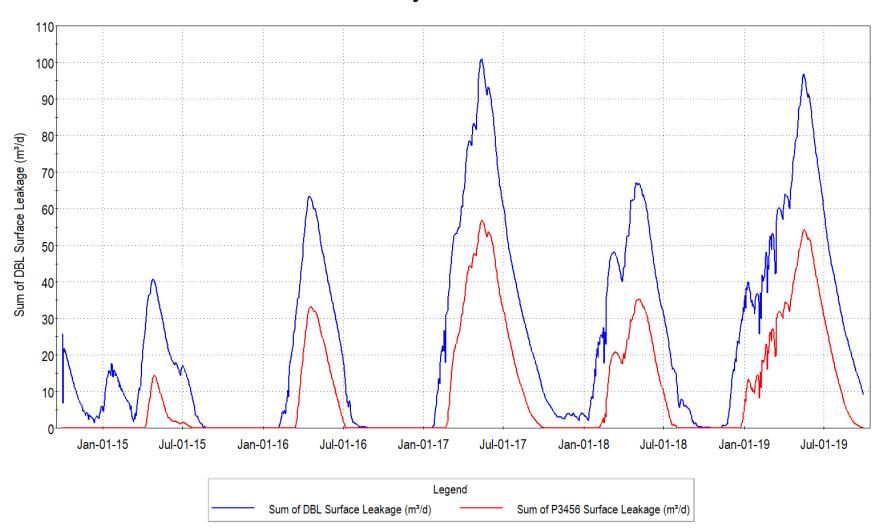


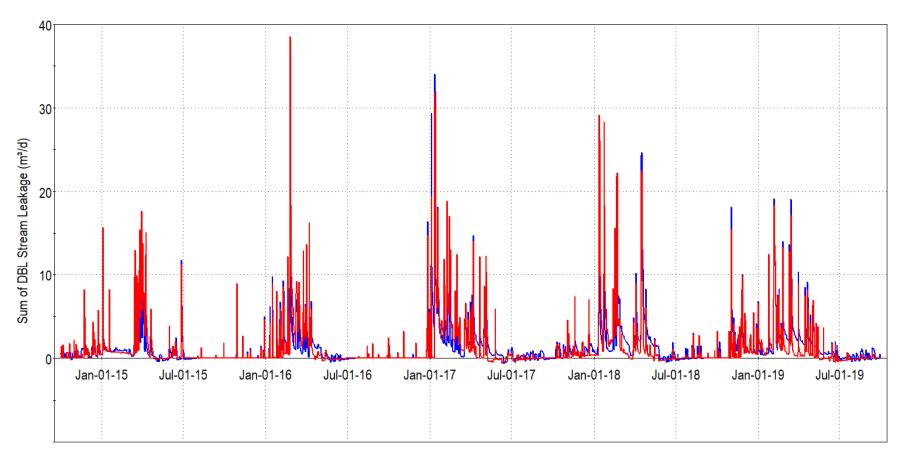
TRIBUTARY OF LAKE MEDAD - FIGURE 2



TRIBUTARY OF LAKE MEDAD

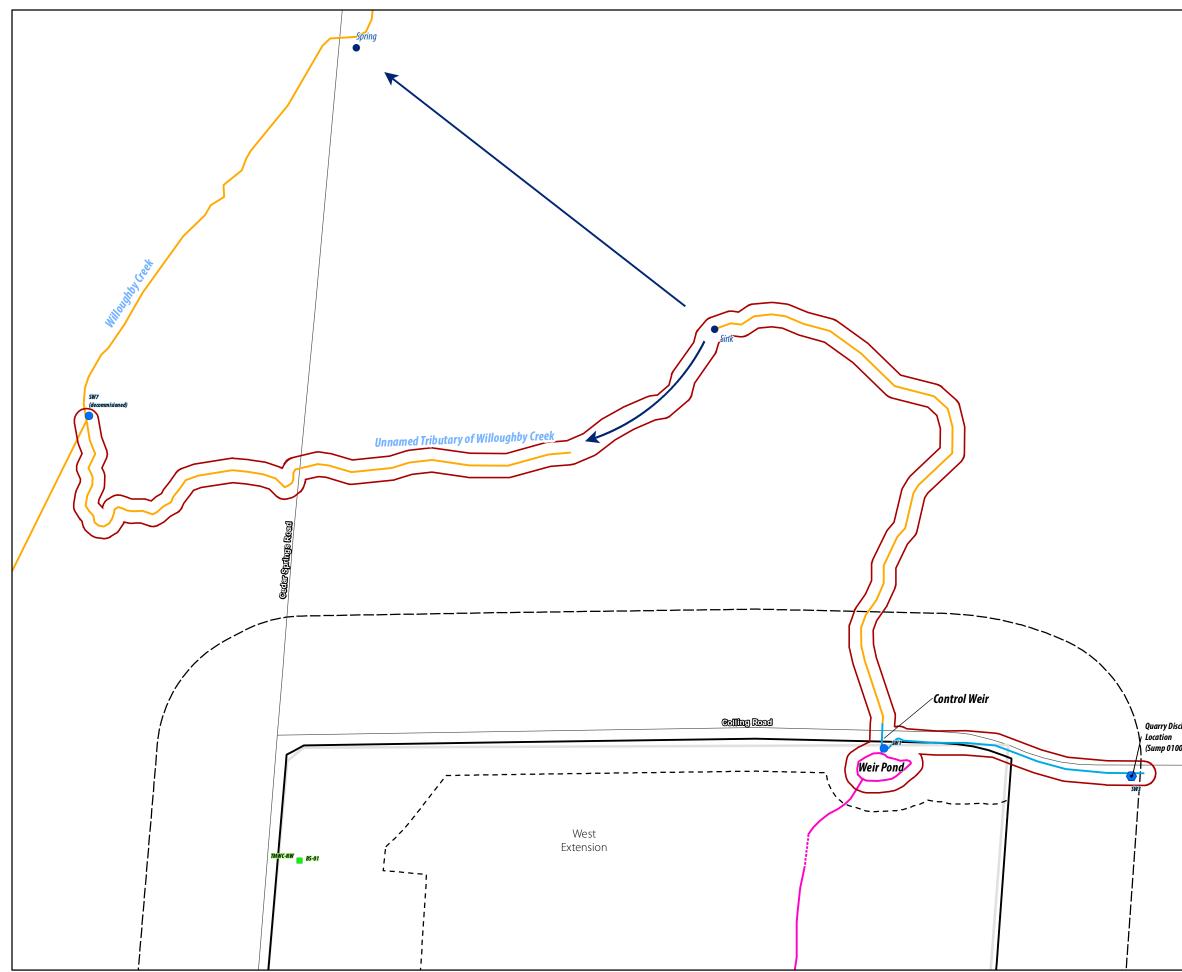



Integrated Model Calibration Unnamed Tributary of Lake Medad


Simulated Streamflow Change - Integrated Model Unnamed Tributary of Lake Medad

Simulated Streamflow Change - Integrated Model Unnamed Tributary of Lake Medad

Change in Groundwater Contributions to Watercourse Tributary of Lake Medad



Change in Groundwater Contributions to Watercourse Tributary of Lake Medad

UNNAMED TRIBUTARY OF WILLOUGHBY CREEK

	Legend
	Licensed Boundary
	「二二」Limit of Extraction [二] 120 m Adjacent Lands
	Subject Lands
	Unnamed Tributary of Willoughby Creek
	Road
	Golf Course Irrigation Ponds and Channel Indirect Fish Habitat
	Direct Fish Habitat
	Watercourse
	Wetland (Savanta, 2020)
	Current Instrumentation Staff Gauge & Surface Water Monitoring Station (Tatham Engineering)
	Manual Stream Flow Measurement (Tatham Engineering)
	Previous Instrumentation
	Groundwater Monitoring Station (Golder)
	NOTES:
	1. Coordinate System: NAD 1983 UTM Zone 17N.
	 Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2021.
	3. Orthoimagery © First Base Solutions, 2021. Imagery taken in 2019.
charge	
0)	Project 8133
	Burlington Quarry Extension
	Nelson Aggregates Co.
	Figure 13
	5
	Watercourse Characterization
	Unnamed Tributary of Willoughby Creek
	0 60 m
	1:3.500

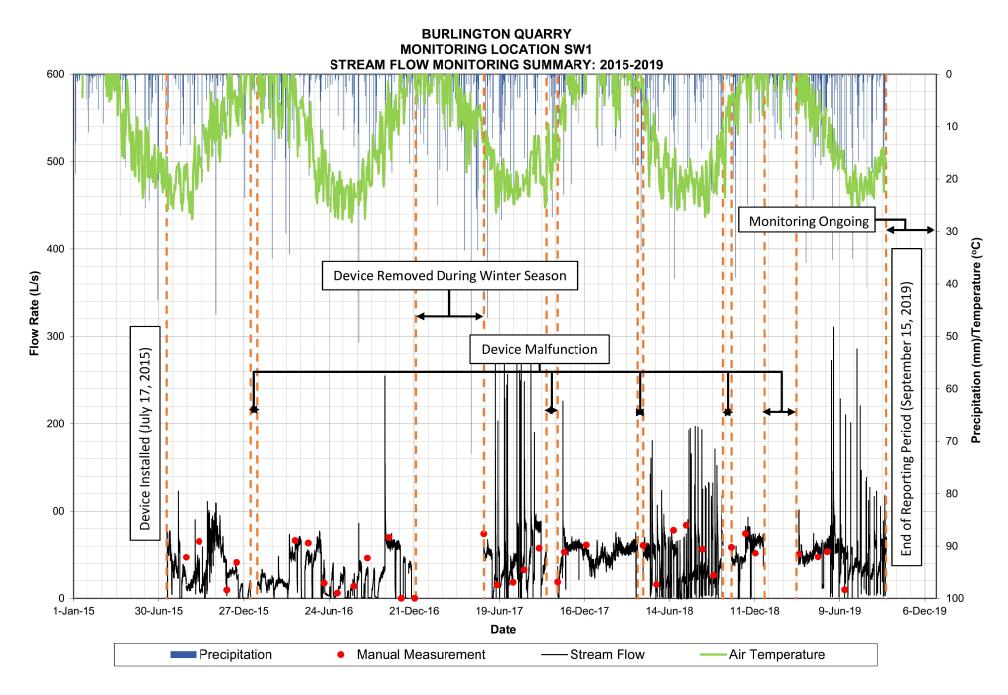
Path: C:\Savanta\8133 - Burlington Quarry\figures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_watercourse_char_mapbook.mxd CPage: 55 April 1

Description		Figure / Graph /	/ Reference				
Description			Table	Report	Section / Page		
Unnamed Tributary of	Willoughby Creek						
Bronte Creek Watersh	ned						
Willoughby Creek Wa	tershed						
No							
Yes							
511 ha (at confluence	with Willoughby Cree	ek)					
N/A							
Primary - discharge fr	om Burlington Quarry	(Sump 0100)					
Intermittent - discharg	ge from Burlington Spi						
	-						
				In the weir pond by the Burnington Spring	5		
Yes - PTTW 96-P-3009	9				SWA (Tatham,	Appendix A	
				April 2020)			
Maximum discharge ra	ate = 4,090 L/min (68.)	17 L/s)				SWA (Tatham,	Appendix A
Maximum discharge a	mount = 5,889,600 L/a		April 2020)				
ID: SW1 (Tatham)		Graphs 1, 2 & 3 and	SWA (Tatham,	2.1.1, Appendix B and			
Installation Date: Apri	17, 2014		Table 1	April 2020)	Appendix H		
Data Collection: Conti	nuous water level and	l temperature, manu					
calibration data (wate	r level converted to flo						
Coordinates of Monito	oring Station: Easting S	589015.325, Northin	g 4805832.639				
Intermittent (flow is d	ependent on quarry d	ischarge); the tribut	ary will dry out wh	nen quarry discharge ceases	Graphs 1, 2 & 3 and	SWA (Tatham,	2.1.1 and Appendix B
					Table 1	April 2020)	
	Average Daily Stre	eamflow (L/s)		Notes:	Graphs 1 & 2	SWA (Tatham,	2.1.1 and Appendix B
Month	Minimum	Average	Maximum	Minimum - lowest daily average		April 2020)	
January	0.0	92.3	226.9	streamflow recorded for period of			
February	0.0	48.8	245.0	record			
March	0.0	28.7	68.0	Average - average daily streamflow			
April	0.0	75.8	203.5	recorded for period of record			
Мау	0.0	86.6	249.6	Maximum - maximum daily average			
June	0.0	54.2	194.3	streamflow recorded for period of			
July	0.5	48.5	313.3	record			
August	0.0	41.9	126.9	N/A - data not available as device			
September	0.6	48.3	147.2	removed from watercourse during			
October	0.0	61.6	225.7	winter months			
November	0.0	102.9	549.8				
December	0.0	81.0	426.9				
	Bronte Creek Watersh Willoughby Creek Wa No Yes 511 ha (at confluence N/A Primary - discharge fr Intermittent - discharge The outlet from the widownstream when floy The concrete weir with ponds on the Burlingt Golf & Country Club o Yes - PTTW 96-P-3009 Maximum discharge a ID: SW1 (Tatham) Installation Date: Apri Data Collection: Conti calibration data (wate Coordinates of Monito Intermittent (flow is d Month January February March April May June July August September October November	Unnamed Tributary of Willoughby CreekBronte Creek WatershedWilloughby Creek WatershedNoYes511 ha (at confluence with Willoughby CreedN/APrimary - discharge from Burlington QuarryIntermittent - discharge from Burlington SpThe outlet from the weir pond consists of adownstream when flow is available and a ccThe concrete weir with stop blocks installedponds on the Burlington Springs Golf & CouGolf & Country Club occurs under the approximationYes - PTTW 96-P-3009Maximum discharge rate = 4,090 L/min (68.Maximum discharge amount = 5,889,600 L/ID: SW1 (Tatham)Installation Date: April 17, 2014Data Collection: Continuous water level and calibration data (water level converted to fl Coordinates of Monitoring Station: Easting 3Intermittent (flow is dependent on quarry discharge Daily StrMonthMinimumJanuary0.0May0.0May0.0May0.0MonthMinimumJanuary0.0May0.0May0.0MonthMinimumJanuary0.0May0.0May0.0MonthMinimumJanuary0.0May0.0MonthMonthMinimumJanuary0.0May0.0	Unnamed Tributary of Willoughby Creek Bronte Creek Watershed Willoughby Creek Watershed No Yes 511 ha (at confluence with Willoughby Creek) N/A Primary - discharge from Burlington Quarry (Sump 0100) Intermittent - discharge from Burlington Springs Golf and Coun The outlet from the weir pond consists of a low flow by-pass pi downstream when flow is available and a concrete weir that car The concrete weir with stop blocks installed creates a backwate ponds on the Burlington Springs Golf & Country Club property. Golf & Country Club occurs under the approval of PTTW Number Yes - PTTW 96-P-3009 Maximum discharge rate = 4,090 L/min (68.17 L/s) Maximum discharge amount = 5,889,600 L/day ID: SW1 (Tatham) Installation Date: April 17, 2014 Data Collection: Continuous water level and temperature, manu coordinates of Monitoring Station: Easting 589015.325, Northin Intermittent (flow is dependent on quarry discharge); the tribut Average Daily Streamflow (L/s) Month Minimum Average 3 January 0.0 28.7 April 0.0 75.8	Unnamed Tributary of Willoughby Creek Bronte Creek Watershed Willoughby Creek Watershed No Yes 511 ha (at confluence with Willoughby Creek) N/A Primary - discharge from Burlington Quarry (Sump 0100) Intermittent - discharge from Burlington Springs Golf and Country Club irrigation The outlet from the weir pond consists of a low flow by-pass pipe designed to coldownstream when flow is available and a concrete weir that can be fitted with state poids on the Burlington Springs Golf & Country Club property. Water taking fror Golf & Country Club occurs under the approval of PTTW Number 0624-8BXML3. Yes - PTTW 96-P-3009 Maximum discharge rate = 4,090 L/min (68.17 L/s) Maximum discharge rate = 4,090 L/min (68.17 L/s) Maximum discharge amount = 5,889,600 L/day ID: SW1 (Tatham) Installation Date: April 17, 2014 Data Collection: Continuous water level and temperature, manual monthly in-situ calibration data (water level converted to flow using rating curve) Coordinates of Monitoring Station: Easting 589015.325, Northing 4805832.639 Intermittent (flow is dependent on quarry discharge); the tributary will dry out what the provent of the set of	Unnamed Tributary of Willoughby Creek Bronte Creek Watershed Willoughby Creek Watershed No Yes S11 ha (at confluence with Willoughby Creek) N/A Primary - discharge from Burlington Quarry (Sump 0100) Intermittent - discharge from Burlington Springs Golf and Country Club irrigation ponds and diversion channel The outer from the weir pond consists of a low flow by-pass pipe designed to convey a minimum baseflow of 2 L/s downstream when flow is available and a cencrete weir that can be fitted with stop blocks instraigation ponds on the Burlington Springs Golf & Country Club property. Water taking from the weir pond by the Burlington Spring Golf & Country Club cocurs under the approval of PTTW Number 0624-BBXML3. Yes - PTTW 96-P-3009 Maximum discharge amount = 5,889,600 L/day Dis SW1 (Tatham) Installation Date: April 17, 2014 Deat Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve) Coordinates of Monitoring Station: Easting 589015.325, Northing 4805832.639 Intermittent (flow is dependent on quarry discharge): the tributary will dry out when quarry discharge ceases Month Minimum Average Maximum January 0,0 28.7	Description Table Unnamed Tributary of Willoughby Creek Exote Creek Watershed Exote Creek Watershed <td>Description Table Report Unnamed Tributary of Willoughby Creek <</td>	Description Table Report Unnamed Tributary of Willoughby Creek <

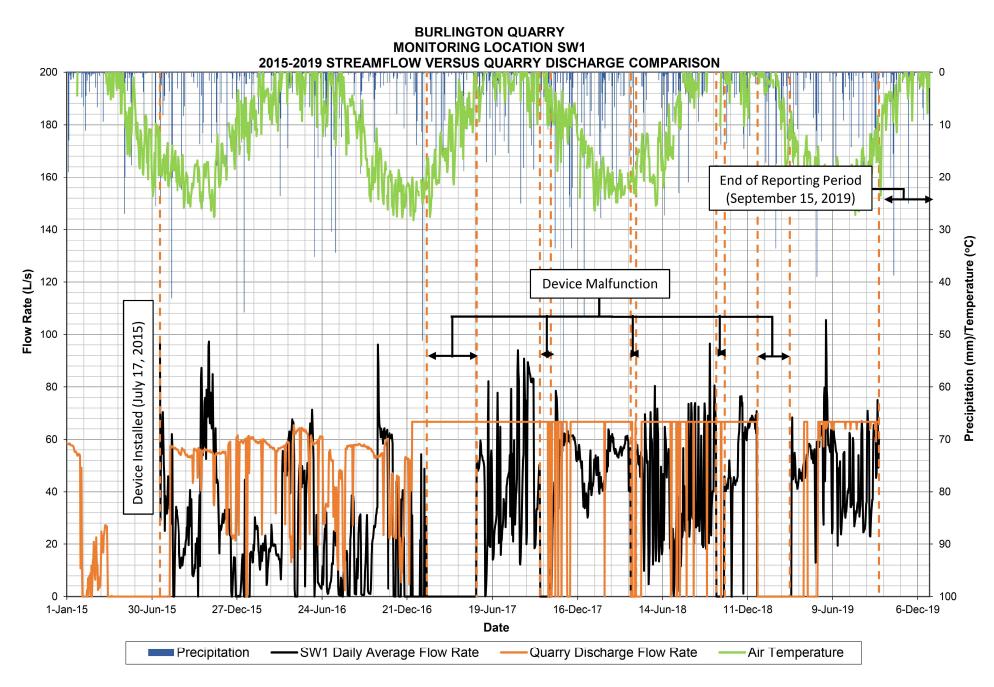
Curfe ee Mater Characteristics	Description					Figure / Graph /	/ R	eference
Surface Water Characteristics	Description					Table	Report	Section / Page
Watercourse Thermal Regime (SW1):		Average Daily Water	Temperature (°C)		Notes:	Graph 3	SWA (Tatham,	2.1.1 and Appendix E
	Month	Minimum	Average	Maximum	Minimum - lowest daily avera		April 2020)	
	January	0.8	3.5	6.9	temperature recorded for pe	eriod of		
	February	-0.9	3.5	6.8	record			
	March	-1.1	4.0	8.2	Average - average daily wate			
	April	-0.8	7.6	14.6	temperature recorded for pe	eriod of		
	May	7.5	13.5	19.1	record			
	June	14.6	19.4	28.9	Maximum - maximum daily a	verage		
	July	18.9	23.0	28.5	water temperature recorded	for period		
	August	17.3	23.6	32.3	of record			
	September	15.9	21.5	29.5	N/A - data not available as d			
	October	8.4	14.3	21.1	removed from watercourse o	during		
	November	1.1	8.5	14.4	winter months			
	December	0.2	4.9	8.5				
Water Quality (SW1):		Water	Quality Sample Res	ults		Table 1	SWA (Tatham,	2.4 and Appendix H
	Parameter	Units	Minimum	Average	Maximum		April 2020)	
	Turbidity	NTU	0.9	2.1	3.5			
	TDS	mg/L	517	564	597			
	TSS	mg/L	1	1.92	3.67			
	COD	mg/L	<5	9	12			
	BOD5	mg/L	1.0	1.4	2.4			
	DOC	mg/L	3.1	3.8	4.3			
	рН		7.97	8.01	8.03			
	Alkalinity	mg/L	112	152	180			
	Conductivity	μ S /cm	742	784	877			
	Phosphorus	ug/L	<50	68.5	124			
	Ammonia	mg/L	0.02	0.04	0.11			
	Hardness	mg/L	277	318	340			

Fich 9 Fich Uphitat Fastures	Description	Figure / Graph /	Reference		
Fish & Fish Habitat Features	Description	Table	Report	Section / Page	
Fish Habitat (Direct/Indirect and Assumed/Confirmed):	1) The reach from the quarry discharge point to the Colling Road culvert has been identified as indirect fish habitat as no fish were captured in this reach during baseline fish community studies in 2019. The reach is directly connected to the Weir Pond on the golf course, which is known to contain a likely introduced population of Largemouth Bass. These fish may have access to portions of this watercourse reach, but these are excluded from the determination of providing indirect habitat, since once the drainage feature on the golf course is removed, the Largemouth Bass population will also be removed. Fish in the downstream portions of the reach (i.e., downstream from Colling Road) would not be able to move upstream into this reach based on the barrier provided by the weir at the downstream end of the Weir Pond.		NETR (Savanta, April 2020)	19, 41-42 and Figure 9a	
	2) The reach between Colling Road and the mouth of this Tributary at Willoughby Creek has been assumed to provide direct fish habitat. However, no fish community studies were possible in this reach due to private land access constraints. Conservation Halton does not have any information on the fish community of this reach and identifies it as "Unclassified Habitat" in the 2002 Bronte Creek Watershed Study. Although assumed to be present for the purposes of the NETR (Savanta 2020), the actual potential for fish in the upstream portions of this reach is limited by the presence of an underground flow section where the watercourse runs underground through karst features before re-emerging at two different locations. No upstream fish movement is expected to be possible past these two underground flow sections.				
Fish Species Present:	 Largemouth Bass are known to be present in the Weir Pond, although they were not confirmed in the Unnamed Tributary of Willoughby Creek upstream from the Weir Pond during baseline studies in 2019. No information on fish species present downstream from Colling Road is available as no fish community studies are 		NETR (Savanta, April 2020)	19, 41-42 and Figure 9a	
	known to have been completed on the private lands where this watercourse flows.				
Fish Community Thermal Regime:	N/A - No fish species that would be native to this watercourse have ever been captured (i.e., excluding Largemouth Bass known to be present in the drainage feature on the golf course).		NETR (Savanta, April 2020)	19, 41-42 and Figure 9a	
Fish Habitat Types Present:	1) Indirect habitat - reach upstream from Colling Road provides contributing habitat functions (e.g., flow conveyance, water quality maintenance, allochthonous inputs from riparian vegetation, sediment transport) although limited by the presence of the Weir Pond and weir.		NETR (Savanta, April 2020)	19, 41-42 and Figure 9a	
	2) Fish habitat types present in the reach downstream from Colling Road have not been confirmed due to private land issues. Visual observations from the Colling Road shoulder indicate this portion of the watercourse consists of a natural channel with well-developed riparian vegetation (woodland). If fish are present, the reach would be expected to provide habitat for all necessary life history functions required to support the species (given barriers to upstream and downstream movement).				
Habitat Uses by Known Fish Community:	N/A - no known fish community downstream from Colling Road culvert.		NETR (Savanta, April 2020)	19, 41-42 and Figure 9a	
Known Barriers to Fish Movement:	1) Karst sink between Colling Road and Cedar Springs road would prevent upstream fish movement.		NETR (Savanta,	19, 41-42 and Figure	
	2) Overflow weir at the outlet of the Weir Pond on the golf course is a barrier to upstream movement.		April 2020)	9a	

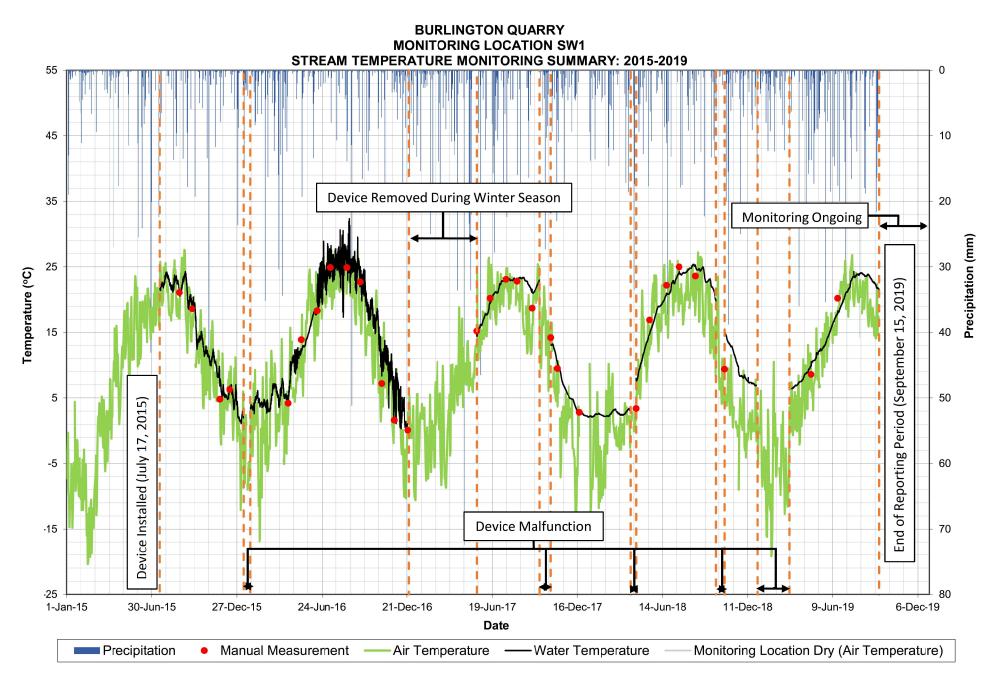
Cusum duncton latence stic a	Description		Figure / Graph /	Reference			
Groundwater Interaction	Description				Table	Report	Section / Page
Underlying Deposits:	Halton Till. The harmon 1.2x10 ⁻⁸ m/s. Model val higher, to account for lir	lue for the vertical h					
Surface Water / Groundwater Interactions:	short periods of the yea 250 m downstream of W which is fairly constant I seasonally rise up to (an the riparian soil zone (th	r where the water ta Vetland 13202 are illu because of the quarr nd slightly above) the nis is shown in orang n the stream to the G	able rises and disch ustrated in Graph 4 ry discharge. The r e stream stage. Th e on the maps in E	ere it disappears into the subsurface. There are, however, arges into the stream. The GW/SW interactions at a point . The blue line on the graph shows the stage in the stream, ed line shows the shallow groundwater levels, which e green dotted line shows the GW discharge (right axis) into arthfx, 2020). The purple line shows stream leakage (right mmary, the stream is mostly a losing stream, except for short			
Water Budget Results:	The baseline condition v	water budget results	Figure 3a				
	Condition	GW Out	GW In				
	Baseline (Existing)	25.17%	21.97%				
Integrated Model Calibration:	with a set of "generalize day per week discharge topping a specified leve	ed operating rules" b rate, with an extra s el. Actual operations fter January, 2016, a	ased on informations tage-dependent of were more interm as shown in Earthfy	North Quarry discharge. The north sump was simulated n provided by Nelson and the PTTW. The rules define a 7 ischarge rule that kept the internal quarry pond from over- ittent, but it is apparent in the data that the rules were (p. 416) and reproduced below. Overall, the model appears cent times.	Graph 5	HHIAR (Earthfx, April 2020)	19.4.2 (page 415 & 416)


Impact Accessment	Description	Figure / Graph /	Reference		
Impact Assessment	Description	Table	Report	Section / Page	
Direct Alterations to Watercourse:	1) The existing temporary weir just upstream from the Colling Road culvert (i.e., at the outflow of the Weir Pond) will be replaced with a permanent overflow weir plate. This will result in a direct alteration to instream habitat and temporary disruption due to in-water work.		NETR (Savanta, April 2020)	75	
	2) A new inlet will be constructed at the edge of the Weir Pond to divert flow into the new pond (infiltration pond) proposed on the western side of the West Extension Area. Some encroachment of the inlet into the Weir Pond may occur during installation of the diversion pipe, resulting in potential direct and indirect impacts.				
	3) Removal of the golf course irrigation ponds and channels could potentially result in indirect effects on the downstream watercourse (e.g., erosion and sedimentation, water quality impacts).				
Change in Primary Source of Flow:	 Quarry discharge from Sump 0100 represents the primary source of flow to the Unnamed Tributary of Willoughby Creek. Current quarry approvals permit this discharge to cease once quarry operations are complete. Cessation of quarry discharge into the Unnamed Tributary of Willoughby Creek would be expected to have a substantial negative impact on flow availability to support current fish habitat functions and fish community assumed to be present. As discussed in the Mitigation section below, it has been recommended that quarry discharge continue indefinitely at current levels to prevent these associated negative impacts. Diversion from catchment area S101 (northwest of Colling Road) will alter surface water inputs to the Unnamed Tributary. Currently, this catchment area discharges directly to the quarry and the flow would be discharged to the Unnamed Tributary through Sump 0100. Nelson is proposing to redirect surface water drainage from catchment area S101 directly into the Unnamed Tributary at the existing quarry discharge point. Overall, this diversion will result in the same volume of water being discharged to the tributary, although, given it will no longer pass through the quarry, it is expected that the hydrological regime of this discharge will be more natural, with seasonal peaks. Removal of the golf course irrigation ponds and channels will alter the hydrology of the watercourse, given that no water taking would be required from the watercourse to support irrigation and that during high flow periods, there will be no discharge from the golf course back to the feature. However, the proposed new pond (infiltration pond) west of the West Extension will draw water from the Weir Pond in the same manner as the existing irrigation ponds. Therefore, there will be no net change in source water hydrology. 		NETR (Savanta, April 2020)	76 and 77	
Change in Watercourse Catchment Area:	Increase in catchment area of 25.8 ha. Additional catchment area will drain to the existing quarry settling ponds and be discharged to the Unnamed Tributary via Sump 0100 at rates consistent with existing. Additional storage will be provided in the settling ponds to accommodate the additional flow as the discharge to the Unnamed Tributary will not change.		SWA (Tatham, April 2020)	Drawings DP-1, DP-2 and DP-3	
Simulated Streamflow Change (Integrated Model Results):	The Earthfx report discusses changes in simulated quarry discharge to the North Quarry Pond. No change was expected under Scenario P12. Scenario P3456 is discussed in Section 8.7.5 (p. 243). Under P3456 conditions, current levels of quarry discharge will continue to pass through the pond. Diversions for golf course operations will no longer be necessary, however a portion of flow will be diverted to the newly constructed infiltration pond, which will locally support groundwater levels in a similar manner as the current golf course ditch and pond system. Figure 8.71(p. 254) shows that there will be an increase in flow through the Unnamed Tributary as a result of the diversion of flow along Colling Road, and that the flow will continue through the karst conduit as under current conditions. The increase in flow will enter the Medad Valley just downstream of SW7, so there will be no significant change downstream at SW2. Under RHB1, discharge continues to the north from the quarry sump 0100 and is similar to that of P3456. Under RHB2, surface water flow in the upper reaches of a Unnamed Tributary of Willoughby Creek and the West Arm of the West Branch of Mount Nemo Tributary of Grindstone Creek will cease when the quarry discharge is discontinued, resulting in possible impact to downstream fish habitat compared to baseline conditions (See Savanta, 2020 and Tatham, 2020 for details).		HHIAR (Earthfx, April 2020)	8.7.5 (page 243)	

Immed Accession	Description		Figure / Graph /	R	Reference			
Impact Assessment	Description		Table	Report	Section / Page			
Water Budget Results (Operational Phases & 2):	1 The Operational Phases	1 and 2 water budge	Figure 3b					
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	25.17%	21.97%	-	-			
	Phases 1 & 2	26.38%	22.94%	1.21%	0.97%			
Water Budget Results (Operational Phases Through 6):	3 The Operational Phases	3 through 6 water b	3c.Figure 3c					
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	25.17%	21.97%	-	-			
	Phases 3 through 6	25.12%	21.11%	-0.05%	-0.86%			
Water Budget Results (Rehabilitation Scenario 1):	The Rehabilitation Scer	ario 1 water budget	Figure 3d					
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow			
	Baseline (Existing)	25.17%	21.97%	-	-			
	Rehab Scenario 1	26.08%	22.12%	0.91%	0.15%			
Scenario 2):	Condition Baseline (Existing)	GW Outflow 25.17%	GW Inflow 21.97%	%∆ GW Outflow -	%∆ GW Inflow -			
	Rehab Scenario 2	34.19%	32.35%	9.02%	10.38%			
Change in Groundwater Contributions to Watercourse:	The unnamed tributary levels under Baseline ar P3456 drawdown in gro conditions at this point overall change in leakage tributary will increase fr leakage is caused by th fraction of the average stream leakage over tim leakage from the surface of the stream (flowing a leakage because the su rates from the surface p lower due to P3456. Lea because the stream is p leakage under P3456 co	ad P3456 conditions a bundwater levels prev in the reach. This ex- ge is discussed next. from a Baseline rate of baseline streamflow he is shown in Graph the stream reach. The along the Layer 4 beor frace stream is isolat portion of the stream akage in the summer perched above the wa	oh 6. The under baseline eam; the water from this rease in very small and P3456 net eent total daily karst portion t stream n Till. Leakage e water table is Il of dry years ease in stream					

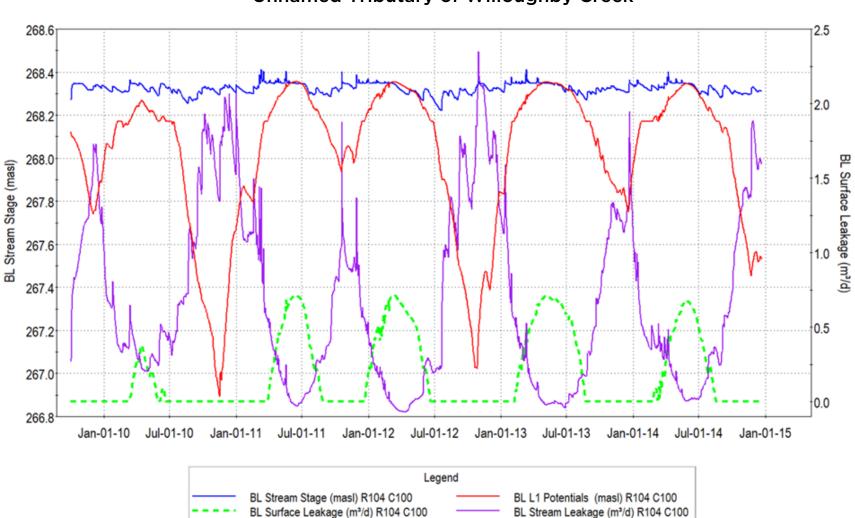

Impact Assossment	Description	Figure / Graph /	Reference		
Impact Assessment	Description	Table	Report	Section / Page	
Change in Watercourse Thermal Regime:	1) Negative changes in water temperature are not expected given that the watercourse will continue to receive its primary input from quarry discharge. Temperature of water being discharge from Quarry Sump 0100 is not expected to change as a result of the proposed Quarry Extension, therefore, no change in water temperature is anticipated.		NETR (Savanta, April 2020)	75	
	2) Artificial warming that may be occurring as a result of discharge of relatively warm surface water from the artificial golf course ponds into the tributary will cease once the golf course ponds are removed. This may result in a beneficial effect in downstream water temperatures, given that the ponds are anthropogenic.			76	
	3) The diversion of flow from catchment S101 directly to the Unnamed Tributary will also positively impact the thermal regime in the watercourse as it will no longer pass through the quarry settling ponds.				
Change in Water Quality:	1) Negative changes in water quality are not expected given that the watercourse will continue to receive its primary input from quarry discharge. Quality of water being discharged from Quarry Sump 0100 is not expected to change as a result of the proposed Quarry Extension, therefore, no change in water quality is expected.		NETR (Savanta, April 2020)	76	
	2) Water quality impacts that may be occurring as a result of discharge of water from the artificial golf course ponds and irrigation channels into the tributary will cease once the golf course ponds are removed. This may result in a positive effect on downstream water quality, given that golf course discharge may be having a negative impact on water quality (e.g., due to fertilizers, erosion and sedimentation, nutrients).				
Potential Impact to Form and Function of Feature:	1) Direct impacts associated with permanent weir plate installation and diversion pipe installation are not expected to have any negative effects on the general form and function of this portion of the watercourse, which provides indirect fish habitat.		NETR (Savanta, April 2020)	75 - 77	
	2) Alterations to quarry discharge (if unmitigated) could potentially have negative impacts on the form and habitat functions of this watercourse.				
	3) Diversion of upstream catchment S101 is not expected to have negative impacts on the form and function of the watercourse. The more natural hydrograph predicted due to the diversion may enhance fish habitat in downstream reaches of the Tributary.				
Potential Impact to Identified Species and Habitat:	1) In-water work could potentially result in indirect negative impacts on downstream fish communities (i.e., in lower reaches of the Unnamed Tributary or in Willoughby Creek) as a result of erosion and downstream sediment and/or accidental spills during construction.		NETR (Savanta, April 2020)	75	
	2) Alterations to quarry discharge (if unmitigated) could potentially have negative impacts on the species and habitat functions of this watercourse.			76	
	3) Diversion of upstream catchment S101 is not expected to have negative impacts on fish in the watercourse. The more natural hydrograph predicted due to the diversion may enhance fish habitat in downstream reaches of the Tributary.			77	

Mitigation	Description	Figure / Graph	Reference			
	Description	Figure / Graph	Report	Section / Page		
Direct Alteration Mitigation:	1) In-water work required to install the permanent weir plate and the diversion structure inlet will be completed between July 16 and August 30 to minimize the potential for indirect impacts on the reproductive activities of the downstream fish communities in the Unnamed Tributary of Willoughby Creek and in Willoughby Creek itself (e.g., due to sedimentation or accidental spills).		NETR (Savanta, April 2020)	75		
	2) Erosion and sedimentation control measures and spill prevention and response measures will be used throughout the duration of any in-stream works in the watercourse.			66 and 67		
	 3) The Limit of Extraction has been set back 30 m from the limit of the bankfull channel of the Unnamed Tributary of Willoughby Creek and the Weir Pond in order to prevent disturbance to the watercourse. No operational activities will occur within the 30 m setback. A visual mitigation berm will be constructed within the 30 m setback (with associated grading encroaching a minimum of 14 m from the edge of the Weir Pond). Erosion and sedimentation control measures will be in place prior to grading for the berm. The berm will be vegetated following completion of grading to ensure soil stability and prevent erosion. 4) Where areas within the 30 m setback are not currently naturally vegetated (i.e., on portions of the active golf course), these areas will be naturalized with native species plantings to assist in maintaining and enhancing riparian functions adjacent to the watercourse. 			74		
	5) To mitigate potential for negative impacts during removal of the golf course irrigation ponds and channels, it is recommended that the downstream end of the irrigation channel be blocked off at the edge of the Weir Pond in order to isolate the work area from the Unnamed Tributary. If water is to be pumped from the irrigation ponds and channels, it should be appropriately treated, as may be necessary, prior to discharge to the downstream watercourse. This could include pumping to a localized treatment method (e.g., filtration bag) or direct pumping into the quarry (which would be expected to provide suitable level of water quality control, based on the quarry's existing discharge limits). If in-water work is required (e.g., to isolate the irrigation ponds and channels), it should be completed between July 16 and August 30 to minimize potential for disruption of downstream coldwater fish community reproductive activities. The existing golf cart path and culvert at the interface of the irrigation channel and Weir Pond should be removed and the area should be restored to create a naturalized pond bank.			78		
Source Water Mitigation:	In order to mitigate impacts on fish and fish habitat in Willoughby Creek, pumping and discharge from the quarry are recommended to occur at the same location at the upstream end of the Unnamed Tributary of Willoughby Creek and in the same manner as existing pumping in accordance with the existing PTTW and Environmental Compliance Approvals regulating current quarry discharge.		NETR (Savanta, April 2020)	76 and 77		
Groundwater Contribution Mitigation:	None required. The Unnamed Tributary is generally a losing stream with minor groundwater contributions typically occuring following spring freshet. During extraction the groundwater contributions are predicted to be reduced by less than 1.0%					
Erosion Mitigation:	Erosion and sedimentation control measures and spill prevention and response measures will be used throughout the duration of any in-stream works in the watercourse.					
Thermal Mitigation:	1) No specific thermal mitigation is proposed given that maintaining existing quarry outflows at Sump 0100 are expected to maintain the existing thermal regime of the watercourse without any additional mitigation.		NETR (Savanta, April 2020)	76		
	2) Removal of the golf course ponds and diversion of flow from catchment S101 may have an indirect positive effect on the thermal regime of the watercourse.			78		
Water Quality Mitigation:	1)No specific water quality mitigation over and above that of the existing quarry operations is proposed given that maintaining existing quarry outflows at Sump 0100 is expected to maintain the existing water quality regime of the watercourse. The quarry extension is not predicted to result in any changes in the quality of water being discharged from Sump 0100.		NETR (Savanta, April 2020)	76		
	2) Removal of the golf course ponds may have an indirect positive effect on the water quality of the watercourse.			78		


TRIBUTARY OF WILLOUGHBY CREEK - GRAPH 1

TRIBUTARY OF WILLOUGHBY CREEK - GRAPH 2

TRIBUTARY OF WILLOUGHBY CREEK - GRAPH 3

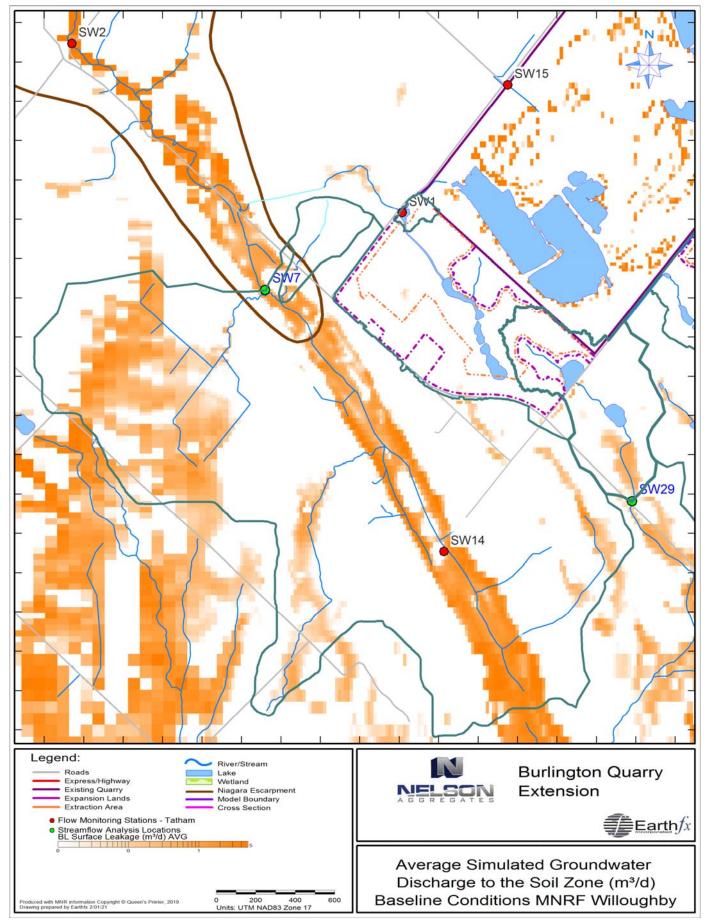


TRIBUTARY OF WILLOUGHBY CREEK - TABLE 1

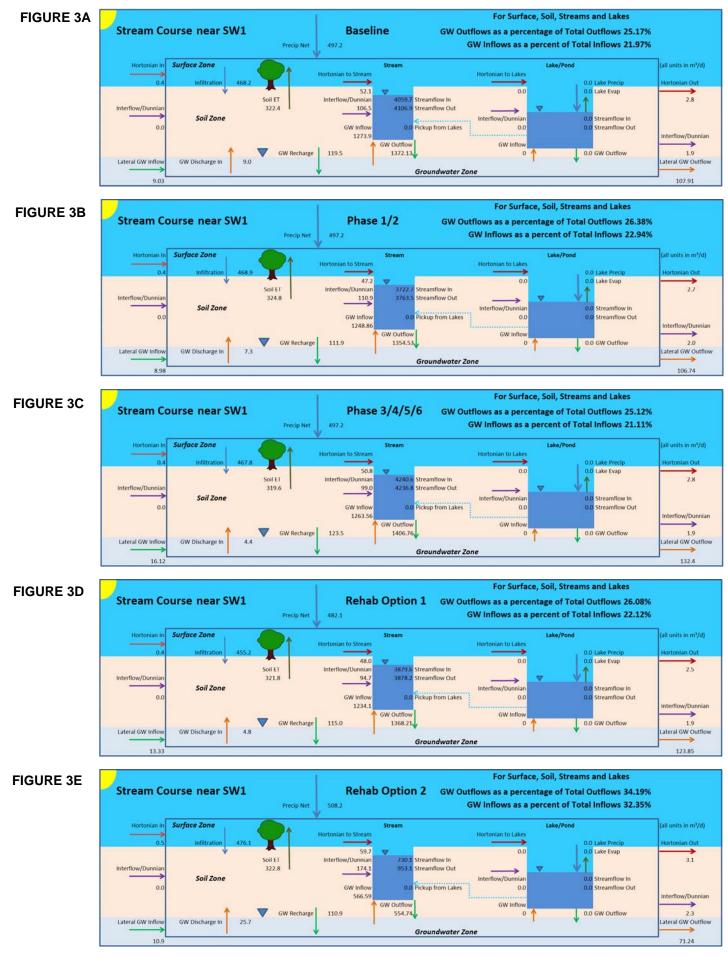
BURLINGTON QUARRY TATHAM ENGINEERING PROJECT NO.: 113187 SURFACE WATER MONITORING

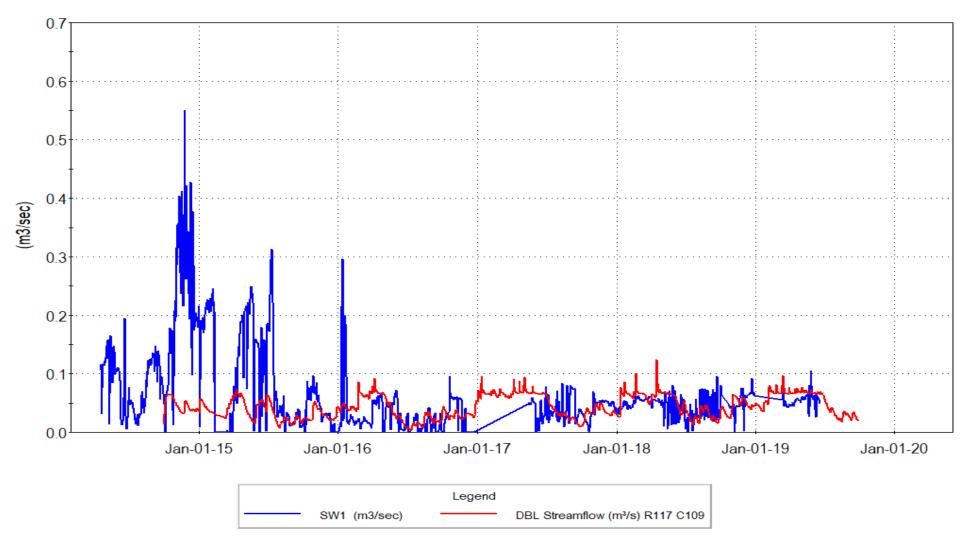

WATER QUALITY SAMPLE RESULTS

Monitoring Location SW1													
		ample Date:	24-Oct-18	24-Apr-19	19-Jun-19	25-Sep-19	20-May-20	15-Jul-20	16-Sep-20	11-Nov-20	Maximum	Minimum	Average
Parameter:	Units:	M.D.L.	CM/JG	CM/JG	CM	CM	JG	JG/JH/JM	JH/JM	JG/JH			-
M-Alkalinity (pH 4.5)		2	137	179	180	112	160	94	107	117	180	112	152
Ammonia (as N)		0.01	0.11	<0.01	0.03	0.02	<0.01	0.45	<0.01	0.01	0.11	0.02	0.04
BOD (5 day)		1	1	2.4	1.3	1	1.6	1.1	1.3	1.2	2.4	1.0	1.4
Bicarbonate	Q.	1	136	177	-	111		93	106	116	177	111	141
Carbonate		1	1	2	-	<1		<1	<1	<1	2	1	1
Conductivity	μS/cm	1	877	742	763	755	790	690	799	886	877	742	784
Dissolved Organic Carbon	mg/L	0.4	4.3	4	3.1	3.7	3.9	2.3	3	3.3	4.3	3.1	3.8
Field pH	рН	N/A	8.8	8.5	8.6	8.8	8.9	8.6	8.9	9.1	8.8	8.5	8.7
Field Temp	°C	N/A	8.6	7.8	20.2	20.4	18.4	24.7	18.5	12.8	20.4	7.8	14.3
Aluminum	ug/L	1	21	64	15	9	10	50	4	2	64	9	27
Antimony	ug/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Arsenic	ug/L	1	5	3	4	4	2	4	4	<1	5	3	4
Barium	<u>o</u> ,	1	38	30	32	29	32	19	29	33	38 <0.5	29	32
Beryllium	ug/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	0.5
Bismuth Boron	ug/L	1	<1 109	<1 56	<1 31	<1 88	<1 59	<1 52	<1 108	<1 123	<1 109	<1 31	1 71
Cadmium	ug/L ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Cadmium		500	×0.1	77100	79600	51100	65000	39600	52300	65400	79600	51100	51950
Carlum	ug/L ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Cesium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Chromium		1	<1	4	3	3	2	<1	2	3	4	3	3
Cobalt	-	0.1	0.2	0.3	0.2	0.1	0.2	0.3	0.1	0.1	0.3	0.1	0.2
Copper	ug/L	1	<1	1	8	1	2	3	1	2	8	1	3
Europium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Gallium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	1
Iron	ug/L	20	40	160	210	140	253	160	160	200	210	40	138
Lanthanum	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Lead	ug/L	0.1	<1	0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	0.1	0.1	0.1
Lithium	ug/L	5	9	7	8	8	8	11	12	12	9	7	8
Magnesium	ug/L	5		30700	34200	36400	34000	28800	36100	41300	36400	30700	25325
Manganese	ug/L	10	9	15	18	15	21	59	9	7	18	9	14
Mercury	Ş,	0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Molybdenum	ug/L	1	3	2	2	3	2	2	2	3	3	2	3
Nickel	ug/L	1	<1	4	<1	<1	3	<1		2	4 <1	Z	3
Niobium Phosphorus	ug/L ug/L	50	<50	<1 124	<50	<50	<1 <50	<50	<1 <50	<1 <50	124	<1 124	68.5
Potassium	ug/L ug/L	1	5990	4230	4510	5620	4680	3830	5920	6800	5990	4230	5088
Rubidium	ug/L	1	3350	4230	4510	3020	4000	2030	3520	2	3350	42.30	3008
Scandium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Selenium	ug/L	0.5	1.6	1.1	<0.5	1.5	1.1	<0.5	1.7	<0.5	1.6	1.1	1.175
Silicon	ug/L	2	1600	1560	888	659	568	447	1010	616	1600	659	1177
Silver		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	0.1
Sodium	ug/L	1000	50600	36500	34900	41800	42300	43700	48900	51200	50600	34900	40950
Strontium	ug/L	1	982	942	895	823	807	564	722	982	982	823	911
Sulphur	ug/L	800	63800	49400	59200	59100	50000	40300	56300	79800	63800	49400	57875
Tellurium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Thallium	ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Thorium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Tin	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Titanium		1	<1	2	<1	<1	<1	1	<1	<1	2	2	1.25
Tungsten		1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Uranium		1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Vanadium		1	<1	1	1	<1	<1	<1	<1	<1	1	1	1
Yttrium		1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Zinc Zirconium		1	5 <1	<1 <1	-	4	4	9 <1	5 <1	2	7 <1	4	4
Zirconium pH	6	1 N/A	<1 8.02	<1 8.03	<1	<1 7.97	<1 8.34	<1 7.97	<1 7.86	<1 7.88	<1 8.0	<1 8.0	1 8.0
рн Total Hardness (as CaCO3)	рн mg/L	N/A 0.1	335	8.03	340	277	8.34	217	279	7.88	340.000	277.000	8.0 317.750
Chemical Oxygen Demand		5	8	12	540	<5	12	11	16	15	12	277.000	911.750 8
Total Dissolved Solids		3	597	517	564	576	525	460	536	574	597	517	564
Total Suspended Solids	5	0.67	1.3	3.67	1	1.7	525	400	2.3	2.7	3.67	1.00	1.92
Turbidity	-	0.1	2.4	3.5	1.4	0.9	2.4	2	0.5	1.2	3.5	0.9	2.1

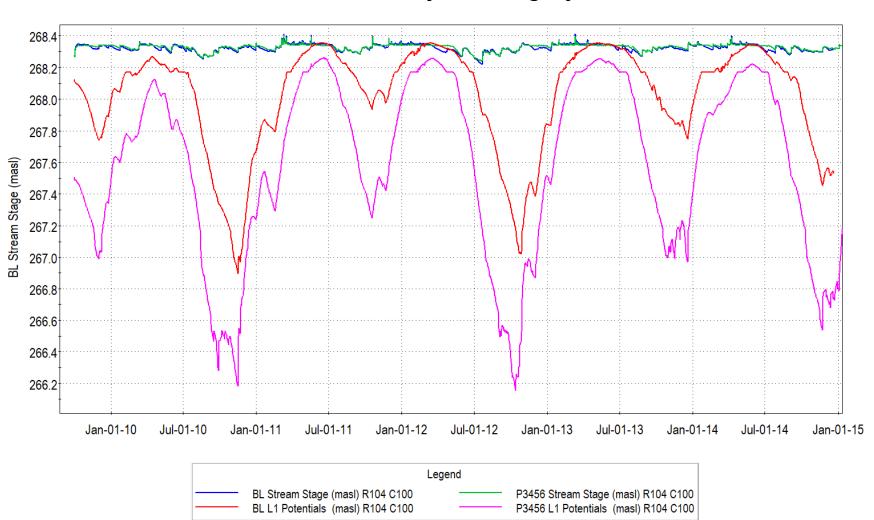


Surface Water / Groundwater Interaction Unnamed Tributary of Willoughby Creek

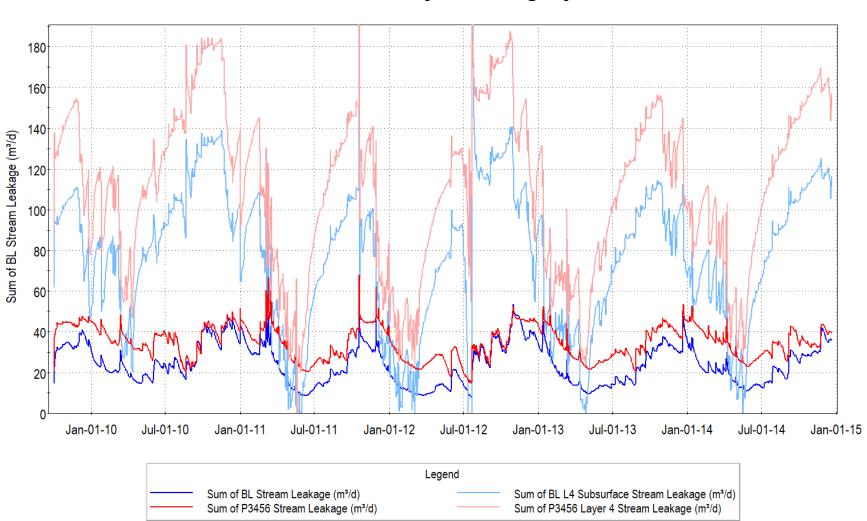

TRIBUTARY OF WILLOUGHBY CREEK - FIGURE 1



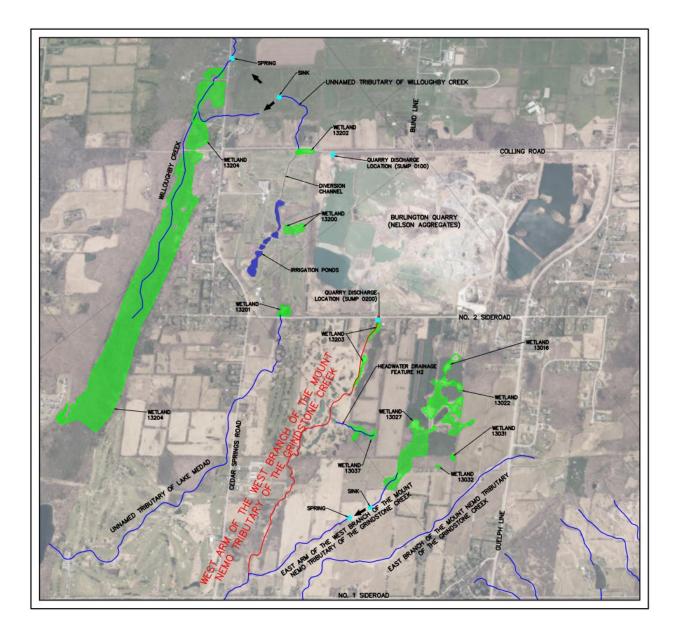
TRIBUTARY OF WILLOUGHBY CREEK - FIGURE 2

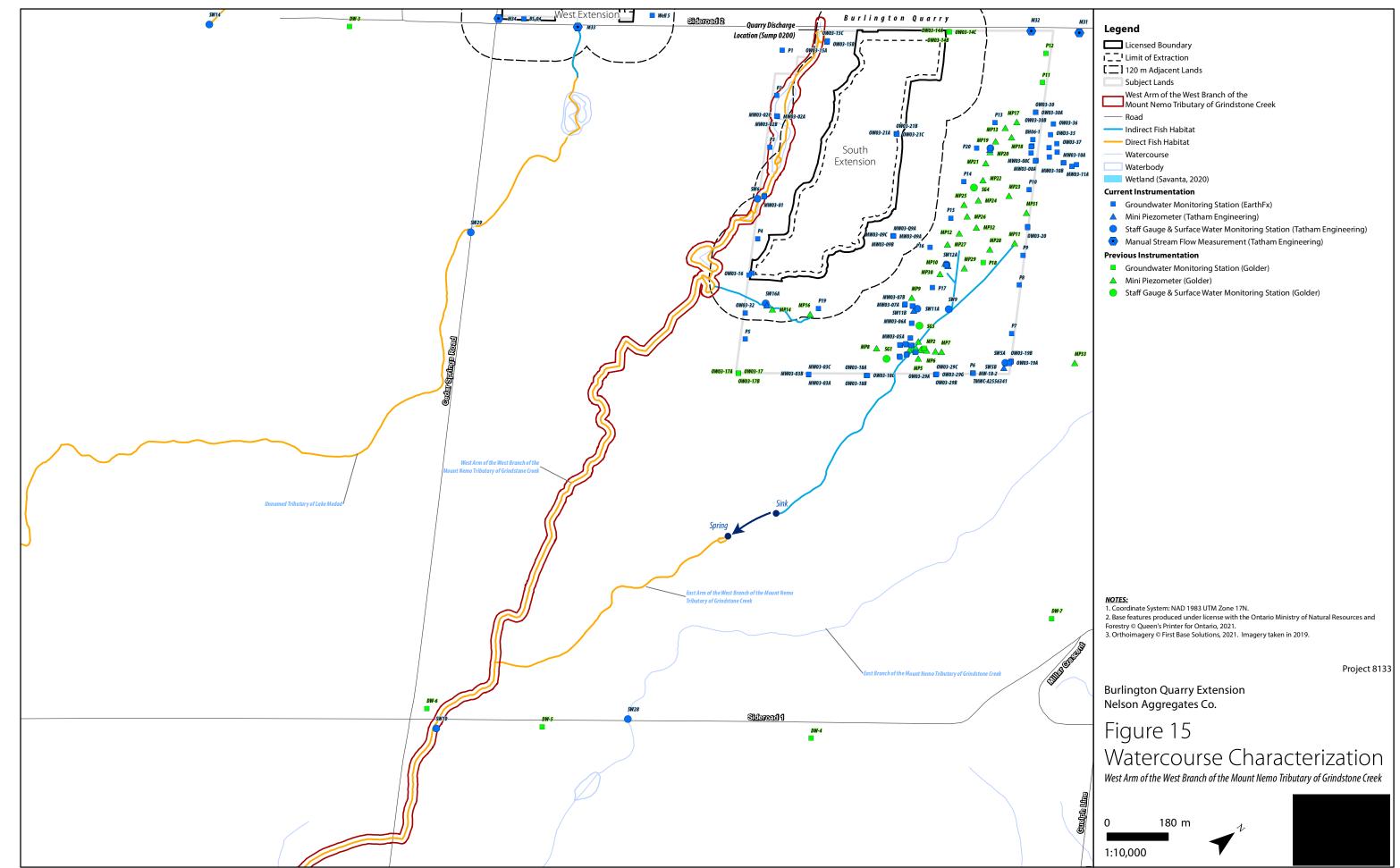


TRIBUTARY OF WILLOUGHBY CREEK



Integrated Model Calibration Unnamed Tributary of Willoughby Creek




Change in Groundwater Contributions to Watercourse Unnamed Tributary of Willoughby Creek

Change in Groundwater Contributions to Watercourse Unnamed Tributary of Willoughby Creek

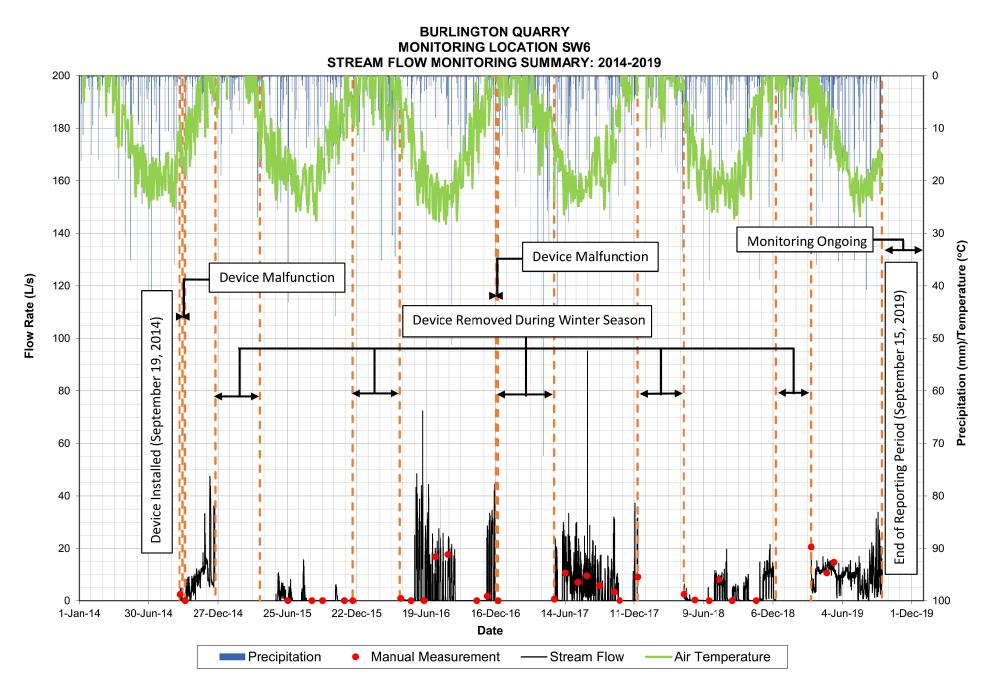
WEST ARM OF THE WEST BRANCH

Surface Mater Characteristics	Description					Figure / Graph /	Reference		
Surface Water Characteristics	Description					Table	Report	Section / Page	
Watercourse Name:	West Arm of the Wes								
Watershed:	Grindstone Creek	rate = 945 L/min (15.75 L/s) amount = 1,360,800 L/day tember 19, 2014 tinuous water level and temperature, manual monthly in-situ streamflow measurements and er level converted to flow using rating curve) oring Station: Easting 590629.123, Northing 4805071.124 dependent on quarry discharge); the tributary will dry out when quarry discharge ceases Average Daily Streamflow (L/s) Notes: Minimum Average Maximum N/A N/A N/A N/A N/A N/A 3.6 7.4 15.3 Average - average daily streated of record 0.0 0.1 6.4 14.3 0.0 4.6 33.8 0.0 5.3 17.7 0.0 5.2 23.6							
Sub-Watershed:	Mount Nemo Tributar	y of Grindstone Creek							
Located in Proposed Limit of Extraction:	No								
Located in Proposed License Boundary:	No								
Catchment Area (ha):	135 ha (at confluence	with East Arm); 26.2	ha (at streamflow m	nonitoring location	SW6)				
Catchment ID:	N/A								
Primary Source(s) of Flow:	Discharge from Burlin	gton Quarry (Sump 02	200)						
Discharge from Quarry / PTTW:	Yes - PTTW 96-P-300	9					SWA (Tatham, April 2020)	Appendix A	
Conditions of PTTW:	Maximum discharge r	ate = 945 L/min (15.7	ō L/s)				SWA (Tatham,	Appendix A	
	Maximum discharge a	mount = 1,360,800 L/	day				April 2020)		
Surface Water Monitoring:	ID: SW6 (Tatham)					Graphs 1, 2 & 3 and	SWA (Tatham,	2.1.2, Appendix C and	
	Installation Date: Sept	ember 19, 2014				Table 1	April 2020)	Appendix H	
Streamflow Conditions:	Intermittent (flow is d	ependent on quarry d	ischarge); the tribut	tary will dry out wh	nen quarry discharge ceases	Graphs 1, 2 & 3	SWA (Tatham, April 2020)	2.1.2 and Appendix C	
Average Daily Flow (SW6):		Average Daily Str	eamflow (L/s)		Notes:	Graphs 1 & 2	SWA (Tatham,	2.1.2 and Appendix C	
	Month	Minimum	Average	Maximum	Minimum - lowest daily average		April 2020)		
	January	N/A	N/A	N/A	streamflow recorded for period of				
	February	N/A	N/A	N/A	record				
	March	3.6	7.4	15.3	Average - average daily streamflow				
	April	0.1	6.4	14.3	recorded for period of record				
	May	0.0	4.6	33.8	Maximum - maximum daily average				
	June	0.0	6.5	31.0	streamflow recorded for period of				
	July	0.0	5.3	17.7	record				
	August	0.0	5.2	23.6	N/A - data not available as device				
	September	0.0	2.4						
	October	0.0	2.1	16.0	winter months				
	November	0.0	4.1	21.9					
	December	0.0	7.8	44.6					

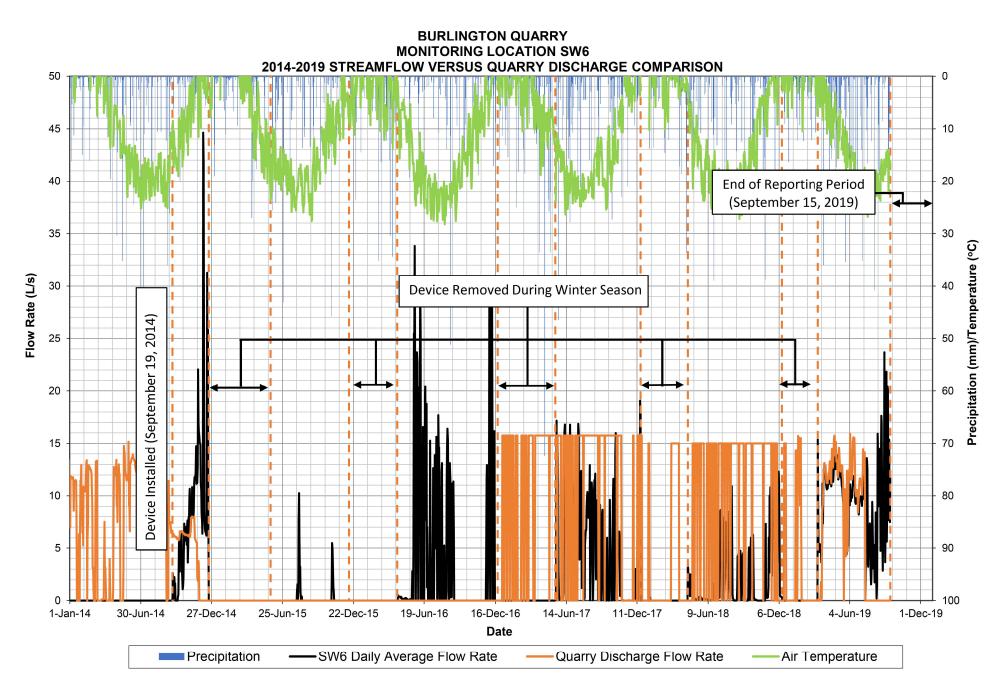
Curfe ee Mater Characteristics	Description					Figure / Graph /	Re	eference
Surface Water Characteristics	Description					Table	Report	Section / Page
Watercourse Thermal Regime (SW6):		Average Daily Water	Temperature (°C)		Notes:	Graph 3	SWA (Tatham,	2.1.2 and Appendix C
	Month	Minimum	Average	Maximum	Minimum - lowest daily average		April 2020)	
	January	N/A	N/A	N/A	streamflow recorded for period of			
	February	N/A	N/A	N/A	record			
	March	4.7	6.0	8.0	Average - average daily streamflow			
	April	5.6	9.5	12.3	recorded for period of record			
	May	7.3	14.4	25.0	Maximum - maximum daily average			
	June	9.4	17.7	26.5	streamflow recorded for period of			
	July	12.3	21.0	27.2	record			
	August	12.2	21.1	28.9	N/A - data not available as device			
	September	9.5	17.8	25.1	removed from watercourse during			
	October	2.7	12.2	20.2	winter months			
	November	0.2	7.2	13.2				
	December	0.5	4.9	9.6				
Vater Quality (SW6):		Water	Quality Sample Res		Table 1	SWA (Tatham,	2.4 and Appendix H	
	Parameter	Units	Minimum	Average	Maximum		April 2020)	
	Turbidity	NTU	0.2	0.4	0.5			
	TDS	mg/L	593	640	695			
	TSS	mg/L	<0.67	1.11	2.00			
	COD	mg/L	<5	8	12			
	BOD5	mg/L	<0.9	0.9	0.9			
	DOC	mg/L	2.7	3.0	3.4			
	рН		7.7	7.9	8.2			
	Alkalinity	mg/L	137	160	172			
	Conductivity	µ\$∕cm	798	858	934			
	Phosphorus	ug/L	<50	<50	<50			
	Ammonia	mg/L	<0.01	0.02	0.04			
	Hardness	mg/L	357	364	376			

Fish & Fish Ushitat Fastures	Description	Figure / Graph /	Re	ference
Fish & Fish Habitat Features	Description	Table	Report	Section / Page
Fish Habitat (Direct/Indirect and Assumed/Confirmed):	The West Arm is known to provide direct fish habitat, based on fish community sampling completed in 2019 by Savanta. Fish were captured in a small, online pond approximately 400 m downstream from Sideroad No. 2. For the purposes of the NETR, the entire watercourse up to the quarry discharge point at Sideroad No. 2 is assumed to provide direct fish habitat.		NETR (Savanta, April 2020)	44 and Figure 9b
Fish Species Present:	 Savanta captured Brook Stickleback in the watercourse in 2019. Stantec (2010) previously reported that Brook Stickleback and Pumpkinseed were captured in the West Arm. 		NETR (Savanta, April 2020)	44 and Figure 9b
Fish Community Thermal Regime:	Cool to Warmwater (based on fish species present)		NETR (Savanta, April 2020)	44 and Figure 9b
Fish Habitat Types Present:	The reach of the watercourse between the upstream end at Sideroad No. 2 and the Nelson property line generally consists of a poorly defined to well-defined natural low flow channel within a low-lying, densely vegetated floodplain. With some reaches, the low flow channel is barely observable and only approximates a shallow depression amongst dense emergent wetland vegetation. In other reaches, the low flow channel is more well defined, with observable bed and banks that are distinguishable from the riparian vegetation community. The average wetted width of the channel is approximately 2 m, with abundant vegetation and multiple flow paths through wetland areas. Water depth on June 3, 2019 ranged from 0.1 to 0.5 m. Morphology is generally uniform, consisting of long runs with soft substrate, although several deeper scour pools are present, as well as one approximately 18 m long by 10 m wide online pond. A larger (~40 m by 20 m) online pond (which receives the inflow from the quarry Sump 0200) is present immediately adjacent to Sideroad No. 2. Riparian vegetation is generally meadow marsh and cultural meadow, although shrub thickets are present at various points.		NETR (Savanta, April 2020)	44 and Figure 9b
Habitat Uses by Known Fish Community:	The local fish community likely uses the habitat for the complete range of life history processes including spawning, nursery, foraging and overwintering (primarily in the online ponds at the upstream end and mid-point of the reach). Larger online ponds are also present on the downstream golf course property and these may also provide overwintering and refuge functions for the local fish community.		NETR (Savanta, April 2020)	44 and Figure 9b
Known Barriers to Fish Movement:	A culvert is present at the downstream Subject Lands property boundary. Fish may be able to pass upstream through this culvert under lower flow rates, although at higher flows, when velocities are expected to be higher, the culvert may provide some barrier effect.		NETR (Savanta, April 2020)	44 and Figure 9b

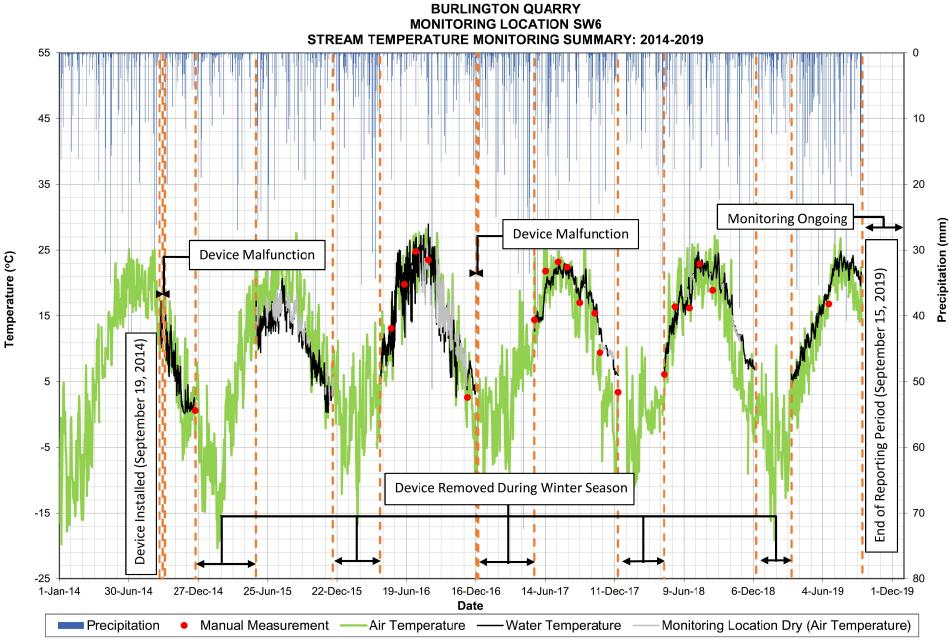
iroundwater Interaction	Description				Figure / Graph /	Reference		
Groundwater Interaction	Description				Table	Report	Section / Page	
Underlying Deposits:		ue for the vertical h	ydraulic conductiv	on testing by Golder (2007) of 10 mini-piezometers, was zy was 1.6x10 ⁻⁷ m/s, about an order of magnitude higher, to				
Surface Water / Groundwater Interactions:					Figures 1 & 2			
Water Budget Results (300 m Upstream of SW6):	The baseline condition v presented in Figure 3a.	water budget results	from the integrate	d model 300 m upstream of monitoring location SW6 are	Figure 3a			
	months equates to 0.08 L/s or less. Groundwater seepage is at its maximum during and immediates freshet. r Budget Results (300 m Upstream of : The baseline condition water budget results from the integrated model 300 m upstream of more presented in Figure 3a. Condition GW Out GW In Baseline (Existing) 8.77% 0.00% r Budget Results (SW6): The baseline condition water budget results from the integrated at monitoring location SW6 at monitoring loc							
	Baseline (Existing)	8.77%	0.00%					
Water Budget Results (SW6):	The baseline condition v	water budget results	from the integrate	d at monitoring location SW6 are presented in Figure 4a.	Figure 4a			
	Condition	GW Out	GW In	7				
	Baseline (Existing)	9.70%	0.32%			HHIAR (Earthfx, April 2020)		
Integrated Model Calibration:	amounts are not specifi 19.4.2 (p. 416) of the Ea "operating rules" and th discharge rate, with an	ed in the model but a arthfx report, the disc erefore also may no extra stage-depende	are estimated base charge to the sout t match the variati ent discharge rule t	ovided in Graph 4. It should be noted that quarry discharge d on simulated inflows to the quarry. As noted in Section a sump (upstream of SW6) was simulated with a set of ons in the observed data. The rules defined a 5 day per week nat kept the internal quarry pond at a specified level. Actual varied on a manual basis			19.4.2 (page 416)	


Impact Accordment	Description	Figure / Graph /	Re	ference
Impact Assessment	Description	Table	Report	Section / Page
Direct Alterations to Watercourse:	The only direct impact on this watercourse will be due to installation of an outlet from the temporary settling pond/sump outlet from the adjacent South Extension area. The outlet is expected to be constructed at the channel bank, although no detailed design has been completed to date. The outlet could be as simple as a pipe laid on the ground (given that it won't be buried where it runs through the adjacent woodland), or it could require some structural measures (e.g., a headwall) to keep the outlet in place. Therefore, some minor disruption to the bed and banks of the watercourse could occur.		NETR (Savanta, April 2020)	75
Change in Primary Source of Flow:	Quarry discharge from Sump 0200 represents the major source of flow to the West Arm. Current quarry approvals permit this discharge to cease once quarry operations are complete. Cessation of quarry discharge into the West Arm would have a negative impact on flow available to support current fish habitat and fish community. As discussed in the Mitigation section below, it has been recommended that quarry discharge continue indefinitely at current levels to prevent these associated negative impacts.		NETR (Savanta, April 2020)	79
Change in Watercourse Catchment Area:	Reduction in catchment area of 11.7 ha. Quarry discharge from Sump 0200 represents the major source of flow to the West Arm. During Phase 1 operations, an additional source of flow will be from dewatering the Phase 1 and 2 extraction area. The quarry discharge from Sump 0200 is to continue throughout Phases 1 and 2 and no impacts are anticipated as a result of the reduction in catchment area.		SWA (Tatham, April 2020)	Drawings DP-1, DP-2 and DP-3

	Description						Figure / Graph /	Re	ference
Impact Assessment	Description						Figure / Graph / Table Graphs 5 & 6 Figure 3b Figure 3c Figure 3d Figure 3d Figure 3e	Report	Section / Page
Simulated Streamflow Change (Integrated Model Results):	The Earthfx report disc reproduces Figure 8.8 (approximately 800 m di scale shown on the righ Phase 12 area. A similal shows the decrease in s generally lower in the w	(p. 202) and presents ownstream of SW6. ht Y axis. Streamflow r figure (Graph 6) is r streamflow (with pos	simulated baseline Increase in flow (gr is predicted to inc eproduced for Pha itive values indicati	e(red) and Scenario F reen) are plotted in re rease due to the disc se 3456 (Figure 8.46, ing an decrease in flo	n with the atering the er X axis	Graphs 5 & 6	HHIAR (Earthfx, April 2020)	198 - 203 and 230 - 237	
	5				itoring Location SW6				
Water Budget Results (Operational Phases 1 & 2):	The Operational Phases SW6 are presented in F	s 1 and 2 water budge		•		g location F	igure 3b		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	8.77%	0.00%	-	-				
	Phases 1 & 2	4.81%	0.00%	-3.96%	0.00%				
Water Budget Results (Operational Phases 3 Through 6):	The Operational Phases location SW6are preser	-	udget results from	the integrated model	300 m upstream of monit	toring F	igure 3c		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	8.77%	0.00%	-	-				
	Phases 3 through 6	5.66%	0.00%	-3.17%	0.00%				
Water Budget Results (Rehabilitation Scenario 1):	The Rehabilitation Scer SW6are presented in Fi	_	results from the int	egrated model 300 m	upstream of monitoring l	location F	igure 3d		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	8.77%	0.00%	-	-				
	Rehab Scenario 1	4.83%	0.00%	-3.94%	0.00%				
Water Budget Results (Rehabilitation Scenario 2):	The Rehabilitation Scer SW6are presented in Fi	•	results from the int	egrated model 300 m	upstream of monitoring I	location F	igure 3e		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	8.77%	0.00%	-	-				
	Rehab Scenario 2	6.56%	0.00%	-2.21%	0.00%				


Import According to	Description						Figure / Graph /	Re	ference
Impact Assessment	Description						Table	Report	Section / Page
			Water Budget R	esults at Monitoring I	ocation SW6				
Water Budget Results (Operational Phases	1 The Operational Phases	1 and 2 water budg	et results from the	integrated model at r	nonitoring location	SW6 are presented	Figure 4b		
& 2):	in Figure 4b.								
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	9.70%	0.32%	-	-				
	Phases 1 & 2	10.07%	0.00%	0.37%	-0.32%				
Water Budget Results (Operational Phases			udget results from	the integrated mode	at monitoring locat	tion SW6 are	Figure 4c		
Γhrough 6):	presented in Figure 4c.								
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	9.70%	0.32%	-	-				
	Phases 3 through 6	7.92%	0.02%	-1.78%	-0.30%				
Water Budget Results (Rehabilitation	The Rehabilitation Scer	ario 1 water budget	results from the inf	tegrated model at mo	nitoring location SV	V6 are presented in	Figure 4d		
Scenario 1):	Figure 4d.								
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	9.70%	0.32%	-	-				
	Rehab Scenario 1	6.13%	0.09%	-3.57%	-0.23%				
Water Budget Results (Rehabilitation	The Rehabilitation Scer	ario 2 water budget	results from the inf	tegrated model at mo	nitoring location SV	V6 are presented in	Figure 4e		
Scenario 2):	Figure 4e.								
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow]			
	Baseline (Existing)	9.70%	0.32%	-	-				
	Rehab Scenario 2	8.76%	2.06%	-0.94%	1.74%				
Change in Groundwater Contributions to	Groundwater seepage				•		, Graphs 7 and 8		
Watercourse:	the dewatering associa					the leakage from			
	the watercourse will inc	crease. This includes	the effect of chang	ges in the south quarr	y discharge.				
Change in Watercourse Thermal Regime:	Negative changes in wa	-						NETR (Savanta,	79
	input from quarry disch					ected to change as a	а	April 2020)	
	result of the proposed	Juarry Extension, the	erefore, no change	in water temperature	is anticipated.				
Change in Water Quality:	1) Negative changes or							NETR (Savanta,	79
	from quarry discharge.							April 2020)	
	the proposed Quarry E	ktension, therefore, r	io change in water	quality in the major s	ource of inflow is ex	(pected.			
	2) Discharge from the t				meet water quality	discharge			
	objectives. Therefore, r	o negative impacts o	on water quality are	e expected.					
Potential Impact to Form and Function of	Alterations to quarry di	scharge (if unmitigat	ed) could potentia	lly have negative imp	acts on the form an	d habitat functions		NETR (Savanta,	79
Feature:	of this watercourse.							April 2020)	
Potential Impact to Identified Species and	Alterations to quarry di		ed) could potentia	lly have negative imp	acts on the species	and habitat		NETR (Savanta,	79
Habitat:	functions of this water	ourse.						April 2020)	

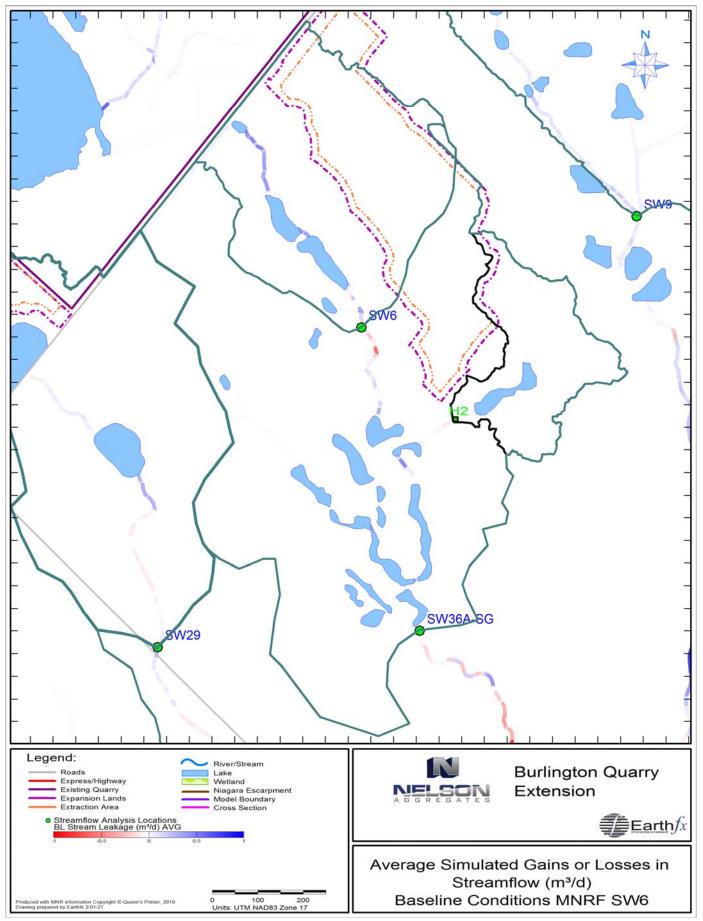
Mitigation	Description	Figure / Graph / Table	Re	eference
			Report	Section / Page
Direct Alteration Mitigation:	1) In-water work required to install the settling pond/sump outlet is recommended to be completed between July 16 and March 14 to minimize the potential for direct and indirect impacts on the reproductive activities of the fish community in the West Arm.		NETR (Savanta, April 2020)	75
	2)Erosion and sedimentation control measures and spill prevention and response measures will be used throughout the duration of any in-stream works in the watercourse. Work-site isolation measures should be considered depending on the final design of the outlet and proposed installation methodology and location.			
	3) Any riparian areas disturbed during installation of the outlet should be rehabilitated with appropriate native vegetation species following installation of the outlet structure.			
Source Water Mitigation:	In order to mitigate impacts on fish and fish habitat in the West Arm, pumping and discharge are recommended to occur at the same location at the upstream end of watercourse and in the same manner as existing pumping in accordance with the existing PTTW and Environmental Compliance Approvals regulating current quarry discharge.		NETR (Savanta, April 2020)	79
Groundwater Contribution Mitigation:	None required. Predicted reductions in groundwater contribution to the West Arm are 0.32% or 0.08 L/s or less.			
Erosion Mitigation:	Erosion and sedimentation control measures and spill prevention and response measures will be used throughout the duration of any in-stream works in the watercourse. Work-site isolation measures should be considered depending on the final design of the outlet and proposed installation methodology and location.			
Thermal Mitigation:	No specific thermal mitigation is proposed given that maintaining existing quarry outflows at Sump 0200 are expected to maintain the existing thermal regime of the watercourse without any additional mitigation.		NETR (Savanta, April 2020)	79
Water Quality Mitigation:	1) No specific water quality mitigation over and above that of the existing quarry operations is proposed given that maintaining existing quarry outflows at Sump 0200 are expected to maintain the existing water quality regime of the watercourse without any additional mitigation. The quarry extension is not predicted to result in any changes in the quality of water being discharged from Sump 0200.		NETR (Savanta, April 2020)	79
	2) The temporary settling pond and longer-term sump that will discharge to the West Arm will be required to meet discharge water quality criteria with respect to total suspended solids and other potential contaminants.			


WEST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK - GRAPH 1

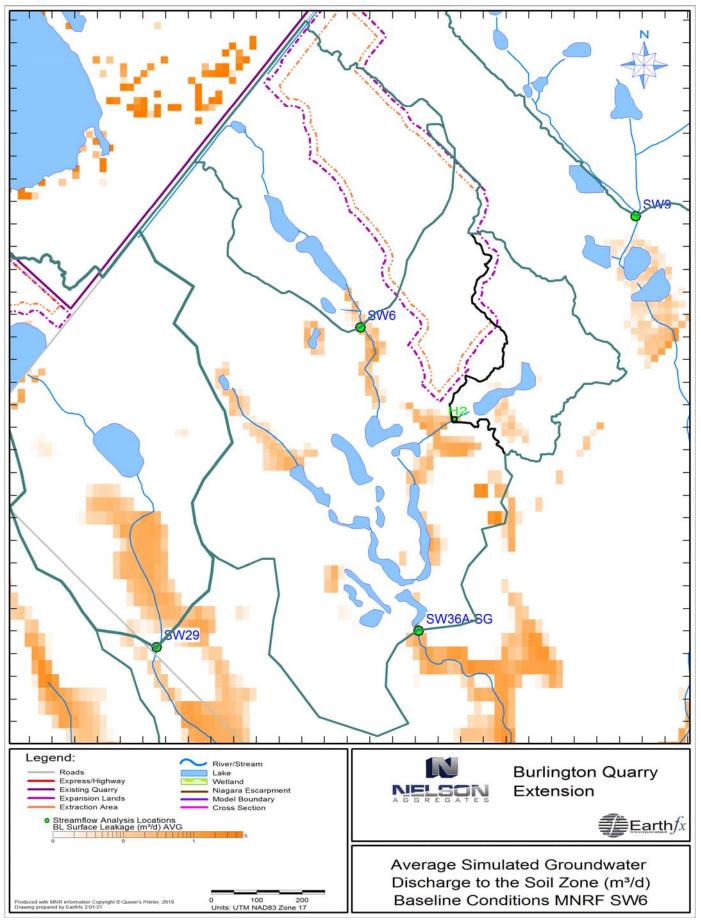
WEST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK - GRAPH 2

WEST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK - GRAPH 3

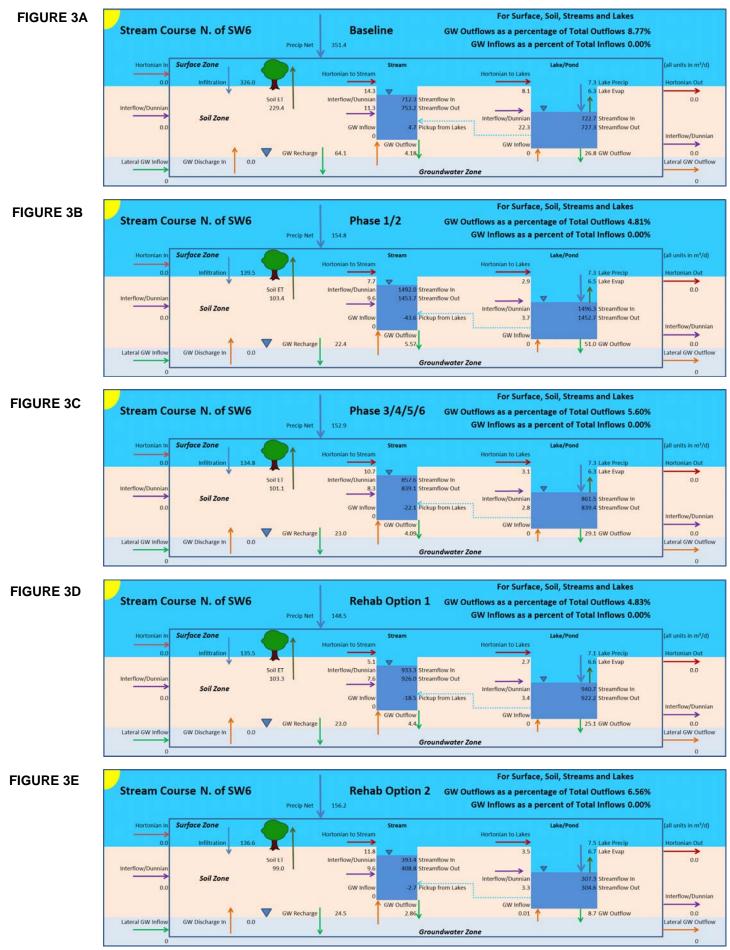
* Grey data indicates the monitoring location was dry and therefore the recorded values are respresentative of the air temperature.

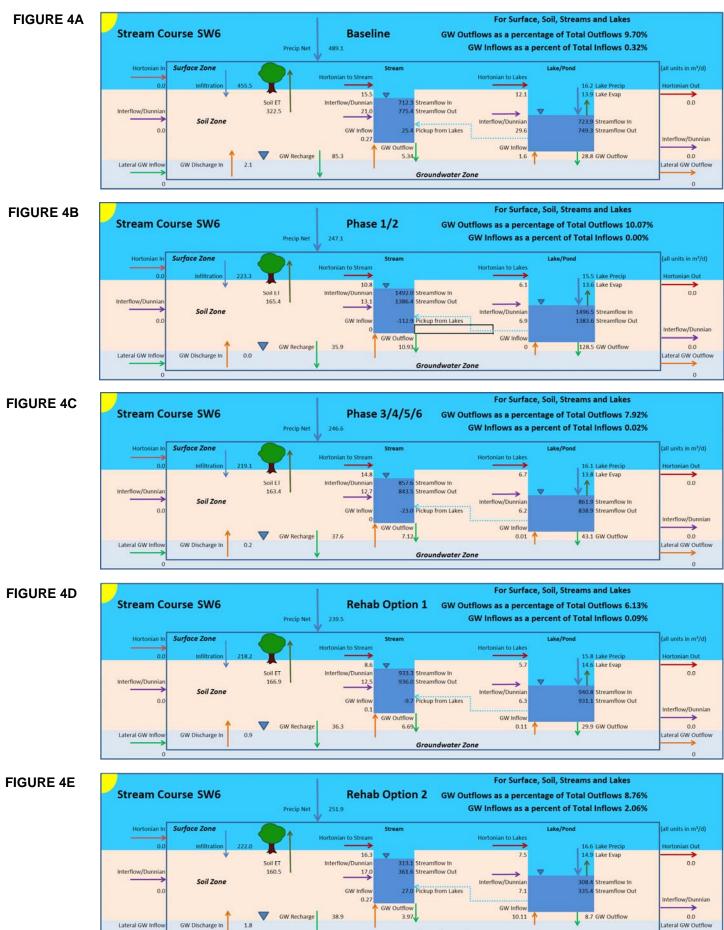

WEST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK - TABLE 1

BURLINGTON QUARRY TATHAM ENGINEERING PROJECT NO.: 113187 SURFACE WATER MONITORING

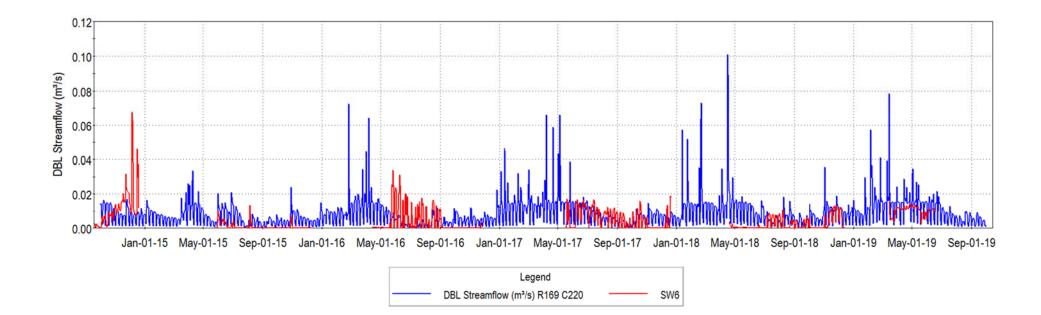

WATER QUALITY SAMPLE RESULTS

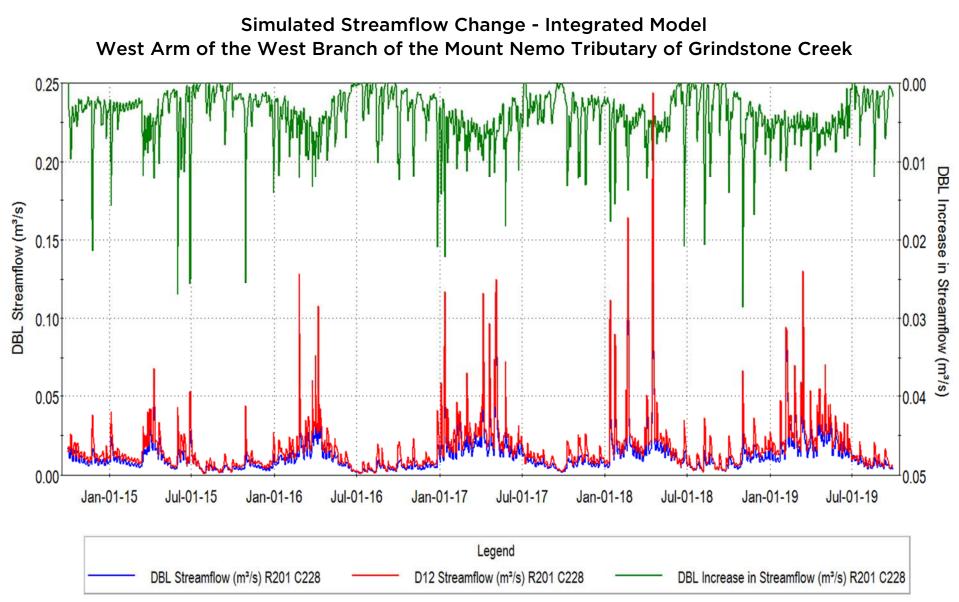
				М	onitoring Lo								
		mple Date:	24-Oct-18	24-Apr-19	19-Jun-19	25-Sep-19	20-May-20	15-Jul-20	16-Sep-20	11-Nov-20	Maximum	Minimum	Average
Parameter:	Units:	M.D.L.	CM/JG	CM/JG	СМ	СМ	JG	JG/JH/JM	JH/JM	JG/JH			Average
M-Alkalinity (pH 4.5)	mg/L as CaCO3	2		170	172	137	169	125			172	137	160
Ammonia (as N)	mg/L	0.01		< 0.01	0.04	0.02	<0.01	< 0.01			0.04	0.02	0.02
BOD (5 day)	mg/L	1		0.9	<0.9	0.9	<1	<1			0.9	0.9	0.9
Bicarbonate	mg/L as CaCO3	1		169		136		124			169	136	102
Carbonate	mg/L as CaCO3	1		1		<1		<1			1	1	1
Conductivity	μS/cm	1		798	843	934	975	1020			934	798	858
Dissolved Organic Carbon	mg/L	0.4		2.7	3	3.4	2.2	3.4			3.4	2.7	3.0
Field pH	pН	N/A			8.4	8.7	8.4				8.7	8.4	5.7
Field Temp	°C	N/A			15.1	16.1	17.2				16.1	15.1	10.4
Aluminum	ug/L	1		6	2	<1	<1	<1			6	2	3
Antimony	ug/L	0.5		<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	0.5
Arsenic	ug/L	1		2	3	4	2	6			4	2	3
Barium	ug/L	1		31	30	32	33	23			32	30	31
Beryllium	ug/L	0.5		<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	0.5
Bismuth	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Boron	ug/L	2		66	71	160	116	157			160	66	99
Cadmium	ug/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	0.1
Calcium	ug/L	500		85600	85900	74700	87100	80800			85900	74700	82067
Cerium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Cesium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Chromium	ug/L	1		3	3	3	2	1			3	3	3
Cobalt	ug/L	0.1		0.2	0.2	0.1	0.2	0.2			0.2	0.1	0.2
Copper	ug/L	1		<1	4	<1	2	2			4	4	2
Europium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Gallium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Iron	ug/L	20		89	211	180	282	180			211	89	160
Lanthanum	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Lead	ug/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	0.1
Lithium	ug/L	5		10	11	13	14	23			13	10	11
Magnesium	ug/L	5		35500	39100 31	41300 15	45500	42300			41300 31	35500 15	38633
Manganese Mercury	ug/L ug/L	10 0.1	DRY	<1 <0.1	<0.1	<0.1	<0.1	37	DRY	DRY	<0.1	<0.1	19 0.1
Mercury Molybdenum	ug/L ug/L	0.1		4	4	3	<0.1 4	5			<0.1	3	0.1
Nickel	ug/L ug/L	1		4	4	3	4	3			4	3	4
Niobium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Phosphorus	ug/L	50		<50	<50	<50	<50	<50			<50	<50	50
Potassium	ug/L	1		3980	4380	6510	4950	6480			6510	3980	4957
Rubidium	ug/L	1		2	2	3	2	3			3	2	2
Scandium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Selenium	ug/L	0.5		1.7	1.1	0.9	2.2	<0.5			1.7	0.9	1.2
Silicon	ug/L	2		670	900	1230	500	1550			1230	670	933
Silver	ug/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	0.1
Sodium	ug/L	1000		30400	36800	46100	48200	44500			46100	30400	37767
Strontium	ug/L	1		1270	1190	1380	1310	1440			1380	1190	1280
Sulphur	ug/L	800		63600	74400	79100	82400	83800			79100	63600	72367
Tellurium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Thallium	ug/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1	0.1
Thorium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Tin	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Titanium	ug/L	1		2	<1	<1	<1	<1			2	2	1
Tungsten	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Uranium	ug/L	1		<1	<1	<1	1	1			<1	<1	1
Vanadium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Yttrium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
Zinc	ug/L	1		<1	3	1	3	3			3	1	2
Zirconium	ug/L	1		<1	<1	<1	<1	<1			<1	<1	1
рН	pH	N/A		7.89	7.82	7.85	8.24	7.66			7.9	7.8	7.9
	mg/L	0.1		360	376	357	405	376			376	357	364
Total Hardness (as CaCO3)	<i>i</i> .			8	12	<5	<5	<5			12	8	8
Chemical Oxygen Demand	mg/L	5		-									
Chemical Oxygen Demand Total Dissolved Solids	mg/L	3		593	631	695	709	724			695	593	640
Chemical Oxygen Demand		5 3 0.67 0.1		-									640 1.11 0.4

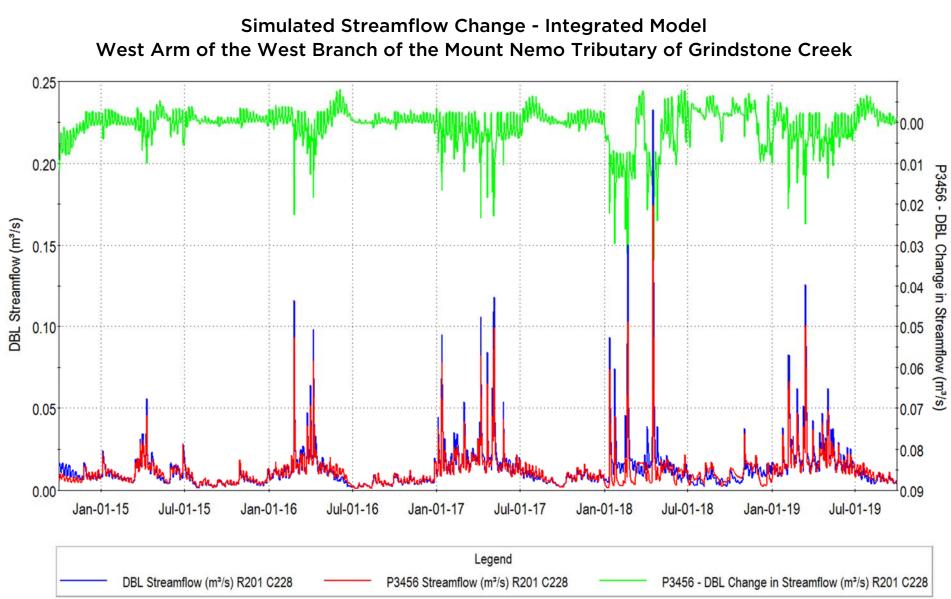


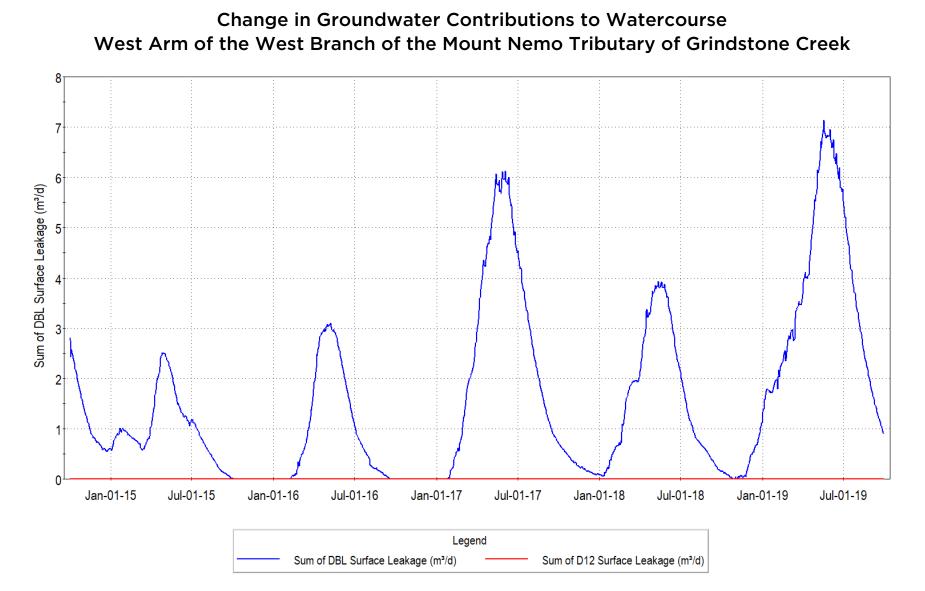


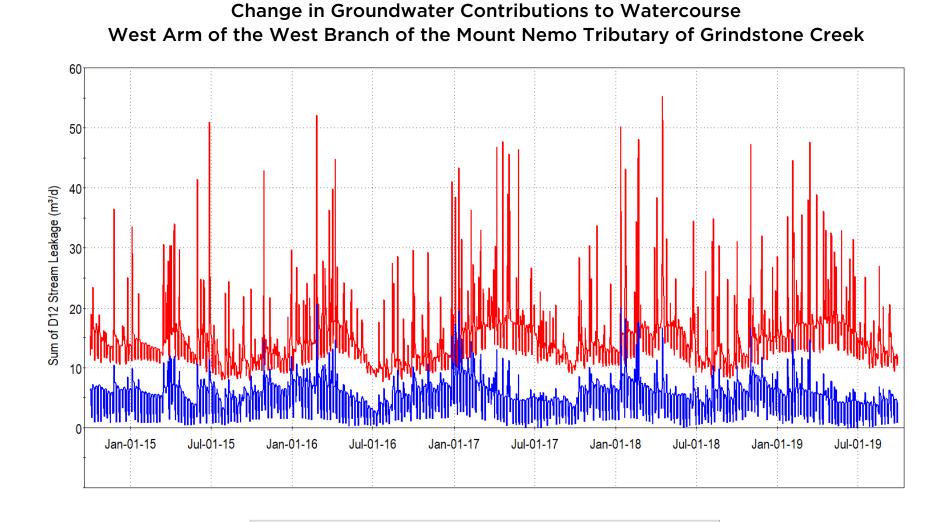
WEST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK

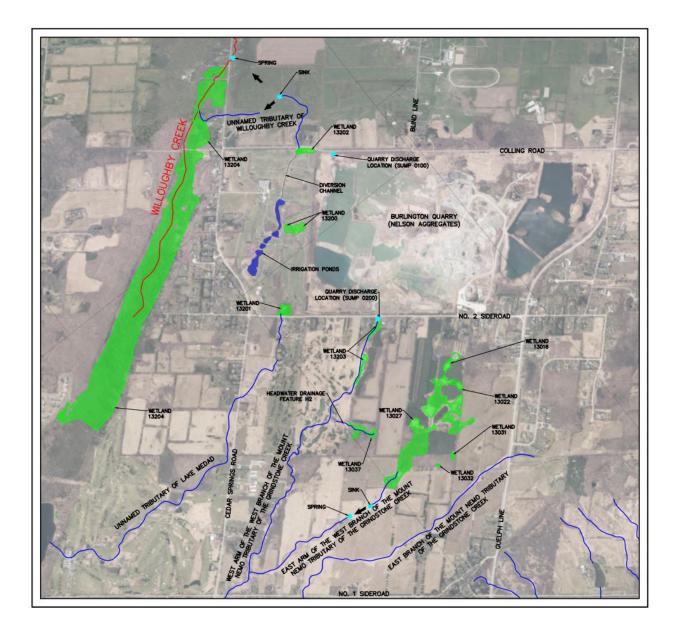

WEST ARM OF THE WEST BRANCH OF THE MOUNT NEMO TRIBUTARY OF GRINDSTONE CREEK

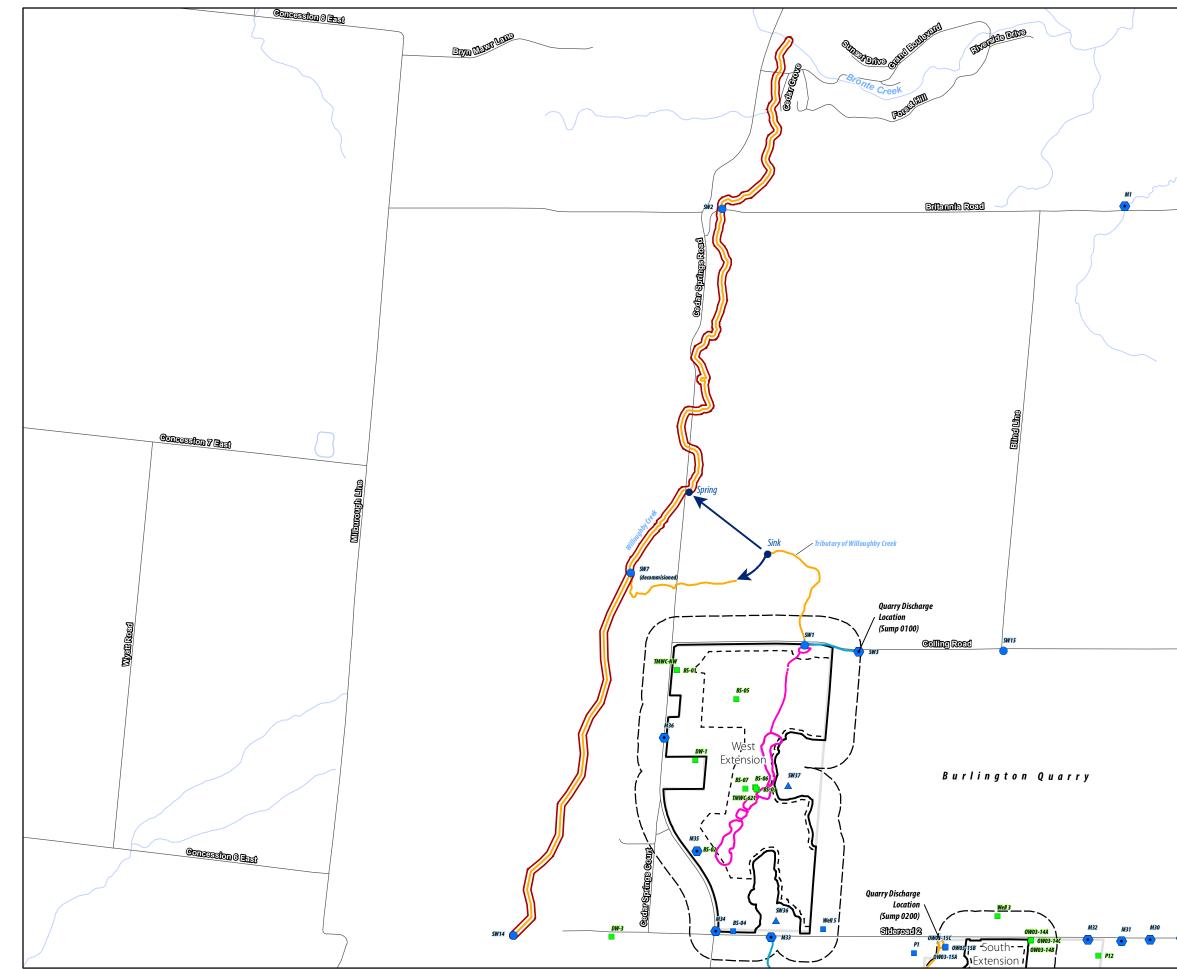


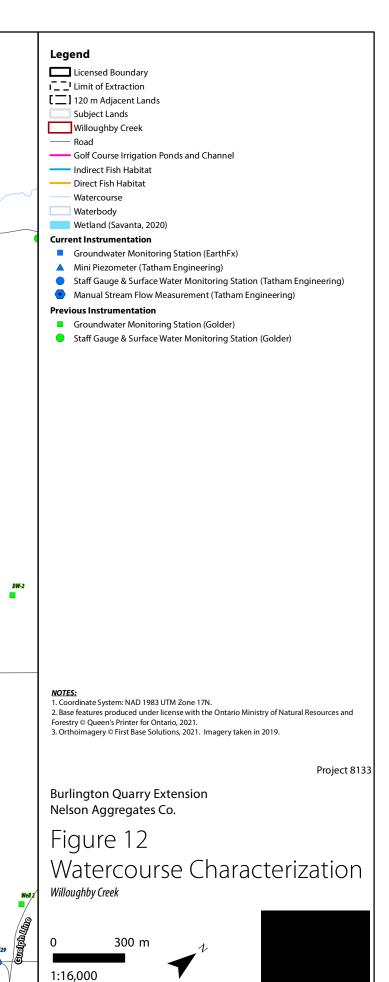

Groundwater Zone


0








Legend

WILLOUGHBY CREEK

Path: C:\Savanta\8133 - Burlington Quarry\figures\report_figures\202

rylfigures\report_figures\2021 01 21 natural feature tech summary\8133_rpt_watercourse_char_mapbook.mxd [Page:98 April 8, 2021

Willoughby Creek

Surface Mater Characteristics	me: Willoughby Creek Bronte Creek Watershed Willoughby Creek Watershed based Limit of Extraction: No ssed Limit of Extraction: No ssed License Boundary: No (ha): 1091 ha (at Britannia Road) ///A Primary - discharge from Burlington Quarry (Sump 0100) Secondary - surface runoff Tertiary - groundwater seepage Purry / PTTW: Yes - PTTW 96-P-3009 TW: Maximum discharge amount = 5,889,600 L/day Onitoring: ID: SW2 (Tatham) Installation Date: April 17, 2014 Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve) Coordinates of Monitoring Station: Easting 588015.325, Northing 4805832.639 ID: SW7 (Tatham) Installation Date: September 19, 2014 Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve) Location Coordinates: Easting 588319.945, Northing 4805441.072 ID: SW14 (Tatham) Installation Date: October 2, 2014 Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration	Figure / Graph /	Reference		
Surface Water Characteristics	Description	Table	Report	Section / Page	
Watercourse Name:	Willoughby Creek				
Watershed:	Bronte Creek Watershed				
Sub-Watershed:	Willoughby Creek Watershed				
Located in Proposed Limit of Extraction:	No				
Located in Proposed License Boundary:	No				
Catchment Area (ha):	1091 ha (at Britannia Road)				
Catchment ID:	N/A				
Primary Source(s) of Flow:	Primary - discharge from Burlington Quarry (Sump 0100)				
	Secondary - surface runoff				
	Tertiary - groundwater seepage				
Discharge from Quarry / PTTW:	Yes - PTTW 96-P-3009		SWA (Tatham, April 2020)	Appendix A	
Conditions of PTTW:	Maximum discharge rate = 4,090 L/min (68.17 L/s)		SWA (Tatham,	Appendix A	
	Maximum discharge amount = 5,889,600 L/day		April 2020)		
Surface Water Monitoring:	ID: SW2 (Tatham)	Graphs 1 & 2 and	SWA (Tatham,	2.1.1, Appendix B and	
	Installation Date: April 17, 2014	Table 1	April 2020)	Appendix H	
	Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve)				
	Coordinates of Monitoring Station: Easting 589015.325, Northing 4805832.639				
	ID: SW7 (Tatham)	Graphs 3 & 4	SWA (Tatham,	2.1.1 and Appendix B	
	Installation Date: September 19, 2014		April 2020)		
	Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve)				
	Location Coordinates: Easting 588319.945, Northing 4805441.072				
	ID: SW14 (Tatham)	Graphs 5 & 6 and	SWA (Tatham,	2.1.1, Appendix B and	
	Installation Date: October 2, 2014	Table 2	April 2020)	Appendix H	
	Data Collection: Continuous water level and temperature, manual monthly in-situ streamflow measurements and calibration data (water level converted to flow using rating curve)				
	Location Coordinates: Easting 589226.754, Northing 4804106.857				
Streamflow Conditions:	Permanent watercourse at Britannia Road (SW2), intermittent watercourse at monitoring locations SW7 and SW14. Watercourse dependent on quarry discharge downstream of confluence with Unnamed Tributary of Willoughby Creek.	Graphs 1, 3 & 5	SWA (Tatham, April 2020)	2.1.1 and Appendix B	

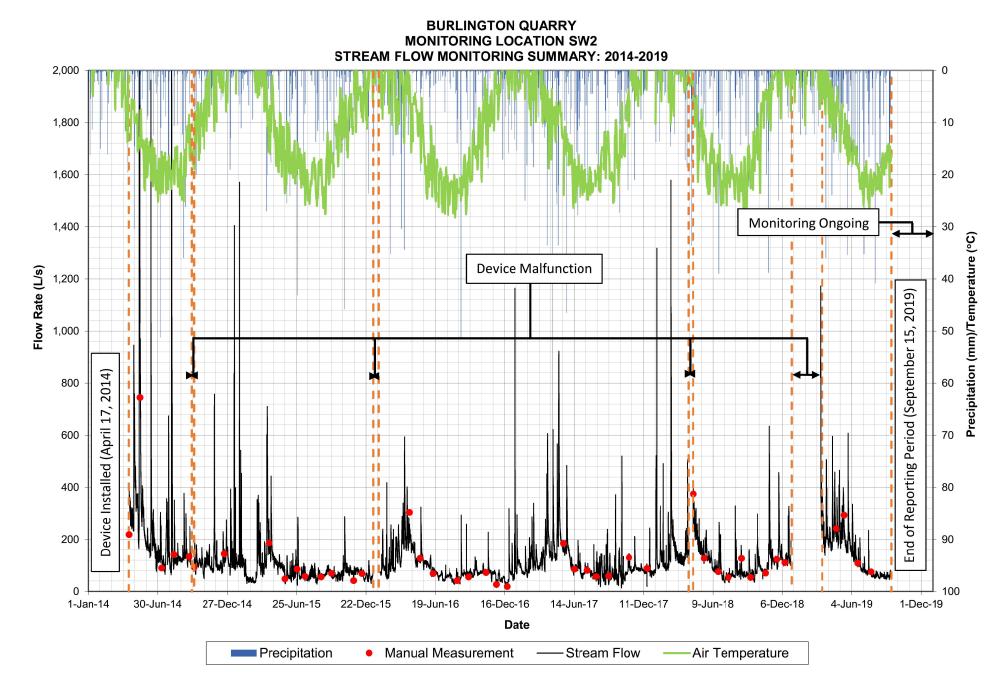
Surface Water Characteristics	Description		Figure / Graph /	R	eference			
Surface Water Characteristics	Description		Table	Report	Section / Page			
Average Daily Flow (SW2):		Average Daily Stre	eamflow (L/s)		Notes:	Graph 1	SWA (Tatham,	2.1.1 and Appendix E
	Month	Minimum	Average	Maximum	Minimum - lowest daily average		April 2020)	
	January	37.3	119.9	512.7	streamflow recorded for period of			
	February	39.8	116.5	779.3	record			
	March	35.1	150.0	989.1	Average - average daily streamflow			
	April	86.1	219.0	697.8	recorded for period of record			
	Мау	36.4	207.8	1275.7	Maximum - maximum daily average			
	June	41.5	117.7	939.1	streamflow recorded for period of			
	July	35.3	81.0	402.5	record			
	August	27.8	91.2	1511.3	N/A - data not available as device			
	September	29.3	83.9	300.2	removed from watercourse during			
	October	31.6	86.2	282.9	winter months			
	November	38.8	105.8	513.3				
	December	30.8	90.7	230.6				
verage Daily Flow (SW7):		Average Daily Stre	Notes:	Graph 3	SWA (Tatham,	2.1.1 and Appendix I		
	Month	Minimum	Average	Maximum	Minimum - lowest daily average		April 2020)	
	January	N/A	N/A	N/A	streamflow recorded for period of			
	February	N/A	N/A	N/A	record			
	March	102.1	217.9	665.9	Average - average daily streamflow			
	April	31.8	115.1	314.4	recorded for period of record			
	May	16.7	75.0	285.2	Maximum - maximum daily average			
	June	9.1	41.7	329.4	streamflow recorded for period of			
	July	3.3	19.4	78.3	record			
	August	0.9	15.0	58.1	N/A - data not available as device			
	September	1.8	16.0	87.2	removed from watercourse during			
	October	1.8	24.1	99.3	winter months			
	November	7.5	38.0	288.3				
	December	7.1	35.0	140.4				
verage Daily Flow (SW14):		Average Daily Stre		11011	Notes:	Graph 5	SWA (Tatham,	2.1.1 and Appendix B
	Month	Minimum	Average	Maximum	Minimum - lowest daily average		April 2020)	
	January	N/A	N/A	N/A	streamflow recorded for period of			
	February	N/A	N/A	N/A	record			
	March	N/A	N/A	N/A	Average - average daily streamflow			
	April	6.1	25.3	67.5	recorded for period of record			
	May	2.7	17.0	56.6	Maximum - maximum daily average			
	June	0.0	8.4	45.3	streamflow recorded for period of			
	July	0.0	3.1	23.9	record			
	August	0.0	2.8	28.4	N/A - data not available as device			
	September	0.0	1.7	19.3	removed from watercourse during			
	October	0.0	5.8	19.3 34.6	winter months			
	November			74.3				
		0.0	6.3					
	December	0.0	2.9	10.0				

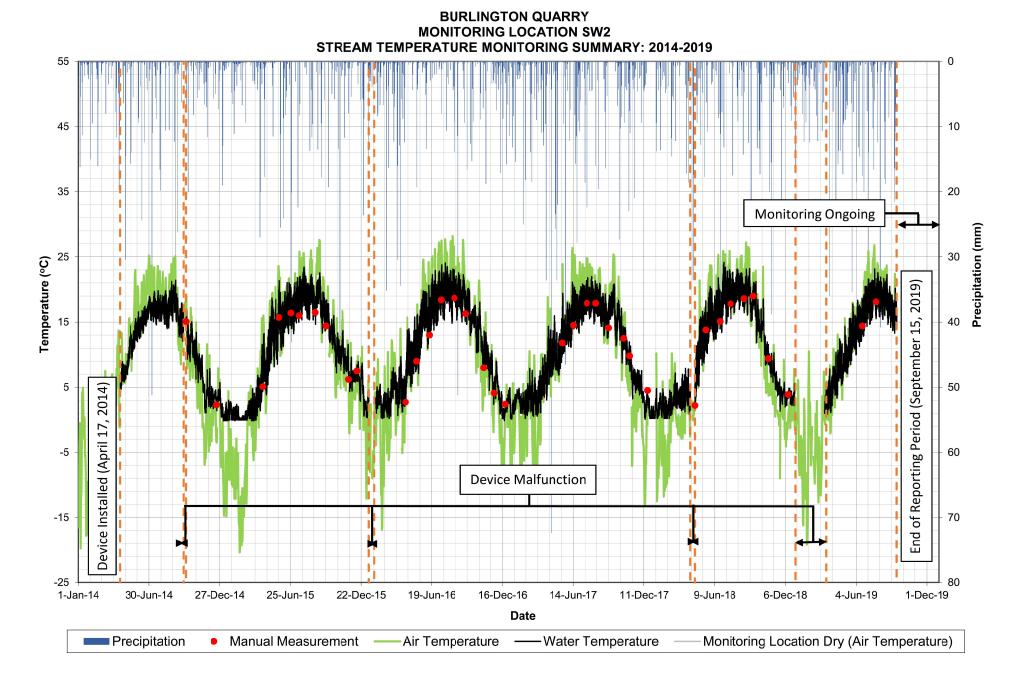
Surface Water Characteristics	Description					Figure / Graph /	Reference		
	Description		Table	Report Section / Page					
Watercourse Thermal Regime (SW2):		Average Daily Water	Temperature (°C)		Notes:	Graph 2	SWA (Tatham,	2.1.1 and Appendix B	
	Month	Minimum	Average	Maximum	Minimum - lowest daily average water		April 2020)		
	January	-1.4	1.8	5.0	temperature recorded for period of				
	February	-1.6	1.9	7.9	record				
	March	-1.1	3.1	9.6	Average - average daily water				
	April	0.6	6.7	16.0	temperature recorded for period of				
	May	3.5	12.0	21.7	record				
	June	10.0	16.2	23.8	Maximum - maximum daily average				
	July	13.2	18.9	25.9	water temperature recorded for				
	August	12.9	18.7	24.5	period of record				
	September	11.4	17.1	23.2	N/A - data not available as device				
	October	6.2	12.3	19.4	removed from watercourse during				
	November	1.1	6.7	13.7	winter months				
	December	-1.5	3.3	8.9					
Vatercourse Thermal Regime (SW7):		Average Daily Water	Temperature (°C)		Notes:	Graph 4	SWA (Tatham,	2.1.1 and Appendix E	
	Month	Minimum	Average	Maximum	Minimum - lowest daily average water		April 2020)		
	January	N/A	N/A	N/A	temperature recorded for period of				
	February	N/A	N/A	N/A	record				
	March	0.7	1.8	5.4	Average - average daily water				
	April	1.0	6.2	12.5	temperature recorded for period of				
	May	5.0	11.4	20.4	record				
	June	9.6	14.4	20.9	Maximum - maximum daily average				
	July	12.2	16.6	212.7	water temperature recorded for				
	August	13.7	17.3	23.1	period of record				
	September	11.1	16.2	20.9	N/A - data not available as device				
	October	6.6	12.2	18.9	removed from watercourse during				
	November	1.6	7.0	13.4	winter months				
	December	1.4	4.5	8.1					
Vatercourse Thermal Regime (SW14):		Average Daily Water		0.1	Notes:	Graph 6	SWA (Tatham,	2.1.1 and Appendix E	
	Month	Minimum	Average	Maximum	Minimum - lowest daily average water		April 2020)		
	January	N/A	N/A	N/A	temperature recorded for period of				
	February	N/A	N/A	N/A	record				
	March	N/A	N/A	N/A	Average - average daily water				
	April	-0.2	3.1	10.2	temperature recorded for period of				
	May	3.5	10.3	19.4	record				
	June	8.8	14.2	23.3	Maximum - maximum daily average				
	July	11.2	16.9	25.0	water temperature recorded for				
	August	11.4	17.3	23.8	period of record				
	September	4.5	15.3	23.5	N/A - data not available as device				
	October	0.9	10.8	17.6	removed from watercourse during				
	November	-1.4	6.2	14.6	winter months				
	December	-0.5	3.9	11.7					

Surface Water Characteristics	Description					Figure / Graph /	/ Re	eference
Surface water Characteristics	Description					Table	Report	Section / Page
Water Quality (SW2):		Water	Quality Sample Resu	ults		Table 1	SWA (Tatham,	2.4 and Appendix H
	Parameter	Units	Minimum	Average	Maximum		April 2020)	
	Turbidity	NTU	0.9	2.2	3.6			
	TDS	mg/L	433	521	589			
	TSS	mg/L	1	3	6			
	COD	mg/L	8	9	12			
	BOD5	mg/L	0.8	0.9	1			
	DOC	mg/L	0.4	3	4.7			
	рН		8.1	8.1	8.2			
	Alkalinity	mg/L	166	218	261			
	Conductivity	μ S /cm	668	771	881			
	Phosphorus	ug/L	<50	<50	<50			
	Ammonia	mg/L	<0.01	0.02	0.04			
	Hardness	mg/L	309	327	346			
Water Quality (SW14):		Water Quality Sample Results				Table 2	SWA (Tatham,	2.4 and Appendix H
	Parameter	Units	Minimum	Average	Maximum	7	April 2020)	
	Turbidity	NTU	1.3	1.8	2.1			
	TDS	mg/L	313	395	479			
	TSS	mg/L	3.67	4.59	5.70			
	COD	mg/L	20	21	24			
	BOD5	mg/L	0.8	1.0	1.0			
	DOC	mg/L	5.1	5.9	10.7			
	рН		8	8.1	8.2			
	Alkalinity	mg/L	239	292	324			
	Conductivity	µS∕cm	457	587	696			
	Phosphorus	ug/L	<50	<50	<50			
	Ammonia	mg/L	0.03	0.04	0.07			
	Hardness	mg/L	239	302	347			

Fish & Fish Ushitat Features	Description	Figure / Graph /	Reference		
Fish & Fish Habitat Features	Description	Table	Report	Section / Page	
Fish Habitat (Direct/Indirect and Assumed/Confirmed):	Willoughby Creek is known to provide direct fish habitat, based on fish community sampling information from Conservation Halton (2002, 2013, 2018). Fish community sampling is not known to be have been completed in the upper reaches of Willoughby Creek, although for the purposes of this assessment, the entire watercourse (as mapped by MNRF in the Land Information Ontario database) is assumed to provide direct fish habitat. Willoughby Creek is known to provide direct fish habitat, based on fish community sampling information from Conservation Halton (2002, 2013, 2018). Fish community sampling is not known to be have been completed in the upper reaches of Willoughby Creek, although for the purposes of this assessment, the entire watercourse (as mapped by MNRF in the Land Information Ontario database) is assumed to provide direct fish habitat.		NETR (Savanta, April 2020)	19 and 20	
Fish Species Present:	 Conservation Halton Station BRO-219 (600 m downstream from the mouth of the Unnamed Tributary): a)Blacknose Dace, Brook Stickleback, Creek Chub, Fantail Darter, White Sucker b)"Poor" index of Biotic Integrity assigned to the overall fish community at this station by Conservation Halton in 2018 Conservation Halton Station BRO-42 (approximately 1 km downstream from the mouth of the Unnamed Tributary): a)Atlantic Salmon (Young-of-the-year), Brook Trout, Blacknose Dace and Fantail Darter b)Reach stocked with Atlantic Salmon eggs in 2012 c)"Good" index of Biotic Integrity assigned to the overall fish community at this station by Conservation Halton in 2018 		NETR (Savanta, April 2020)	19 and 20	
Fish Community Thermal Regime:	Cool to coldwater		NETR (Savanta, April 2020)	19 and 20	
Fish Habitat Types Present:	Site specific investigations were not completed in Willoughby Creek as part of the NETR as a result of private property access issues. However, based on the presence of a generally diverse fish community, it is assumed a range of habitat is available to support life history processes.		NETR (Savanta, April 2020)	19 and 20	
Habitat Uses by Known Fish Community:	The local fish community likely uses the habitat for the complete range of life history processes including spawning, nursery, foraging and overwintering. Lower reaches of the creek may provide spawning and nursery habitat for migratory fish from Bronte Creek.		NETR (Savanta, April 2020)	19 and 20	
Known Barriers to Fish Movement:	None confirmed. Numerous culverts and private online ponds may provide some barriers to localized movement, but this was not confirmed as part of the NETR.		NETR (Savanta, April 2020)	19 and 20	

Groundwater Interaction	Description			Figure / Graph /	Reference		
Groundwater Interaction	Description				Table	Report	Section / Page
	The Medad Valley is a pa 1987). The infill deposit limited data for the Med south of the site. Model m/s for vertical hydrauli	s are likely coarse-g ad Valley, there is so value for the horizo	1				
Surface Water / Groundwater Interactions:	Gaining Stream				Figures 1 & 2		
Water Budget Results (SW14):	The baseline condition v Figure 3a.	vater budget results	from the integrate	d model at monitoring location SW14 are presented in	Figure 3a		
	Condition	GW Out	GW In	7			
	Baseline (Existing)	17.42%	26.50%	1			
Water Budget Results (5328 Cedar Springs Road Driveway Crossing):	The baseline condition v Road are presented in F	Figure 4a					
	Condition	GW Out	GW In]			
	Baseline (Existing)	17.82%	24.11%	7			
Water Budget Results (SW7):	The baseline condition v Figure 5a.	Figure 5a					
	Condition	GW Out	GW In	7			
	Baseline (Existing)	15.72%	21.10%	7			
	The baseline condition v Road are presented in F	s Figure 6a					
	Condition	GW Out	GW In	1			
	Baseline (Existing)	17.98%	28.27%				
	section focused on the S Valley. Hydrographs illu	SW2 gauge which re strate the model ma	presents the total tches to flow peak	model calibration to flows in Willoughby Creek. The streamflow exiting the northern portion of the Medad timing for the period of record and WY2017, but the mod- veral reasons were discussed.	Graphs 7, 8 & 9 el	HHIAR (Earthfx, April 2020)	19.4.3 (page 418 - 419)

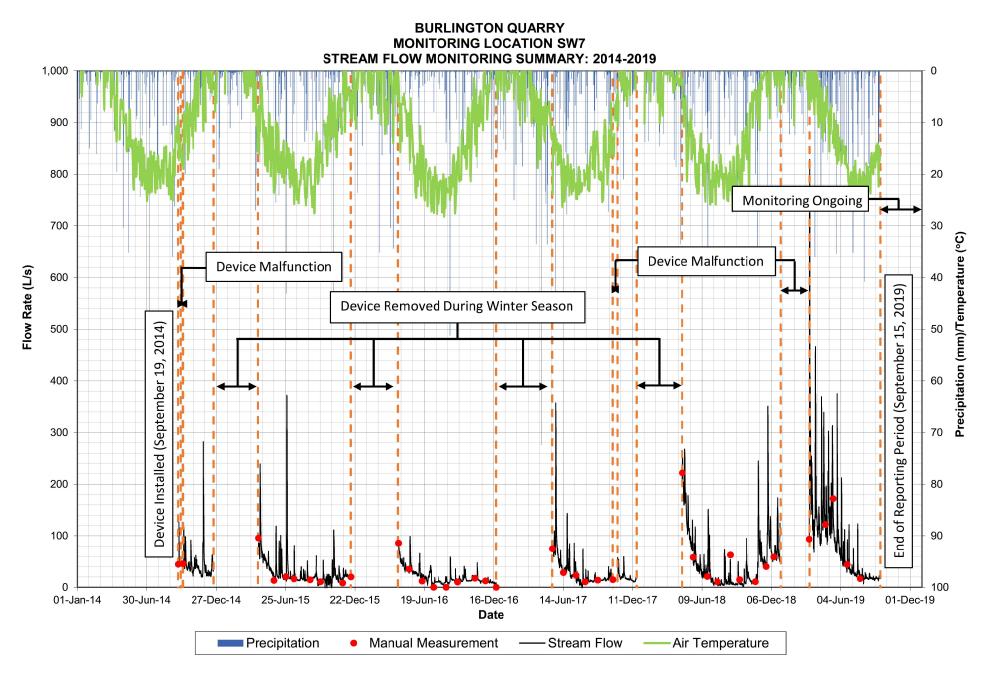

	Description	Figure / Graph /	Reference		
Impact Assessment	Description	Table	Report	Section / Page	
Direct Alterations to Watercourse:	 No direct alterations to this watercourse will occur as a result of the proposed Quarry Extension. Potential direct effects on the Unnamed Tributary of Willoughby Creek (e.g., due to weir plate, diversion channel inlet, golf course pond/irrigation channel removal) could potentially cause indirect effects on Willoughby Creek (e.g., sedimentation), as discussed in more detail in the Unnamed Tributary of Willoughby Creek summary table. 		NETR (Savanta, April 2020)	75	
Change in Primary Source of Flow:	 Quarry discharge from Sump 0100 represents a major source of flow to Willoughby Creek. Current quarry approvals permit this discharge to cease once quarry operations are complete. Cessation of quarry discharge into the Unnamed Tributary of Willoughby Creek and ultimately Willoughby Creek itself would have a negative impact on flow availability to support existing fish habitat and the current fish community. As discussed in the Mitigation section below, it has been recommended that quarry discharge continue indefinitely at current levels to prevent these associated negative impacts. Diversion from catchment area S101 (northwest of Colling Road) will alter surface water inputs. Currently, this catchment area discharges directly to the quarry and the flow is eventually discharged to the Unnamed Tributary through Sump 0100 (and ultimately to Willoughby Creek). Nelson is proposing to redirect surface water drainage from catchment area S101 directly into the Unnamed Tributary at the existing quarry discharge point. Overall, this diversion will result in the same volume of water from catchment area S101 being discharged to the tributary and ultimately Willoughby Creek, although, given it will no longer pass through the quarry, it is expected that the hydrological regime of this discharge will be more natural, with seasonal peaks as opposed to being discharged at a generally more constant rate through the quarry sump. Removal of the golf course irrigation ponds and channels will alter the hydrology of the watercourse, given that no water taking would be required from the watercourse to support golf course irrigation and that during high flow periods, there will be no discharge from the golf course back to the feature. However, the proposed new pond (infiltration pond) west of the West Extension will draw water from the Weir Pond in the same manner as the existing irrigation ponds. Therefore, there will be no net change in source water hydrology. 		NETR (Savanta, April 2020)	76 and 77	
Change in Watercourse Catchment Area:	Increase in catchment area of 7.2 ha. Additional catchment area will drain to the existing quarry settling ponds and be discharged to the Unnamed Tributary via Sump 0100 at rates consistent with existing. Additional storage will be provided in the settling ponds to accommodate the additional flow.		SWA (Tatham, April 2020)	Drawings DP-1, DP-2 and DP-3	
Simulated Streamflow Change (Integrated Model Results):	The Earthfx report discusses changes in simulated quarry discharge to the North Quarry Pond. No change was expected under Scenario P12. Scenario P3456 is discussed in Section 8.7.5 (p. 243). Under P3456 conditions, current levels of quarry discharge will continue to pass through the pond. Diversions for golf course operations will no longer be necessary, however a portion of flow will be diverted to the newly constructed infiltration pond, which will locally support groundwater levels in a similar manner as the current golf course ditch and pond system. Figure 8.71(p. 254) showed that there will be an increase in flow through the north quarry discharge stream, and that the flow will continue through the karst conduit as under current conditions. The increase in flow will enter the Medad Valley just downstream of SW7, so there will be no significant change downstream at SW2. Under RHB1, discharge continues to the north from the quarry sump 0100 and is similar to that of P3456. Under RHB2, surface water flow in the upper reaches of the Unnamed Tributary of Willoughby Creek and the West Arm of the West Branch of Mount Nemo Tributary of Grindstone Creek will cease when the quarry discharge is discontinued, resulting in possible impact to downstream fish habitat compared to baseline conditions (See Savanta, 2020 and Tatham, 2020 for details).	Graphs 10 & 11	HHIAR (Earthfx, April 2020)	198 - 230 and 230 - 237	

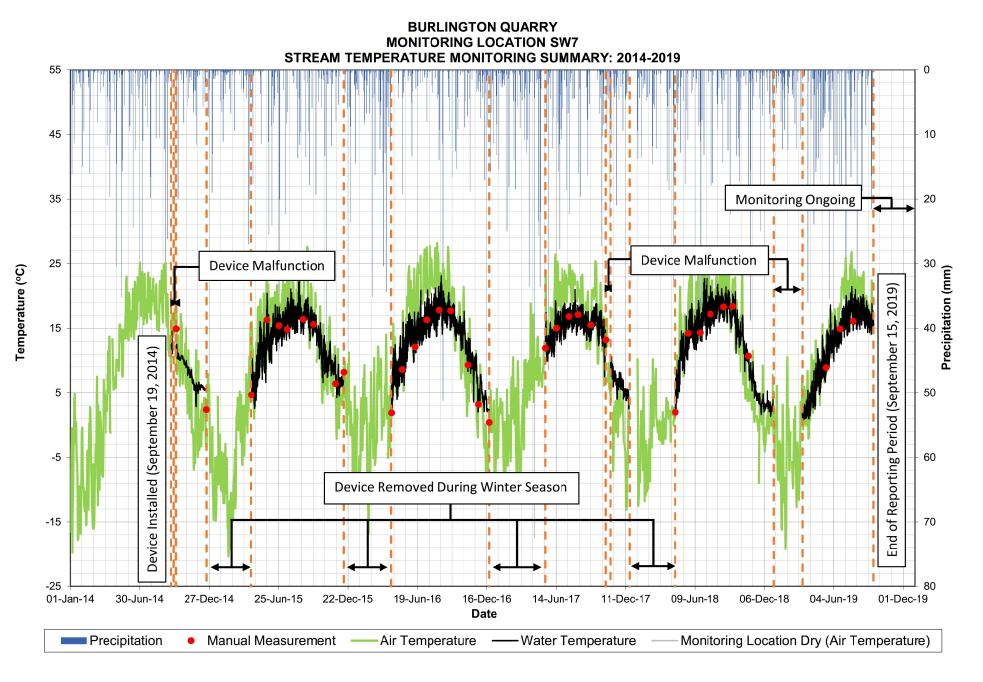

	Description						Figure / Graph /	Re	eference
Impact Assessment	Description						Table	Report	Section / Page
Water Budget Results (Operational Phases 1 & 2):	The Operational Phases presented in Figure 3b.		et results from the	integrated model at	monitoring location	SW14 are	Figure 3b		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.42%	26.50%	-	-				
	Phases 1 & 2	17.21%	25.76%	-0.21%	-0.74%				
Water Budget Results (Operational Phases 5 Through 6):		The Operational Phases 3 through 6 water budget results from the integrated model at monitoring location SW14 are presented in Figure 3c.							
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.42%	26.50%	-	-				
	Phases 3 through 6	17.90%	25.75%	0.48%	-0.75%				
Water Budget Results (Rehabilitation Scenario 1):	The Rehabilitation Scen in Figure 3d.	nario 1 water budget	results from the in	tegrated model at mo	onitoring location S ^V	W14 are presentec	Figure 3d		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.42%	26.50%	-	-				
	Rehab Scenario 1	17.06%	26.44%	-0.36%	-0.06%				
Water Budget Results (Rehabilitation Scenario 2):	The Rehabilitation Scen in Figure 3e.	nario 2 water budget	results from the in	tegrated model at mo	onitoring location S ^V	W14 are presentec	Figure 3e		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.42%	26.50%	-	-				
	Rehab Scenario 2	18.26%	26.59%	0.84%	0.09%				
		Water B	udget Results at 5	328 Cedar Springs R	oad Driveway Cross	ing			
Water Budget Results (Operational Phases 1 & 2):	The Operational Phases Crossing are presented		et results from the	integrated model at	5328 Cedar Springs	Road Driveway	Figure 4b		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.82%	26.50%	-	-				
	Phases 1 & 2	17.51%	23.36%	-0.31%	-0.75%				
Water Budget Results (Operational Phases 3 Through 6):	The Operational Phases Driveway Crossing are			the integrated mode	el at 5328 Cedar Spr	ings Road	Figure 4c		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.82%	24.11%	-	-				
	Phases 3 through 6	18.57%	22.23%	0.75%	-1.88%				
Water Budget Results (Rehabilitation Scenario 1):	The Rehabilitation Scenario 1 water budget results from the integrated model at 5328 Cedar Springs Road Driveway Crossing are presented in Figure 4d.						Figure 4d		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.82%	24.11%	-	-				
	Rehab Scenario 1	17.61%	23.39%	-0.21%	-0.72%				
Water Budget Results (Rehabilitation Scenario 2):	The Rehabilitation Scen Crossing are presented	-	results from the in	tegrated model at 53	28 Cedar Springs R	oad Driveway	Figure 4e		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.82%	24.11%	-	-				
	Rehab Scenario 2	18.54%	25.30%	0.72%	1.19%				

Impact Assossment	Description						Figure / Graph /	Re	eference
Impact Assessment	Description						Table	Report	Section / Page
			Water Budget Re	esults at Monitoring L	ocation SW7				
Water Budget Results (Operational Phases 1 & 2):	The Operational Phases 1 and 2 water budget results from the integrated model at monitoring location SW7 are presented in Figure 5b.						Figure 5b		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	15.27%	21.10%	-	-				
	Phases 1 & 2	14.95%	20.37%	-0.32%	-0.73%				
Water Budget Results (Operational Phases 3 Through 6):	The Operational Phase presented in Figure 5c.		budget results from	the integrated mode	el at monitoring loca	ation SW7 are	Figure 5c		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	15.27%	21.10%	-	-				
	Phases 3 through 6	15.58%	18.83%	0.31%	-2.27%				
Water Budget Results (Rehabilitation Scenario 1):	The Rehabilitation Scer in Figure 5d.	nario 1 water budget	results from the in	tegrated model at m	onitoring location SV	W7 are presented	Figure 5d		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	15.27%	21.10%	-	-				
	Rehab Scenario 1	14.83%	19.84%	-0.44%	-1.26%				
Water Budget Results (Rehabilitation Scenario 2):	The Rehabilitation Scer in Figure 5e.	hario 2 water budget	results from the in	tegrated model at m	onitoring location SV	W7 are presented	Figure 5e		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	15.27%	21.10%	-	-				
	Rehab Scenario 2	15.85%	22.19%	0.58%	1.09%				
		Water Budg	get Results at Road	d Culvert Crossing at	5535 Cedar Springs	s Road			
Water Budget Results (Operational Phases 1 & 2):	The Operational Phase Cedar Springs Road ar	-		integrated model at	the road culvert cro	ossing at 5535	Figure 6b		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.98%	28.27%	-	-				
	Phases 1 & 2	18.01%	21.73%	0.03%	-6.54%				
Water Budget Results (Operational Phases 3 Through 6):	The Operational Phase Cedar Springs Road ar			the integrated mode	el at the road culvert	t crossing at 5535	Figure 6c		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.98%	28.27%	-	-				
	Phases 3 through 6	18.28%	20.24%	0.30%	-8.03%				
Water Budget Results (Rehabilitation Scenario 1):	The Rehabilitation Scenario 1 water budget results from the integrated model at the road culvert crossing at 5535 Cedar Springs Road are presented in Figure 6d.						Figure 6d		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.98%	28.27%	-	-				
	Rehab Scenario 1	17.96%	21.19%	-0.02%	-7.08%				
Water Budget Results (Rehabilitation Scenario 2):	The Rehabilitation Scer Springs Road are prese		results from the in	tegrated model at th	e road culvert crossi	ing at 5535 Cedar	Figure 6e		
	Condition	GW Outflow	GW Inflow	%∆ GW Outflow	%∆ GW Inflow				
	Baseline (Existing)	17.98%	28.27%	-	-				
	Rehab Scenario 2	17.63%	24.06%	-0.35%	-4.21%	1			

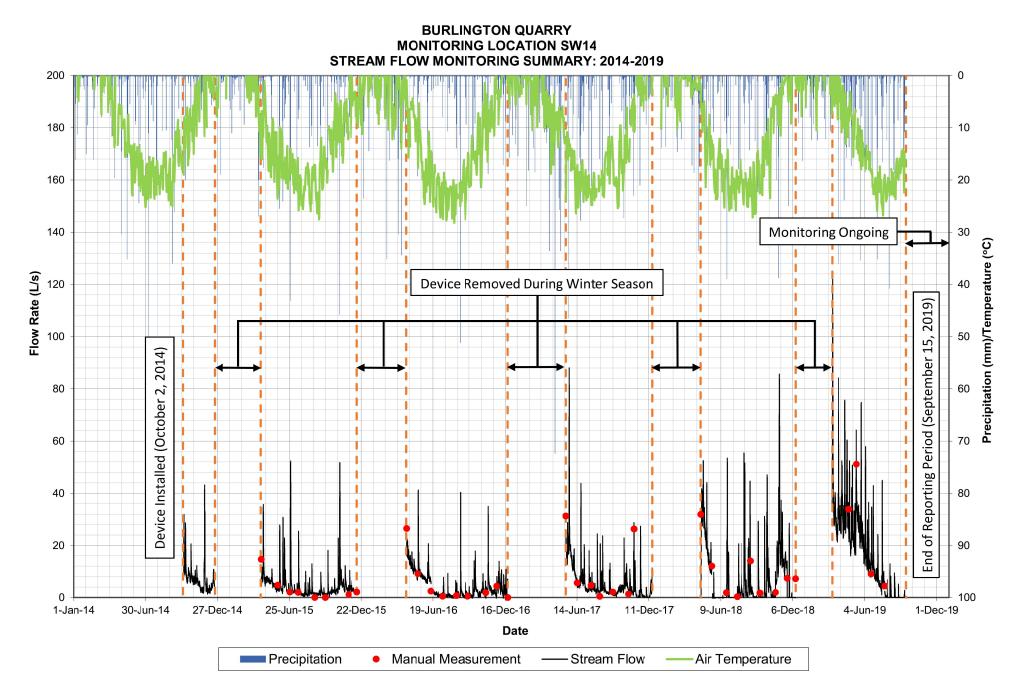
Impact According	Description	Figure / Graph /	Reference		
Impact Assessment	Description	Table	Report	Section / Page	
Change in Groundwater Contributions to Watercourse:	The total change in surface leakage (seepage) between Baseline and P3456 in catchment SW7 is shown in Graph 12. A small percentage of groundwater seepage will be intercepted by P3456 and discharged to the Medad Valley just downstream of SW7. This change in seepage is relatively uniform over time. The loss of seepage is diffuse and will not be observable. Additional maps and discussion are included in Earthfx, 2020. The stream leakage under Baseline and P3456 conditions is nearly identical, as shown in Graph 13.	Graphs 12 & 13			
Change in Watercourse Thermal Regime:	 Negative changes in water temperature are not expected given that the watercourse will continue to receive its primary input from quarry discharge. Temperature of water being discharge from Quarry Sump 0100 is not expected to change as a result of the proposed Quarry Extension, therefore, no change in water temperature is anticipated. Artificial warming that may be occurring as a result of discharge of relatively warm surface water from the artificial golf course ponds into the tributary will cease once the golf course ponds are removed. This may result in a beneficial effect in downstream water temperatures, given that the ponds are anthropogenic. 		NETR (Savanta, April 2020)	75 - 78	
Change in Water Quality:	 Negative changes in water quality are not expected given that the watercourse will continue to receive its primary input from quarry discharge. Quality of water being discharged from Quarry Sump 0100 is not expected to change as a result of the proposed Quarry Extension, therefore, no change in water quality is expected. Water quality impacts that may be occurring as a result of discharge of water from the artificial golf course ponds and irrigation channels into the tributary will cease once the golf course ponds are removed. This may result in a beneficial effect in downstream water quality, given that golf course discharge may be having a negative impact on water quality (e.g., due to fertilizers, erosion and sedimentation, nutrients). 		NETR (Savanta, April 2020)	76 and 77	
Potential Impact to Form and Function of Feature:	 Alterations to quarry discharge (if unmitigated) could potentially have negative impacts on the form and habitat functions of this watercourse. Diversion of upstream catchment S101 is not expected to have negative impacts on the form and function of the watercourse. The more natural hydrograph predicted due to the diversion may enhance fish habitat in downstream reaches of the Tributary. Predicted decreases in streamflow are very minor and are not expected to have any negative impact on form and function of the watercourse. 		NETR (Savanta, April 2020)	76 and 77	
Potential Impact to Identified Species and Habitat:	 Alterations to quarry discharge (if unmitigated) could potentially have negative impacts on the species and habitat functions of this watercourse. Diversion of upstream catchment S101 is not expected to have negative impacts on fish in the watercourse. The more natural hydrograph predicted due to the diversion may enhance fish habitat in downstream reaches of the Tributary. Predicted decreases in streamflow are very minor and are not expected to have any negative impact on form and function of the watercourse. 		NETR (Savanta, April 2020)	76 and 77	

Mitigation	Description	Figure / Graph /	Re	ference
Mitigation	Description	Table	Report	Section / Page
Direct Alteration Mitigation:	1) In-water work required to install the permanent weir plate and the diversion structure inlet will be completed between July 16 and August 30 to minimize the potential for indirect impacts on the reproductive activities of the downstream fish communities in the Unnamed Tributary of Willoughby Creek and in Willoughby Creek itself (e.g., due to sedimentation or accidental spills).		NETR (Savanta, April 2020)	75
	2) Erosion and sedimentation control measures and spill prevention and response measures will be used throughout the duration of any in-stream works in the watercourse.			66 and 67
	3) The Limit of Extraction has been set back 30 m from the limit of the bankfull channel of the Unnamed Tributary of Willoughby Creek and the Weir Pond in order to prevent disturbance to the watercourse. No operational activities will occur within the 30 m setback. A visual mitigation berm will be constructed within the 30 m setback (with associated			
	grading encroaching a minimum of 14 m from the edge of the Weir Pond). Erosion and sedimentation control measures will be in place prior to grading for the berm. The berm will be vegetated following completion of grading to ensure soil stability and prevent erosion.			
	4) Where areas within the 30 m setback are not currently naturally vegetated (i.e., on portions of the active golf course), these areas will be naturalized with native species plantings to assist in maintaining and enhancing riparian functions adjacent to the watercourse.			
Source Water Mitigation:	In order to mitigate impacts on fish and fish habitat in Willoughby Creek, pumping and discharge are recommended to occur at the same location at the upstream end of the Unnamed Tributary of Willoughby Creek and in the same manner as existing pumping in accordance with the existing PTTW and Environmental Compliance Approvals regulating current quarry discharge.		NETR (Savanta, April 2020)	76
Groundwater Contribution Mitigation:	Infiltration pond is intended to maintain seepage to GW in the vicinity of the West Expansion to maintain levels and GW discharge to the Medad Valley.			
Erosion Mitigation:	Erosion and sedimentation control measures and spill prevention and response measures will be used throughout the duration of any in-stream works in the watercourse.			
Thermal Mitigation:	1) No specific thermal mitigation is proposed given that maintaining existing quarry outflows at Sump 0100 are expected to maintain the existing thermal regime of the watercourse without any additional mitigation.		NETR (Savanta, April 2020)	78
	2) Removal of the golf course ponds may have an indirect positive effect on the thermal regime of the watercourse.			
Water Quality Mitigation:	1) No specific water quality mitigation over and above that of the existing quarry operations is proposed given that maintaining existing quarry outflows at Sump 0100 are expected to maintain the existing water quality regime of the watercourse without any additional mitigation. The quarry extension is not predicted to result in any changes in the quality of water being discharged from Sump 0100.		NETR (Savanta, April 2020)	78
	2) Removal of the golf course ponds may have an indirect positive effect on the water quality of the watercourse.			

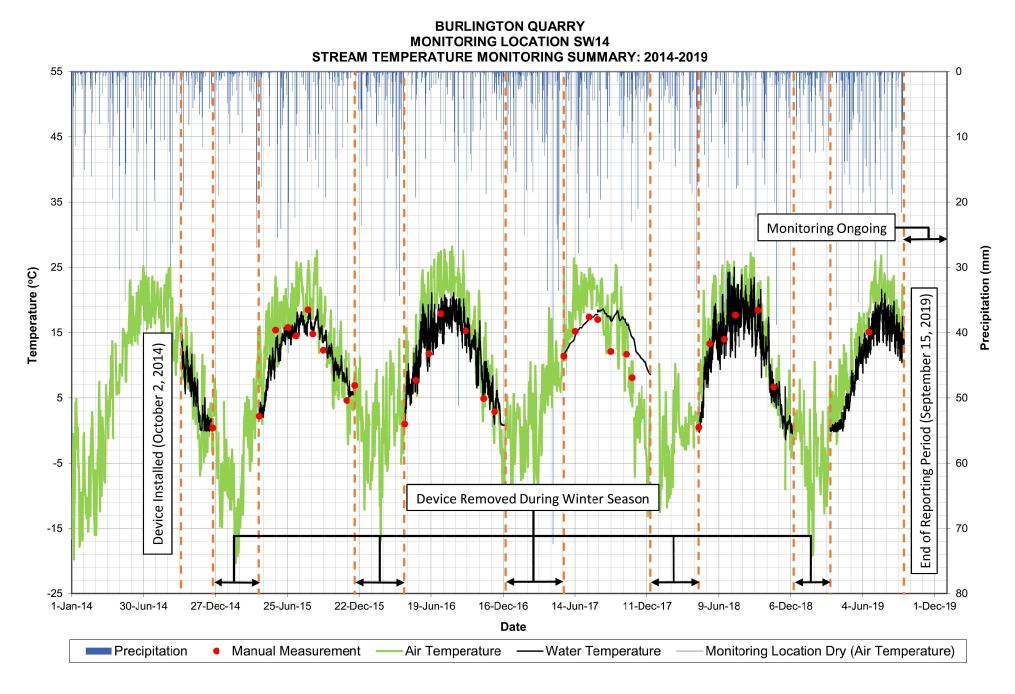

WILLOUGHBY CREEK - TABLE 1


BURLINGTON QUARRY TATHAM ENGINEERING PROJECT NO.: 113187 SURFACE WATER MONITORING

WATER QUALITY SAMPLE RESULTS

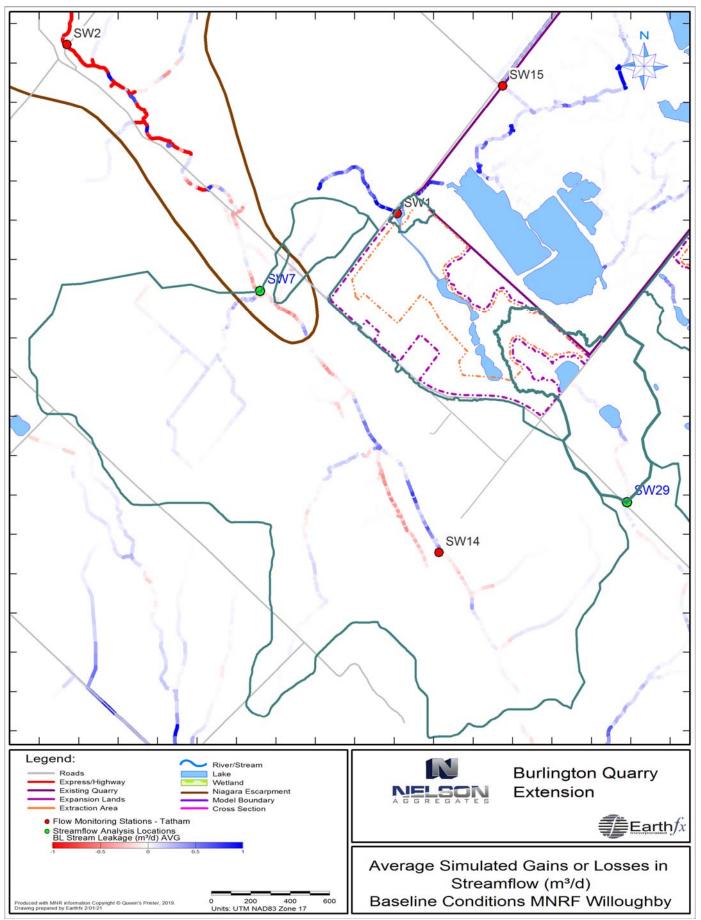

				Мо	nitoring Loca	tion SW2							
	Sa	ample Date:	24-Oct-18	24-Apr-19	19-Jun-19	25-Sep-19	20-May-20	15-Jul-20	16-Sep-20	11-Nov-20	Maximum	Minimum	Average
Parameter:	Units:	M.D.L.	CM/JG	CM/JG	СМ	СМ	JG	JG/JH/JM	JH/JM	JG/JH	Waximam	Willing	Average
M-Alkalinity (pH 4.5)	mg/L as CaCO3	2	196	250	261	166	238	180	152	178	261	166	218.25
Ammonia (as N)	mg/L	0.01	0.04	< 0.01	0.02	0.02	< 0.01	< 0.01	< 0.01	<0.01	0.04	0.02	0.02
BOD (5 day)	mg/L	1	1	0.9	0.9	0.8	1	<1	1.4	1.8	1.0		0.9
Bicarbonate		1	194	247	-	164		178		176	247	164	202
Carbonate	Ċ.	1	3	3	-	2		2		2	3	2	3
Conductivity	μS/cm	1	881	668	740	793	768	758	150	900	881	668	771
Dissolved Organic Carbon	mg/L	0.4	4	4.7	0.4	2.8	4.9	3.6	2	2.8	4.7 8.9	0.4	3.0
Field pH Field Temp	pH °C	N/A N/A	8.7	8.7	8.7 15.2	8.9 16.6	8.9 12.9	8.6 18.9	858	8.1 9.4	8.9	6.7	8.8 11.7
Aluminum	ug/L	1 N/A	<1	11	13.2	<1	12.9	60	8	9.4 <1	10.0	11	211.7
Antimony	ug/L ug/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Arsenic	ug/L	1	2	1	1	2	<1	2	2	2	2	1	1.5
Barium	ug/L	1	55	48	57	55	54	46	51	53	57	48	54
Beryllium	ug/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Bismuth	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Boron	ug/L	2	77	28	7	73	37	39	87	94	77	7	46.25
Cadmium	ug/L	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	0.1
Calcium	ug/L	500	-	74800	85200	66700	73800	60000	65200	78700	85200	66700	56800
Cerium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Cesium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Chromium Cobalt	ug/L ug/L	0.1	<1 0.1	5	0.1	3	3	0.1	3	4	0.2	3 0.1	4 0.125
Copper	ug/L ug/L	0.1	<1	<1	0.1	<0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.125
Europium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Gallium	ug/L	1	<1	1	1	<1	1	2	2	2	1	1	1
Iron	ug/L	20	<20	157	237	170	317	251	233	232	237	157	146
Lanthanum	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Lead	ug/L	0.1	<0.1	<0.1	0.2	<0.1	0.2	0.3	<0.1	<0.1	0.2	0.2	0.125
Lithium	ug/L	5	7	<5	6	8	6	9	11	10	8	6	6.5
Magnesium	ug/L	5	-	29600	32300	35200	32800	28800	34300	41500	35200	29600	24276
Manganese	ug/L	10	9	17	26	7	22	45	7	5	26	7	15
Mercury	ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Molybdenum Nickel	ug/L ug/L	1	2	<1	1	2	2	2	2	2	2	2	2
Niobium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Phosphorus	ug/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	50
Potassium	ug/L	1	4490	2490	2840	4630	3420	2970	4940	5220	4630	2490	3613
Rubidium	ug/L	1	2	1	1	2	1	2	2	2	2	1	2
Scandium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Selenium	ug/L	0.5	0.9	0.8	<0.5	<0.5	0.7	<0.5	1.5	0.8	0.9	0.8	0.675
Silicon	ug/L	2	2100	2640	2700	1960	2380	1790	1820	2260	2700	1960	2350
Silver	ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Sodium Strontium	ug/L	1000	48600	27800 417	31800 510	43500 678	38700 499	41500 478	47800 653	51400 800	48600 715	27800 417	37925 580
Sulphur	ug/L ug/L	800	47400	20300	32500	48100	31400	30000	49200	65200	48100	20300	37075
Tellurium	ug/L	1	<1	<1	<1	48100	<1	<1	43200 <1	<1	48100	<1	1
Thallium	ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Thorium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Tin	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Titanium	9:	1	<1	1	<1	<1	<1	1	<1	<1	1	1	1
Tungsten	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Uranium	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Vanadium	ug/L	1	<1	1	1	1	1	<1	1	1	1	1	1
Yttrium	ug/L	1	<1	<1	<1	<1	<1 5	<1	<1	<1	<1	<1	1
Zinc Zirconium	ug/L ug/L	1	9	<1 <1	<1	<1	<1	<1	<1	<1	9	9	2
pH		N/A	8.16	8.14	8.18	8.09	8.4	8.13	8.09	8.08	8.2	8.1	8.1
Total Hardness (as CaCO3)	mg/L	0.1	342	309	346	312	319	268	304	367	346.000	309.000	327.250
Chemical Oxygen Demand		5	8	12	12	<5	8	11	<5	15	12	8	9
Total Dissolved Solids		3	589	433	515	548	508	484	533	580	589	433	521
Total Suspended Solids		0.67	1	2	6	3	7.33	5.3	1.7	1.3	6.00	1.00	3.00
Turbidity	NTU	0.1	0.9	1.7	3.6	2.6	1.9	2.4	0.8			0.9	2.2

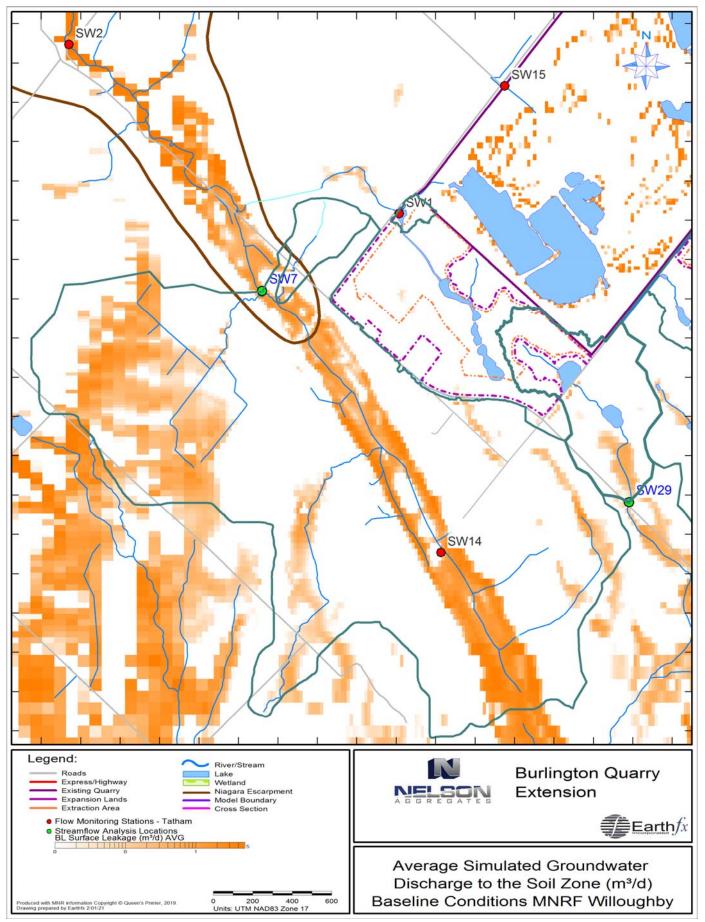
WILLOUGHBY CREEK - GRAPH 3

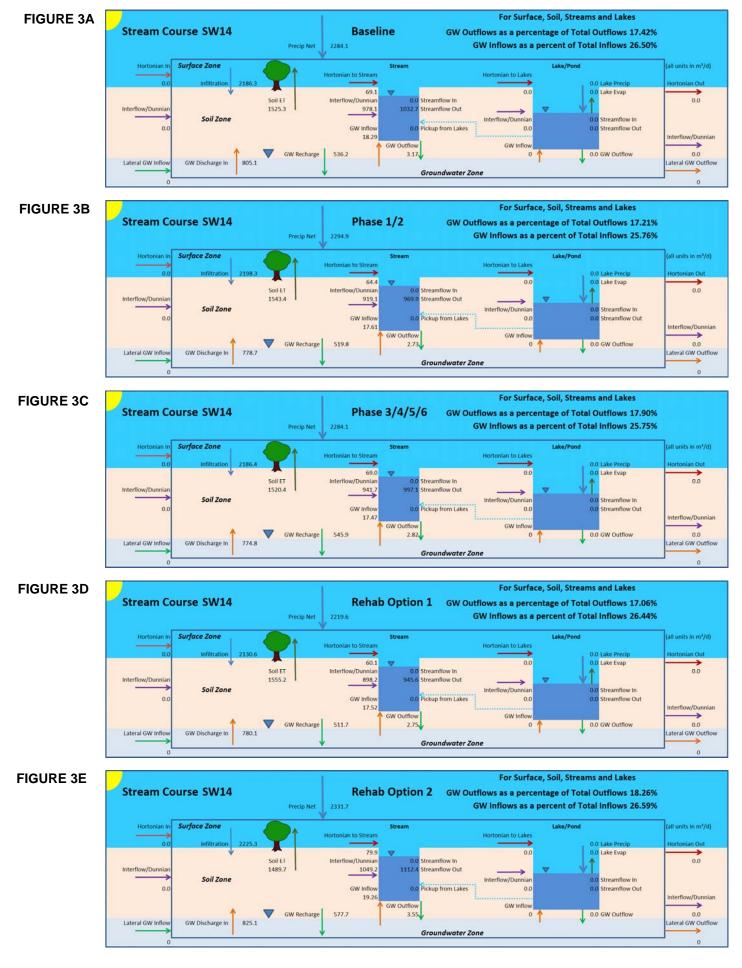


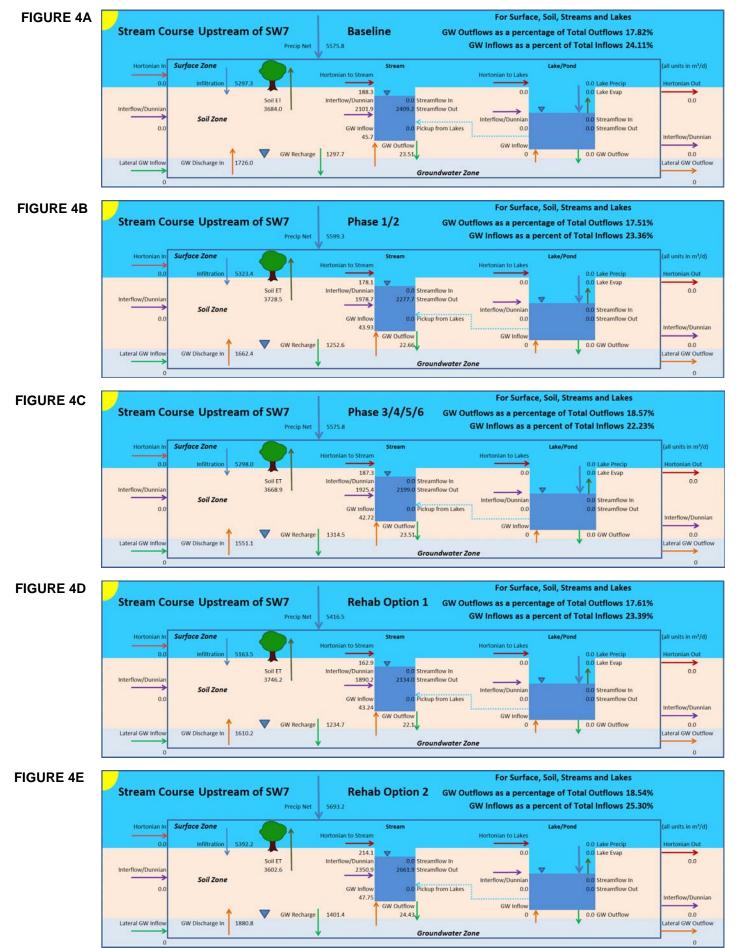
WILLOUGHBY CREEK - GRAPH 5

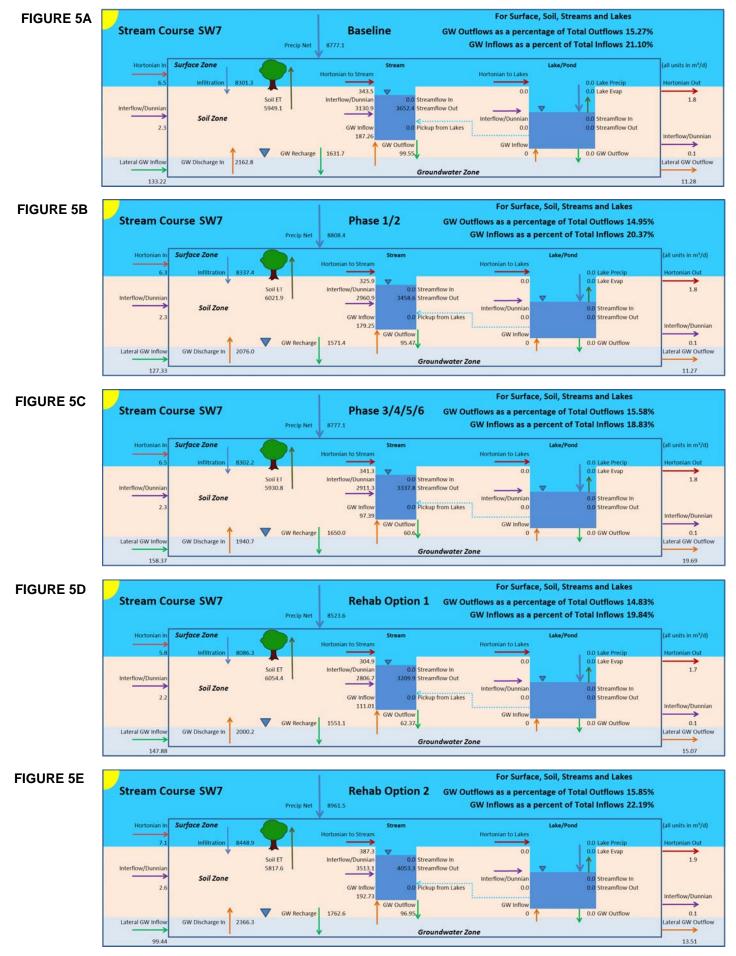
WILLOUGHBY CREEK - GRAPH 6


WILLOUGHBY CREEK - TABLE 2

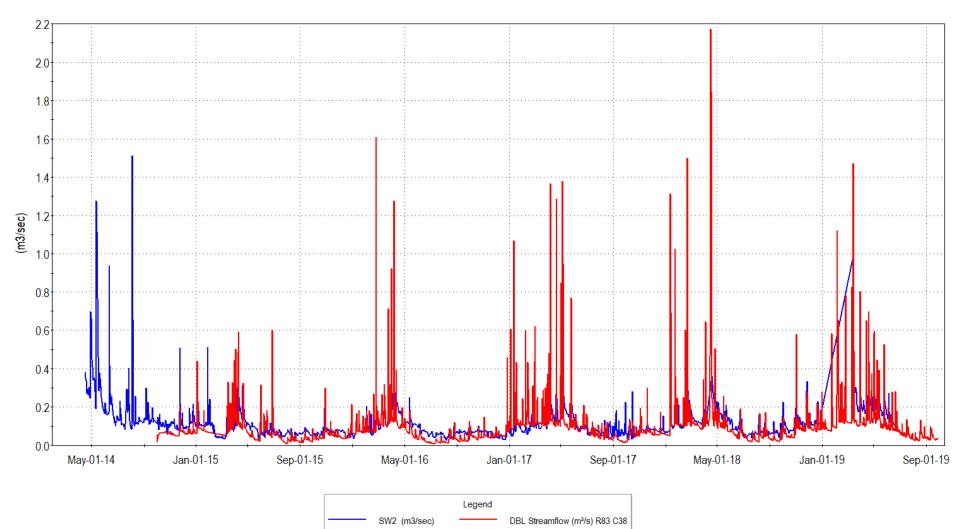

BURLINGTON QUARRY TATHAM ENGINEERING PROJECT NO.: 113187 SURFACE WATER MONITORING

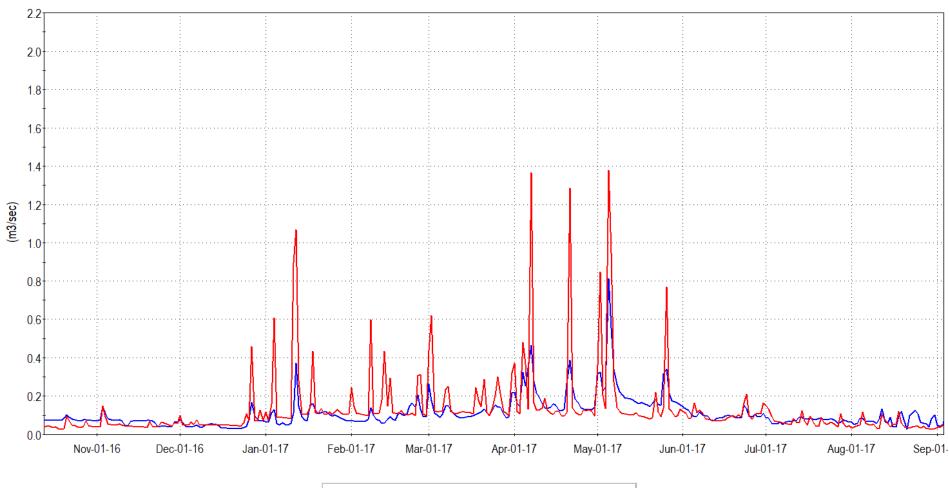

WATER QUALITY SAMPLE RESULTS

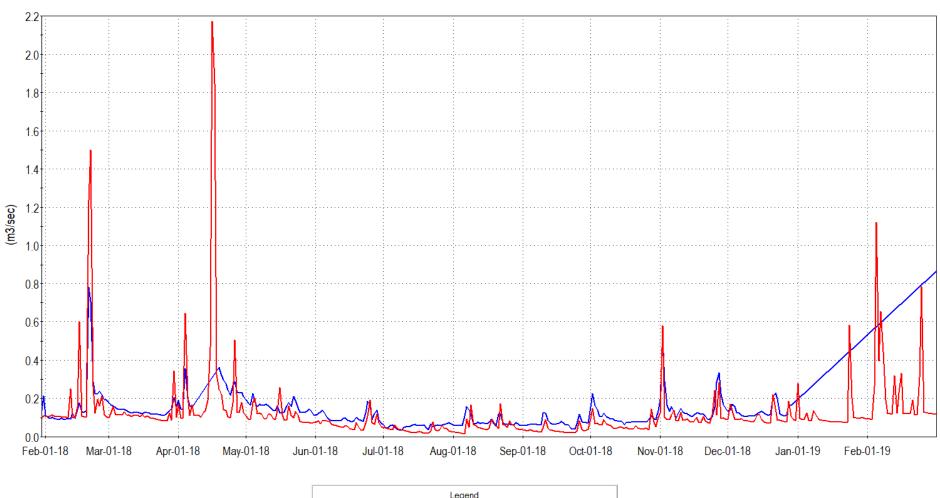

Parameter: Unit: Mo.L OM/6 CM/6 CM CM LS L//PM P//PM P//PM P//PM MAlkathing (PL 5) 02 302 302 302 302 302 302 302 302 302 302 302 302 302 302 303					Mo	nitoring Loca	tion SW14							
Parameter: Unit: Mo.L. OM/A CM/A CM/A CM/A D/I/M D/I/M <thd i="" m<="" th=""> <th< th=""><th></th><th>Sa</th><th></th><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th>-</th><th></th><th>Maximum</th><th>Minimum</th><th>Average</th></th<></thd>		Sa					-	-		-		Maximum	Minimum	Average
Image mgL 0.01 0.02 0.03 0.01 0.01 0.07 0.03 B00 [5 day) mgL 1 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Biotronate mgL as CC03 1 300 2.2 311 315 325 2.93 1.13 4.4 4.2 Cardotate mgL as CC03 1 30 2.2 4.4 5.4 3.4 4.4 2.4 Canductivy j/(m1 1.666 457 7.666 666 457 Disobred Grand Carbon mgL 0.4 10.7 7.4 4.04 5.5 6.3 6.4 3 1.01 1.7 5.5 Field Tenp Y N/A 5.4 4.2 1.51 1.1 1.1 1.6 1.7 1.2 1.70 4.2 Auninum ugL 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 <th>Parameter:</th> <th>Units:</th> <th>M.D.L.</th> <th>CM/JG</th> <th>CM/JG</th> <th></th> <th>CM</th> <th>JG</th> <th>JG/JH/JM</th> <th>JH/JM</th> <th>JG/JH</th> <th></th> <th></th> <th>, weruge</th>	Parameter:	Units:	M.D.L.	CM/JG	CM/JG		CM	JG	JG/JH/JM	JH/JM	JG/JH			, weruge
BBOD (5 day) mg/L 1 -1 0.8 -0.9 1 -1 1.1 1.5 -1 0.0 0.8 BBrohowth mg/L is CGC03 1 30 227 315 325 225 315 325 225 315 325 225 315 325 225 315 325 225 315 325 225 315 325 225 316		-	2											292
Bischorstring Ingl. is a GAOS 1 300 227 130 315 325			0.01				0.03							0.04
Carborate mg/L 1 3 2 4 5 4 3 4 2 Conductivity µ5/cm 1 666 457 549 666 683 770 666 693 770 666 693 770 666 693 770 666 693 770 666 693 780 781 Field Ferm C N/A 8.6 8.8 8.8 8.8 9 8.8 8.6 Aluminum ug/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1< <1< <1< <1< <1< <1< <1<			1			<0.9	1	<1						1.0
Conductivity js/m 1 666 457 548 656 683 770 666 697 637 Dissolved Organic Carbon mp/L 0.04 10.7 7.4 -0.6 5.1 6.3 6.4 5 100 10.7 5.1 Field Temp C N/A 5.4 4.2 11.1 11.19 15.7 11.2 11.2 11.2 12.7 4.2 Aluminm ug/L 1 c1 c1 5 5 19 4 26 6 5 0.5 c0.5 c0			1		237		319		315	325	293	319	237	214
Dissolved Organic Carbon mg/L 0.4 10.7 7.4 cd.a 5.5 6.3 6.4 5 10 10.7 5.1 Field Temp C N/A 5.6 8.8 8.8 8.8 8.8 9 8.9 8.8 8.6 Aluminum ug/L 0.1 C N/A 5.4 4.2 11.1 11.9 15.7 11.2 17.0 4.2 Aluminum ug/L 0.1 C.1 S 5 1.9 4.0 5 0.5			1	-	2	5.40	4	500	5	4	3	4	2	2.25
Field pt pt N/A 8.6 8.8 8.8 9 8.8 8.8 8.6 Aluminum ug/A 1 cl 3 5 119 4 26 6 5 19 3 Antimony ug/A 1 cl 3 5 19 4 26 6 5 19 3 Artimony ug/A 1 cl cl </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>//0</td> <td></td> <td></td> <td></td> <td>587 5.9</td>			1							//0				587 5.9
Field Temp ℃ N/A 5.4 4.2 15.1 17 11.9 15.7 11.2 17.0 4.2 Atuminum ug/L 1 1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.4</td> <td>5</td> <td></td> <td></td> <td></td> <td>5.9 8.8</td>									6.4	5				5.9 8.8
Aluminum ug/L 1 c1 5 19 4 26 6 5 19 5 Antimeny ug/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td><td>10.4</td></t<>										~				10.4
Antimony ug/L 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Arsenic ug/L 1 0.5			1		4.2	15.1			26		5		4.2	10.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.5		<0.5	<0.5					<0.5		<0.5	0.5
Barlun ug/L 1 63 48 64 82 57 59 73 63 82 48 Beryllum ug/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>			1											1
Berylium ug/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5			1											64
Boron ug/L 2 6 8 <2 17 <2 3 21 19 17 6 Cadnium ug/L 0.1	Beryllium		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Cadmium ug/l 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	Bismuth	ug/L	1	<1	<1	<1		<1	<1	<1			<1	1
Calcium ug/L 500 57000 72500 80000 65200 83600 94300 79400 80000 57000 52 Cerium ug/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 </td <td></td> <td></td> <td>2</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>v</td> <td>8.25</td>			2	-	-				-				v	8.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				<0.1										0.1
Cesium ug/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1<			500	-										52500
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1											1
Cobatt ug/L 0.1 0.2 <0.1 0.			1			<1		<1			<1	<1	<1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.1		,	5		4	5	-	5	/	3	4 0.125
Europium ug/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1 <1< <1< <1<<<1< <1<<<1< <1<<<1< <1<<<1<<<1<<<1<<<1<<<1<<<1<<<1<<<1<<<1		5	0.1			0.1			0.1		0.1	0.2	0.1	0.123
Galilium ug/L 1 1 1 1 1 1 2 2 2 1 1 Iron ug/L 20 150 137 191 319 248 246 275 281 319 137 Lanthanum ug/L 1 Lathanum ug/L 1 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td><1</td> <td></td> <td></td> <td><1</td> <td></td> <td><1</td> <td><1</td> <td><1</td> <td>1</td>			1			<1			<1		<1	<1	<1	1
Iron ug/L 20 150 137 191 319 248 246 275 281 319 137 Lanthanum ug/L 1 <1			1			1			2		2	1	1	1
Lanthanum ug/l 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1 <1 <1 <1 <1< <1 <1< <1 <1< <1 <1 <1< <1 <1< <1< <1<			20	150		191	319	248	246	275	281	319	137	199
Lithium ug/l 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	Lanthanum		1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Magnesium ug/l 5 23400 29300 35800 31100 32300 37000 35700 35800 23400 222 Manganese ug/l 10 69 17 19 61 22 42 9 13 69 17 Mercury ug/l 0.1 <0.1	Lead	ug/L	0.1	<0.1	0.4	0.2	1	0.3	0.5	0.1	0.2	1	0.2	0.425
Manganese ug/l 10 69 17 19 61 22 42 9 13 69 17 Mercury ug/l 0.1 <0.1	Lithium	ug/L	5	<5	<5									5
Mercury ug/l 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <		_	-	-						37000				22126
Molybdenum ug/l 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	-									9				42
Nickel ug/l 1 3 2 2 2 2 2 3 3 2 Niobium ug/l 1 <1			0.1											0.1
Niobium ug/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <			1		<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Phosphorus ug/l 50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50			1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Potassium ug/l 1 1430 1160 892 1140 1160 1140 1100 1740 1430 892 1 Rubidium ug/l 1 <1			50											50
Scandium ug/l 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1			1	1430		892	1140		1140	1100	1740	1430	892	1156
Selenium ug/l 0.5 0.5 <0.5 <0.5 1.2 <0.5 0.8 <0.5 0.5 0.5 Silicon ug/l 2 3550 2300 3260 4020 2830 3430 3980 4420 4020 2300 3300 3300 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Rubidium	ug/L	1	<1	<1	<1	1	<1	1	1	2	1	1	1
Silicon ug/l 2 3550 2300 3260 4020 2830 3430 3980 4420 4020 2300 3300 Silver ug/l 0.1 <0.1	Scandium	ug/L	1	<1	<1	<1	<1	<1	1	1	1	<1	<1	1
Silver ug/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <t< td=""><td></td><td></td><td>0.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.5</td></t<>			0.5											0.5
			2											3283
Sodiumi ug/Li 1000 15000 6600 8680 18800 11300 15400 20900 17800 18800 6600 15		5												0.1
			1000											12270 112
			800											5950
Sulprun Ug/L 300 2700 3230 3710 10100 3900 7100 11300 11000 2700 3 Tellurium ug/L 1 <1			1											1
Thallium ug/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1			0.1											0.1
Thorium ug/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <			1											1
Tin ug/l 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Tin		1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
	Titanium	ug/L	1			<1						2		1.25
Tungsten ug/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1			1											1
Uranium ug/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <			1		<1	<1			<1		<1	<1	<1	1
Vanadium ug/L 1 <1 1 2 2 1 1 2 2 1 Where			1		1	2		-	1		2	2	1	1.5
Yttrium ug/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <			1											1
Zinc ug/L 1 11 <1 3 12 4 14 4 20 12 3 Zirconium ug/L 1 <1			1			-							_	/
ph pH N/A 8.06 7.96 8.11 8.17 8.24 8.18 8.15 8 8.2 8.0			۱ N/۵											8.1
														302
Chemical Oxygen Demand mg/L 5 20 24 20 20 19 38 8 464 24 20			5											21
			3							_				395
		_	0.67								1			4.59
Turbidity NTU 0.1 1.9 2 1.3 2.1 0.9 0.8 1.4 13.8 2.1 1.3	Turbidity	NTU	0.1	1.9	2	1.3	2.1	0.9	0.8	1.4	13.8	2.1	1.3	1.8


WILLOUGHBY CREEK - FIGURE 1

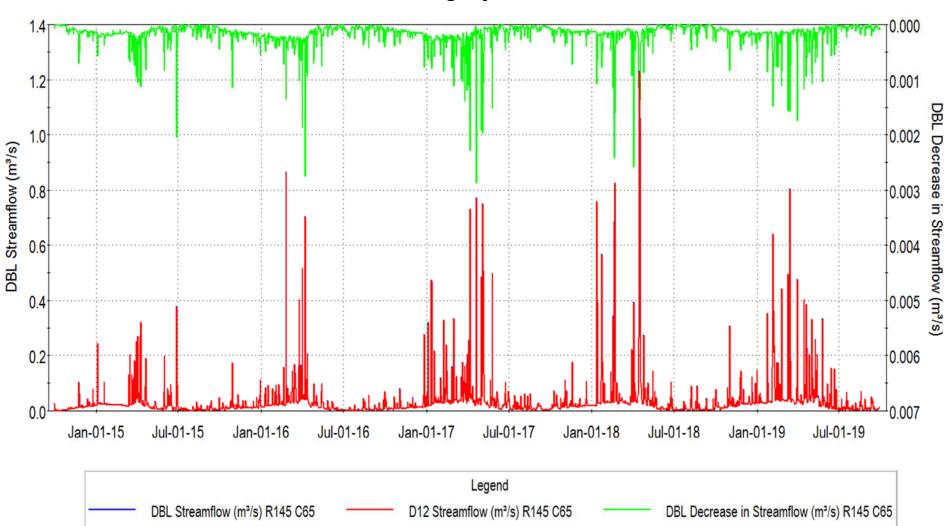


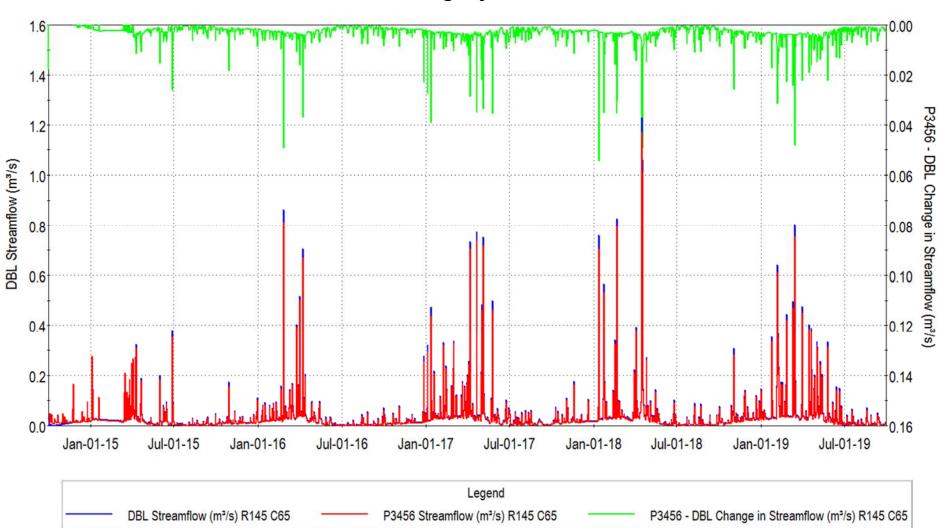




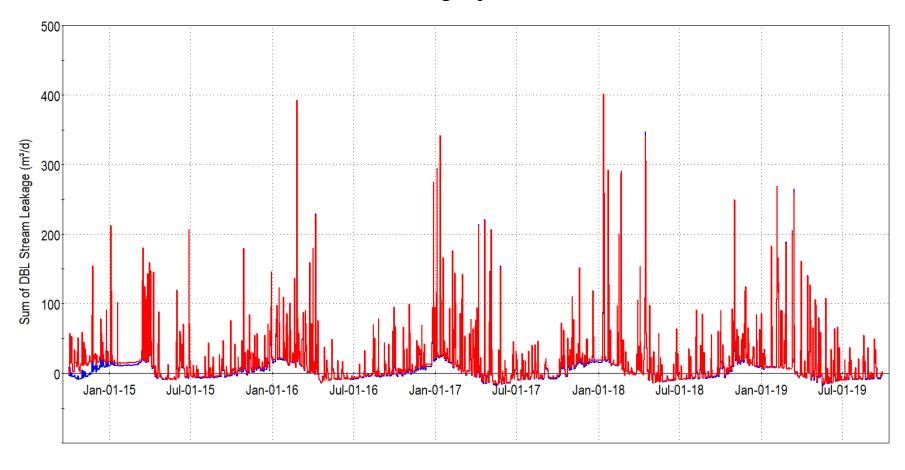


Integrated Model Calibration Willoughby Creek


Integrated Model Calibration Willoughby Creek



Integrated Model Calibration Willoughby Creek


Simulated Streamflow Change - Integrated Model Willoughby Creek

Simulated Streamflow Change - Integrated Model Willoughby Creek

Change in Groundwater Contributions to Watercourse Willoughby Creek

Change in Groundwater Contributions to Watercourse Willoughby Creek

Attachment 3 – Spill Contingency and Pollution Prevention Plan

SPILL CONTINGENCY AND POLLUTION PREVENTION PLAN

BURLINGTON QUARRY

Revised February 6, 2019

PERSONS RESPONSIBLE FOR ACTIVATING THE BURLINGTON QUARRY SPILL CONTINGENCY AND POLLUTION PREVENTION PLAN

Quarry Manager: Bill White 24-hour Contact - Cell: 1-905-407-8442 **Environmental Manager:** Tecia White 24-hour Contact - Cell: 1-705-888-7064

SPILL PROCEDURE

In the event of a problem involving equipment operated within the Burlington Quarry that results in the release of a hazardous substance into the environment, the following steps are to be taken immediately.

Hazardous materials that are likely to be released from equipment operated by Aggregate Resources are fuel oil (diesel fuel), engine oils, transmission fluid or engine coolant as well as the product being transported. Specifically, the hazardous material which may be transported or stored within the area serviced by the works include:

- ACE Methyl Hydrate
- Injector Kleen
- Handigas
- Anti-Seize Sealing Compound
- Air Intake Kleen

- Original Gas Line Anti-Freeze
- Mobile Delvac 1300 Super 10W-30
- Kleen-Start Starting Fluid
- Diesel Fuel Conditioner

The Material Safety Data Safety Sheets (MSDS) for each of these materials are provided in Appendix A.

When a spill involving these materials is discovered ensure (as far as is practical) that the unit involved is stopped and secured in a safe location. Try to stay away clear of any location that might be affected by the release of these materials. Where practical stay away from catch basins and do not allow liquids to enter any water feature, including standing water, drainage ditches, ponds, or sump locations. Drain inlets, catch basins and culvert inlets should be blocked to prevent the entry of contaminants. If stopped on a grade try to prevent liquids from flowing down gradient and entering catch basins at some location remote from your location.

Equipment Operator:

Upon detecting a liquid spill or spill of material take necessary steps to contain the spill.

- Identify the material and the applicable hazards. Try to determine the quantity of material spilled.
- If flammable remove all sources of ignition including electricity and rope off the area if possible.
- Ensure the proper PPE is obtained before entering spill area.
- Stop product loss by closing valves and stopping pumps as required.
- Remove injured persons from danger area
- Block off any sewer entrances. Use absorbing material or sand/soil to create a dike around the spill area. Create walls of sand or absorbing material ahead of the product flow.
- Secure the area and ensure only the required people are present. Keep the area clear for the emergency vehicles.
- Contact Quarry or Environmental Manager

ROLES AND RESPONSIBILITIES

Environmental Manager:

- Oversee clean-up and reporting
- Notify Ministry of the Environment and Climate Change (unless exempt under O.Reg. 675/98)

Quarry Manager:

- Upon being notified of a spill will assign a designated cleanup crew who will respond with additional spill kits, shovels, brooms and containers to receive contaminated waste from spill cleanup.
- Assist with the cleanup of the spill.
- Coordinate quarry staff and third party clean up companies to ensure the work completed immediately after the spill occurred. Report progress to Environmental Manager and Operations Manager.

Health and Safety Manager:

• Ensure accident, spill and cleanup activities meet Ministry of Labour regulations.

Quarry or Environmental Manager to complete the following Spill Response Forms (Schedule A):

- Spill Incident Report
- Spill Clean Up Log

MEDIA RELATIONS

All requests for information from reporters or other media sources must be referred to the office of the President.

TRAINING

Tecia White (Environmental Manager) completed the Spill Response Online Training Course (F.A.S.T: First Aid Safety Training) November 10, 2017. The course provided extensive information about responding to minor spills; those spills where the worker can take the necessary measures to control, contain and clean up spilled materials.

All operators of equipment operated by Nelson will be instructed in this spill procedure and their function when reacting to a spill of hazardous materials involving the unit they are operating. All supervisory and responding cleanup crew will receive training in spill management, containment, and spill cleanup.

SPILL KITS

Fuel Truck:5 gal pail:Shop Kit:• ten absorbent pads• 10' sock• Latex gloves• Safety goggles	 Red Zenith Universal Kit two absorbent pillows Nitrile gloves Safety goggles Disposal bag 12 10' socks 20 absorbent pads
---	--

EMERGENCY CONTACT NUMBERS

Local Police	911
Ministry of the Environment Spills Action Centre (24 - hour, province wide, toll-free number)	1-800-268-6060
Ministry of Labour	1-416-314-5300
Ministry of the Environment and Climate Change District Office (Burlington)	1-800-335-5906

EMERGENCY HAZARDOUS WASTER CLEANUP COMPANIES

Catch Basin	Cleaning	1-416-231-4696
Burlington Hydro-Vac		1-905-545-1117

Figure 1: Burlington Quarry Map

Spill Incident Report

Date:	
Time:	
Spill Reported By (Employee Name):	
Exact Location of Spill:	
Show on attached map	
Equipment Involved:	
Spill Details	
Material Spilled:	
Estimated Volume Spilled:	
Is the Spill Contained:	
Environmental Factors	
Distance from Ponds	
Distance from Sumps	
Distance from Drainage Ditches	
Nelson Personal Contacted	
Operations Manager	
Environmental Manager	
Health and Safety Manager	
Emergency / Agency Personal	
Contacted	
Emergency 911	
Ministry of the Environment and	
Climate Change	
Ministry of Labour	

Spill Clean Up Log

Date	Time	Action Taken

APPENDIX A

Material Safety Data Safety Sheets