Proposed Milton Quarry East Extension JART COMMENT SUMMARY TABLE – Groundwater Modelling

Please accept the following as feedback from the Milton Quarry Joint Agency Review Team (JART). Fully addressing each comment below will help expedite the potential for resolutions of the consolidated JART objections and individual agency objections. Additional, new comments may be provided once a response has been prepared to the comments raised below and additional information provided.

JART Comments (May 2022)	Reference	Source of Comment	Applicant Response 2022	JART Response
port/Date: Geology and Water Resources Assessment Report December 2021	I	Author: GHD		
What do "drain bottom sediments" and the "thickness of drain cell bedding mater mean in the context of the MODFLOW Drain Package representing a seepage falong the Niagara Escarpment? Our conception of the application of the Drain Package for a seepage face is illustrated in Figure 1. Is our conception similar to approach embedded in Equation (F1)? $C = \frac{KLW}{M}$ What stages were assigned for the MODFLOW Drain Package representing the seepage face along the Niagara Escarpment? $V = \frac{KLW}{M}$ $\frac{dZ}{dZ} = \frac{K_{DRN}}{dZ} (h_{JIK} - h_{DRN}) \Delta R \Delta Z$ $Q_{DRN} = -\frac{K_{DRN}}{b_{DRN}} (h_{JIK} - h_{DRN}) \Delta R \Delta Z$ Figure 1. Conceptual models for the Drain Package applied to represent seepage faces	face o the o	S.S. Papadopulos & Associates Inc.	It is noted that these boundary conditions remain far from the area of interest and do not materially affect the simulated results for the proposed MQEE. In the context of the MODFLOW Drain Package representing a seepage face along the Niagara Escarpment, the "drain bottom sediments" and "thickness of drain cell bedding" are just treated as inputs required by Groundwater Vistas to calculate conductance as shown in Equation (F1). As described by Anderson et al., (2015) ¹ , conductance is difficult to measure in the field and is strongly affected by local heterogeneity. In practice conductance is estimated during model calibration. Consistent with Anderson et al., (2015), conductance was initially set based on grid cell dimensions and the permeability of the aquifer material and conductances were subsequently adjusted during model calibration to reproduce observed groundwater elevations, flow directions, and flow rates. The hydraulic conductivity, length, width, and drain bed thickness are only retained for Groundwater Vistas to calculate conductance to write the MODFLOW drain package. Drain cell stages are approximately 0.2 m above the top of Cabot head (bottom of the model domain) to represent the seepage face along the Niagara Escarpment.	SOLVED.

Anderson, M., W. Woessner, and R. Hunt. (2015) Applied Groundwater Modeling – Simulation of Flow and Advective Transport 2nd Edition 1

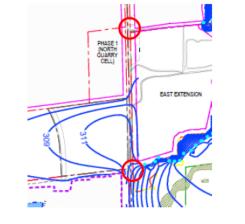
	JART Comments (May 2022)	Reference	Source of Comment	Applicant Response 2022	JART Response
2.	Do the available groundwater level data support the assumption that groundwater divides coincide with topographic watershed boundaries? Is it possible to conceive of a reality check for the results shown in Figure F6.1? For example, is it feasible to prepare a map with contours of ground surface elevations at the same as Figure F6.1?	Page 9	S.S. Papadopulos & Associates Inc.	Topographic elevations and watershed divides are presented on Figure 2.6 of the Geology and Water Resources Assessment Report (GWRA) (GHD, 2021) at approximately the same scale as shown on Figure F6.1. In general, the topographic highs match the groundwater highs (or no flow streamlines) as further supported by Figure 2.8 of the GWRA, which presents regional groundwater flow derived from historical water well records. In general, the interpreted groundwater elevation contours intersect the watershed divide at right angles supporting that the groundwater flow divide corresponds to the watershed boundary.	
3.	Comparing Figures F6.4a and F6.4b, and Figures F6.5a and F6.5b, there are substantially more water level targets for the July 2010 calibration conditions than the 2017 average conditions. Intuitively, we would have expected the other way around, with additional monitoring being installed through time. Is there an explanation why there are 203 targets for July 2010 conditions (Figure F6.5a) but only 31 targets for July 2017 conditions (Figure F6.5b)?	Page F9	S.S. Papadopulos & Associates Inc.	In practice, the injection rates at recharge wells are adjusted until target water elevations are met at trigger wells (i.e., trigger wells are the compliance points for measured water levels). In this modelling scenario, a similar procedure was completed whereby the injection rates were input and adjusted such that the total injection rate, recirculation to the quarry, and simulated water levels at trigger wells provided a reasonable representation of observed conditions. Therefore, the purpose of the Average Annual 2017 simulation was to verify that the parameter values determined through the July 2010 calibration would match observed flow rates and water levels at trigger well locations in 2017. The key changes in 2017 relative to July 2010 include the substantial extraction of the North Quarry and West Cell, progression into the East Cell, and operation of the expanded Water Management System. The focus of this simulation was to confirm that the simulated injection rates matched the observed rates, simulated groundwater elevations in the immediate vicinity of the quarry (i.e., trigger well locations) were comparable to observed levels, and that simulated recirculation to the quarry was comparable with observed quarry inflow rates. These objectives were readily achieved with a reduced set of targets in the immediate vicinity of the recharge system and quarry excavation.	

	JART Comments (May 2022)	Reference	Source of Comment	Applicant Response 2022	JART Response
4.	What are the "scaled absolute residuals" reported in Figures F6.5a and F6.5b?	Page F9	S.S. Papadopulos & Associates Inc.	The scaled absolute mean is the absolute residual mean divided by the observed head range. There is a typo on Figure F6.5b in which the residual mean divided by the observed head range was presented as the scaled absolute residual rather than the absolute residual mean divided by the head range. The correct scaled absolute residual is 0.02 for Figure F6.5b.	
5.	Referring to Figure 6.6, are Model Layers 1 and 2 assigned the same hydraulic conductivity values? It is indicated in the text that Model Layers 1 and 2 are simulated as mostly being dry. Do the yellow and salmon areas denote the areas where the layers are not dry?	Page F9	S.S. Papadopulos & Associates Inc.	Figure 6.6 presents the calibrated hydraulic conductivity in Model Layers 1 and 2. Model Layers 1 and 2 are assigned the same hydraulic conductivity zones and hydraulic conductivity values. Dry model cells are not shown on Figure F6.6. Therefore, the yellow and salmon areas do not denote areas where the layers are not dry. Yellow and salmon colours denote the different hydraulic conductivity values and are shown for both wet/dry cells across the model domain. As described on Figure F6.6 the salmon coloured areas denote an assigned hydraulic conductivity value of 20 m/day and the yellow coloured areas denote an assigned hydraulic conductivity value of 3.5 m/d. The white (blank) areas correspond to no-flow cells within the model.	
6.	It is not clear whether the hydraulic conductivity values inferred through calibration are consistent with independent estimates from the Site. At a minimum, we request an assessment of the consistency between the values inferred through calibration and the values listed on Table 6.1 of the GWRA report. On page 31 of the GWRA report reference is made to pumping tests conducted at TW1-80, a well that is indicated to be close to the proposed East Extension. Are the hydraulic conductivities inferred through calibration consistent with the estimate of 1.4×10-3 cm/s developed by matching the Thiem solution to the combined responses of all monitoring wells?	Page F9	S.S. Papadopulos & Associates Inc.	A continuously variable hydraulic conductivity distribution is assigned in model layer 3 to represent the Amabel formation. The minimum, average, and maximum assigned hydraulic conductivity values are 5.7e-6, 1.45e-3, and 4.2e-3 cm/s, respectively. Both the minimum and maximum values are within the range of hydraulic conductivity values (from 1e-2 to 8.1e-7 cm/s) presented in Table 6.1. The average hydraulic conductivity value of 1.45e-3 cm/s is consistent with the estimate of 1.4e-3 cm/s developed by matching the Thiem solution to the combined responses of all monitoring wells at TW1- 80.	
7.	Referring to Figure 7.1, it is indicated that 150 constant head boundary condition cells are used to represent WMS recharge wells. "The fixed head of the recharge wells was calibrated to prevent or minimize drawdown in their vicinity relative to the base case (July 2010 conditions)." It is not clear what this means. Since the cells are assigned fixed head conditions aren't the drawdowns at the cells – and near them – by definition zero?	Appendix F	S.S. Papadopulos & Associates Inc.	 The drawdown is not evaluated at the recharge well locations, rather it is evaluated at trigger well locations (i.e., compliance points). Constant heads are adjusted to minimize drawdown at trigger well locations, not recharge well locations. In practice, as the quarry extraction advances, WMS recharge rates are increased to maintain measured water levels at trigger well locations that are located beyond the recharge wells. A similar approach was taken to simulate the expansion of the quarry. The expanded quarry limits 	

JART Comments (May 2022)	Reference	Source of Comment	Applicant Response 2022	JART Response
			 are represented and the constant head elevations are increased (thereby increasing simulated WMS recharge rates) to maintain groundwater levels at the trigger well locations. Figure F7.3 and F7.6 demonstrate that there is an increase in groundwater elevations at some recharge well locations relative to the existing quarry full extraction and rehabilitation conditions as intended to compensate for drawdown caused by dewatering and mining the east extension thereby minimizing drawdown at trigger well locations. 	
 8. Referring to Figures 7.3 and 7.6, are we correct in understanding that the changes are calculated as follows? As shown in the two slides attached to this letter, it is not obvious from spot checks that this is how the results are calculated. Figure 7.3 Change = Simulated Layer 3 water levels for the approved existing quarry fully extracted - Simulated Layer 3 water levels for the approved existing quarry + MQEE fully extracted Figure F7.6 Change = Simulated Layer 3 water levels for the approved existing quarry + MQEE fully extracted Figure F7.6 Change = Simulated Layer 3 water levels for the approved existing quarry + MQEE fully extracted 	Page F9	S.S. Papadopulos & Associates Inc.	The changes are calculated opposite to your understanding. The change is calculated as described below for Figures F7.3 and F7.6Figure F7.3 Change = Simulated Layer 3 water levels for the approved existing quarry + MQEE fully extracted - Simulated Layer 3 water levels for the approved existing quarry fully extractedFigure F7.6 Change = (Simulated Layer 3 water levels for the approved existing quarry + MQEE rehabilitation) – (Simulated Layer 3 water levels for the approved existing quarry rehabilitation)See response to the two attached slides below to clarify the calculations.	RESOLVED.
 9. We request clarification of the comparisons of the flow calibration targets reported on Table F6.3. For the comparison of July 2010 conditions, is there a reason why the total recharge flows are not reported? For the comparison of 2017 average conditions, the reported simulated recharge flows for the North Quarry and the West Cell are the same as the targets, to four significant figures. This strikes us as implausible; however, the same values are reported on Table F7.1. Are the simulated values in fact identical to the targets? 	Page F9	S.S. Papadopulos & Associates Inc.	 The totals could have been included in Table F6.3 for ease of comparison. A supplementary version of Table F6.3 showing the totals has been provided attached to this response. Yes, for the 2017 condition the simulated flows are identical to the target values. In some cases, well boundary conditions were initially specified at measured flow rates to determine the head value required to reproduce observed flow rates. Emphasis was placed on replicating the flow values as the purpose of the annual 2017 condition which was to verify that the model with the observed (target) recharge rates would reproduce observed groundwater elevations at trigger well locations and that recirculation (groundwater inflow to the quarry) was consistent with measured inflows. Thank you for bringing this to our attention. The Excel formula has been corrected and a revised 	The supplementary version of Table F6.3 and the corrected version of Table F7.1 are added to the project documentation.

JART Comments (May 2022)	Reference	Source of Comment	Applicant Response 2022	JART Response
 For the 2017 average conditions the total of the reported recharge flows is 4863 L/min. However, when we add the individual reported recharge flows we obtain 5045 L/min. Is this check conceptually wrong? Are we missing something? 			table showing the corrected total is provided in the appended Tables F6.3 and F7.1. This typo does not affect the findings of the impact assessment.	
 For the 2017 calibration it appears that the simulated wetland recharge flows differ substantially from the observed flows. Are time series of recharge flows available to assess whether the simulated values are within the ranges of the observations? 			 Wetland water elevations and flow rates have been provided for Wetlands V2, W7, and W8 for calendar 2017. See Figures 1, 2, and 3 appended to this response. As shown on Figures 1 through 3 the recharge flows vary significantly throughout the year and the simulated values are within the range of average weekly flowrates for each wetland. 	
			The difference between 2017 simulated and average annual observed flows can be attributed to nearby recharge well operations and groundwater/surface water interactions. In some instances/time periods, the wetlands are supported by nearby groundwater recharge rather than direct diffuse discharge. This is evident in the hydrographs for Wetlands W7 and W8 (Figures 2 and 3) where water levels are maintained for extended periods with little or no top-up. These conditions are replicated by the model and result in relatively low simulated diffuse discharge rates at Wetlands W7 and W8.	
			Refinement of these local scale interactions could have been pursued; however, this was identified to be an interim condition that would not be present under full extraction conditions. Under full extraction conditions the surface water system is above the connected groundwater flow system (water table). This condition was documented in the 2021 Annual Water Monitoring Report.	
			At 2021 year-end, full extraction conditions have essentially been achieved in the vicinity of the on- Site wetlands. The total observed diffuse discharge to the wetlands was 650,000 m ³ in 2021, providing a good match when compared to the simulated 680,000 m ³ for full extraction conditions.	

	JART Comments (May 2022)	Reference	Source of Comment	Applicant Response 2022	JART Response
				It should be noted that while a suitable match has been achieved between observed and simulated conditions, the adaptive management approach does not rely on the simulated results for wetland mitigation. Ultimately the success of the wetland mitigation activities is guided by monitoring, operational experience, and ongoing evaluation and review of real-world conditions related to water and ecology considerations in accordance with the AMP.	
10.	On Table 7.1, what do the values associated with the "Approved Extraction Flow Target Flow Target" refer to?	Page F9	S.S. Papadopulos & Associates Inc.	final report and is not relevant. There is no	RESOLVED. The appended supplemental Table F7.1 is added to the project documentation.
11.	Model file requests In their summaries of model results, GHD have helpfully indicated the names of the groundwater models. To confirm that the model results are reproducible, we request the Groundwater Vistas and MODFLOW input files for the following models. We also request that the files include the MODFLOW listing files (files typically with extension .LST) for each model. • 2023_v032.272 • 2023_v032.274 • EEFE_v032.325 • EEFE_v032.425	Page F9	S.S. Papadopulos & Associates Inc.	 mitigation relies on the proven Water Management System and Adaptive Management Plan and does not rely on modelling or simulated results. The pursuit of nuances in model results will have little or no impact on the real-world success of the project. Dufferin asks that all additional simulations and review be conducted by GHD upon request to limit additional work products. To this end, no model files have been provided; however, Dufferin remains 	RESOLVED. On August 5, 2022 the proponent's hydrogeology consultants met with the JART peer reviewer. Ahead of the meeting the proponent's transmitted copies of the MODFLOW Output Listing files for the four simulations indicated. The groundwater models were re-run and it was confirmed that the results matched those in the listing files. This confirms that the model results presented in the GWRA Report are reproducible.
	Appendix – Change calculations Change calculation #1			calculation #1 are incorrect due to approximating	RESOLVED. The appended Figures 4, 5 and 6 are added to the project documentation.
13.	Change calculation #1			calculation #2 are also incorrect due to	RESOLVED. The appended Figures 7, 8 and 9 are added to the project documentation.


JART Comments (May 2022)	Reference	Source of Comment	Applicant Response 2022	JART Response
			zoomed in view around the East Extension for Figures F7.4, F7.5, and F7.6, respectively.	

Appendix – Change calculations

Change calculation #1

Approved existing quarry fully extracted – Approved existing quarry + MQEE fully extracted

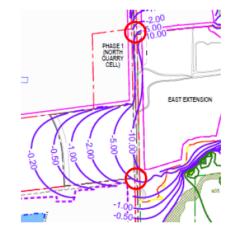


Figure F7.1

Figure F7.2

Figure F7.3

Upper point: 307 masl - ? = 5.0 m Lower point: 319 masl – 311 masl = 5.0 m (?)

	JART Comments (June 27, 2022)	Reference	Source of Comment	Applicant Response 2022	JART Response
Rep	oort/Date: Geology and Water Resources Assessment Report December 2021		Author: GHD		
	Supplemental Questions Received June 27, 2022				
14.	Am I correct in understanding that for pre-extraction conditions there is runoff of 60 mm/yr from the 15.9 ha footprint of the MQEE to lower land (I presume that is east and south of the MQEE)?	Page F9	S.S. Papadopulos & Associates Inc.	Yes, runoff is estimated to be 60 mm/yr. No, runoff from the extraction footprint does not head east and south. As described in the GWRA (Section 5 and specifically Section 5.4) "As presented on Figure 5.2 [of the GWRA], the majority of the proposed MQEE extraction area (84%) currently drains to the south towards Wetland W36. With a small area (14%) in the northwest corner draining west towards Town Line and the existing North Quarry."	RESOLVED.
5.	Am I correct in understanding that for pre-extraction conditions there is runoff of 60 mm/yr from the 15.9 ha footprint of the MQEE to lower land (I presume that is east and south of the MQEE)?	Page F9	S.S. Papadopulos & Associates Inc.	The runoff rate provided (566 mm/yr) is for dry quarry areas within the excavation footprint. As suggested, all "runoff" is captured by the quarry sumps and circulated to the Reservoir.	RESOLVED.
6.	For interim conditions, what does the runoff in parentheses represent for the infiltration term? Am I correct in understanding that none of the precipitation that falls into the quarry can infiltrate through the floor? Is that because it is assumed that the base of the quarry is impermeable (Cabot Head Shale) and remains impermeable regardless of what activities happen on top of it?	Page F9	S.S. Papadopulos & Associates Inc.	The parentheses indicate that little or no infiltration occurs as the majority of this component is runoff. The detailed water budget calculations provided in Appendix G do include a small vertical leakage component (< 10 mm/yr) to conservatively account for water loss through the quarry floor to the underlying formations.	RESOLVED.
7.	For final rehabilitated conditions (quarry lake), what does the runoff term of 194 mm/yr represent? I must be misinterpreting it as runoff from the lake to its surroundings. What does it really represent?	Page F9	S.S. Papadopulos & Associates Inc.	This runoff/surplus is excess water in the system – I,.e. precipitation minus evaporation. In reality, this water will likely overflow through the hydraulic control structures and return to the Reservoir for storage. The surplus can then be used for quarry lake top-up or discharged directly to the Hilton Falls Reservoir Tributary.	
8.	For final conditions, am I correct in understanding that no water leaks out of the quarry to the groundwater system?	Appendix F	S.S. Papadopulos & Associates Inc.	Water does leak to the groundwater flow system under final conditions. These leakage rates are presented in Table F7.1. Flows from the West Cell, East Cell, and East Extension are negative due to the support provided to the surrounding groundwater flow system. The North Quarry also "leaks" to the groundwater system; however, it receives support from the East and West Cells, and net flow is positive. The leakage to the surrounding groundwater flow system is essential for passive support of the aquifer and downgradient water resources.	
				of water available to the natural environment. The surplus under the rehabilitation condition would likely overflow through the hydraulic control structures and return to the Reservoir. This surplus could then be used for quarry lake top-up or discharged directly to the Hilton Falls Tributary.	

	JART Comments (December, 2022)	Reference	Source of Comment	Applicant Response (January 2023)
Rep	ort/Date: Geology and Water Resources Assessment Report December 2021	1	Author: GHD	
	Supplemental Questions on the Modelling			
19.	It is indicated on page 5 of Appendix F that the overall calibration of the MQEE Model for the July 2010 data set "is comparable to the Pre-Extraction and 5-Year Review models, although some calibration residual statistics have increased slightly as a result of the much larger number of targets." It is not clear to us why the July 2010 set of calibration targets for the MQEE model is larger than it was for the Pre-Extraction and 5-Year Review models. Were additional targets found for July 2010 conditions when the MQEE model was being developed?	Page F9	S.S. Papadopulos & Associates Inc.	Yes, additional representative targets were developed for use. Page 12 of Appendix F describes that the Jul 2010 target dataset applied for the Pre-Extrac- and 5-Year Review models was retained for the MQEE model and augmented (i.e., more targ were added) through the use of additional "hy 2010" data. Hybrid 2010 data consists of heat targets at monitoring locations that were insta- after July 2010 and are also representative of average annual conditions. Hybrid 2010 data developed through the review and correlation groundwater elevations at groundwater monitoring well locations installed after July 2 with groundwater elevations collected at background monitoring well locations installed before July 2010. This approach maximizes to number of groundwater elevation targets by retaining monitoring locations used for the ori- July 2010 calibration and expands the datase include new monitoring well locations where representative data exists.
20.	The simulation of 2017 average conditions is referred to as a "calibration verification". It is not clear whether this is a true verification of the calibrated model. Were any model parameters were adjusted between the July 2010 calibration and the simulation of 2017 conditions, apart from the specification of average annual groundwater elevations for each of the 31 Trigger Wells adjacent the Northern Cells (North Quarry, West Cell, and East Cell)?	Page F9	S.S. Papadopulos & Associates Inc.	 Hydraulic conductivity and recharge parameter values were not adjusted between the July 20 condition and the 2017 condition. Parameter values related to the operation of recharge system were changed from July 20 the 2017 condition, consistent with the change the operation of those systems. Changes were made to the operation of recharge wells and values for Wetlands W7, W8, and V2 consistent with observed conditions Wetland conductant values were not adjusted. The quarry extraction footprint was adjusted to July 2010 and 2017 conditions consistent with actual extraction limits at those times.
21.	Referring to Table F6.3, the simulated recharge flow to the North Quarry for 2010 conditions is about 75% of the observed inflow (926 L/min vs. 1222 L/min). On page 15 of Appendix F it is indicated that this difference is attributable to higher actual recirculation relative to "the ideal conditions simulated by the model." Doesn't this imply that there is something missing in the groundwater model such that recirculation is not simulated correctly?	Page F9	S.S. Papadopulos & Associates Inc.	Yes, this implies that the model could have be further refined to represent potential local sca connections between some injection locations and the North Quarry. However, most of the re between the recharge wells and the North Qu has been excavated and additional effort to re the July 2010 condition is not warranted as it would not have any meaningful affect on the model use or findings of the simulation result. Any difference in flow is only with amount of recharge water that flows immediately back in the quarry ("recirculates") and does not alter

023)

re	
e July xtraction for the targets I "hybrid head nstalled ve of data was attion of	
uly 2010	
alled es the by e original taset to ere	
meter ly 2010	
of the 2010 to anges to were and head sistent ctance	
ted for with	
ve been scale tions the rock of Quarry to refine as it the sults. of ck into lter the	

	JART C	omments (December, 2	2022)	Reference	Source of Comment	Applicant Response (January 2023)	JART Response
						resulting water budget.	
flow targets report conditions are s opinion the mate First, the reported are identical to f something fundat flows differ subs	orted for July 2010. Th hown in the plot below ches to the flow target ed simulated recharge our significant figures. amental in the compar stantially from the obse	Table F6.3 suggests a ne corresponding results y. In contrast to the results s for 2017 average cond flows for the North Qua This strikes us as impla- tison? Second, the simular erved flows. Are time set ated values are within th	for average 2017 Its for 2010, in our litions are problem rry and the West C ausible. Are we mis lated wetland rech ries of recharge flo	atic. Cell ssing arge	S.S. Papadopulos & Associates Inc.	This comment is a duplicate of bullets 2 and 4 of comment 9. This was addressed and resolved in the response to comment 9 and discussed during Aug 5 th 2022, meeting with S.S.P.A (Chris Neville).	
-	2017 calibration		· · · · · · · · · · · · · · · · · · ·				
North Quarry recharge flow	 ← Target ← Simulated 		•				
West Cell recharge flow			•				
East Cell recharge flow		•					
Wetland V2 recharge flow		+					
Wetland W7 recharge flow		•					
Wetland W8 recharge flow	•	Ð					
North Quarry flow							
1	10	100 100 Flow (L/min)	 D0 10000				

	JART Comments (November, 2022)	Reference	Source of Comment	Applicant Response (January 2023		
Rep	ort/Date: Geology and Water Resources Assessment Report December 2021	Author: GHD				
	Comments/Questions on the Impact Assessment Analyses					
23.	The impact assessment for the MQEE is unusual. For the scenario of active operations, it is assumed in the assessment that the existing mitigation measures have been extended and are functioning as designed. The mitigation of potential impacts is built-into the scenarios considered in the impact assessment. In our opinion, this is a reasonable approach during the period of active operations. However, the approach <i>presumes</i> that there will be active mitigation beyond the end of operations when the lakes are filling and after the lakes have attained their final planned levels. In our opinion, the fundamental difference between the MQEE impact assessment and "standard practice" needs to be highlighted.	GWRA Section 10	S.S. Papadopulos & Associates Inc.	Mitigation and enhancement measures are integral parts of the existing approved Milton Quarry. These same measures are proposed be extended for the MQEE and the modelling/illustrations have been completed based on the proposal. Development of the MQEE without extending the mitigation is not proposed and this is not considered to be a remotely realistic scenario. It is acknowledge that proceeding without the planned mitigatio measures would likely result in undesirable impacts to wetlands in the vicinity and would achieve the proposed enhancements to some those wetlands. That is why the mitigation measures are planned to be implemented, no just proposed as potential contingency action Therefore, it is not relevant to show potential impacts without mitigation. We re-iterate that the implementation and operation of suitable mitigation measures are requirements during the interim extraction an lake filling periods, as well as under long-term conditions following the completion of lake fill These requirements are stipulated through the existing and proposed agency approvals, the AMP, and the legal agreements with CH and Region. Furthermore, these requirements ar backed up by financial assurances secured through legal agreements.		
24.	 Whether or not this is regarded as a remote possibility, we consider it appropriate to ask, What are the likely impacts if the MQEE proceeds but the existing mitigation measures are not extended? The results of additional analyses will assist the JART in understanding the nature of the additional responsibilities and in understanding why the additional mitigation measures proposed for the MQEE are required. We recommend that the following scenarios be analyzed. a. End of interim conditions: Approved Existing Quarry Fully Extracted, MQEE fully extracted, no extension of existing mitigation measures b. Final rehabilitated conditions: Lakes in the Approved Existing Quarry, expanded East Cell Lake incorporating the MQEE, no extension of existing mitigation 		S.S. Papadopulos & Associates Inc.	Refer to response to Comment 23 above.		
25.	measures Are we correct in understanding that because the AMP for the existing quarry provides comprehensive measures for all private wells in the area of the Milton Quarry, no additional provisions specific to the MQEE are required?	GWRA Section 10	S.S. Papadopulos & Associates Inc.	This is a correct understanding. It is also wo noting that due to the location of the MQEE relative to the existing approved quarry extra areas and the locations of private wells, there no technical pathway for the MQEE to negati impact private water supply wells. The private wells to the north and west are hydraulically separated by the existing approved quarry, the		

n	2	١
2	J)

re ton osed to ed not a a dged ation le uld not come of n d, not ctions. ntial	
are and term e filling. h the the and the s are ed	
•	
worth E xtraction here is gatively rivate ally y, the	

	JART Comments (November, 2022)	Reference	Source of Comment	Applicant Response (January 2023)	JART Response
				mitigation measures, and the Sixth Line Tributary. The private wells to the south and southeast are below the Niagara Escarpment and hence beyond the limit of the Amabel Aquifer. Refer to GWRA Section 6.6 for further discussion.	
26.	The potential long-term impacts for final rehabilitated conditions are shown in Figure 10.2 of the GWRA Report. It appears from the figure that some of the mitigation measures are operating, but it is not exactly clear which ones. The diffuse discharges at wetlands U1 and W36 are indicated. The network of recharge wells is also shown in the figure; however, comparing the contours of groundwater levels in Figures 10.1 and 10.2 it appears that not all of the recharge wells are active in the simulation of final rehabilitation conditions (no groundwater mounding is evident in the groundwater level contours south of the East Extension.	GWRA Section 10	S.S. Papadopulos & Associates Inc.	The observations noted in the comment are correct. The simulation model for the rehabilitation conditions retains the full complement of simulated well locations for the interim conditions. However, under rehabilitation conditions there will be fewer recharge wells in operation and generally they will be operated at lower flow rates. The actual recharge operations will vary over time based on what is required to meet the rehabilitation objectives and will vary depending on local hydrogeologic conditions around recharge wells, the stage of lake filling, and climatic conditions. The AMP anticipates and includes requirements for this mode of "adaptive" mitigation operation to satisfy the water resources protection objectives while optimizing the beneficial use of available water.	
27.	The potential changes in groundwater levels in the Amabel Formation for interim conditions (existing quarry and MQEE fully extracted) are shown in GWRA Figure 10.1 (also Figure F7.3). For wetland U1, the water level in the rock beneath the wetland is predicted to decline by 10.0 m. For wetland V2, the water level in the rock beneath the wetland is predicted to decline by up to 5.0 m (the predicted hydraulic gradients are very steep). Are there data from other areas of the site that confirm that diffuse discharge is sufficient to maintain wetlands even when the water level in the underlying rock is depressed substantially?	GWRA Section 10	S.S. Papadopulos & Associates Inc.	Yes, the existing East Extension mitigation measures confirm that wetlands can be adequately maintained by diffuse discharge even when the groundwater level is substantially below the base of the wetland. Wetland V2 currently exhibits a spring (high) groundwater level that is 10 metres or more below the base of the wetland and yet the target water level with the wetland is readily maintained. This aspect was specifically contemplated for analysis in the existing Extension approvals (AMP). Furthermore, in the unexpected event that groundwater drawdown did challenge maintenance of the wetland water level by diffuse discharge alone, the adjacent recharge well system (or other measures in accordance with the AMP) could be used to reduce the local drawdown during the seasonal hydroperiod for Wetland U1. In summary, yes the existing mitigation system performance demonstrates that the wetland water levels can be maintained by diffuse discharge and in the unexpected event that groundwater drawdown challenges this support, the AMP provides for other means to ensure the wetland target level is suitably maintained.	

	JART Comments (November, 2022)	Reference	Source of Comment	Applicant Response (January 2023
28.	3. For final rehabilitated conditions, the results presented in Figure 10.2 suggest that fo wetland U1, there may be a long-term decline of between 0.2 m and 2.0 m of the wate level in the rock beneath the wetland. A decline in the water level in the rock of 1.0 n is predicted along the southern limits of wetland V2. Will seasonal diffuse discharge to the wetlands be sufficient to mitigate the effects of the permanent drawdown in the underlying rock?	r D	S.S. Papadopulos & Associates Inc.	Yes, the proposed measures will be adequated described above in response to comment 27 Under "lake full" rehabilitation conditions, the groundwater level under Wetland V2 will be substantially higher than under current conditions is the substantial of the subs
29.	Beyond wetlands U1 and V2, the recharge wells are predicted to cause increases in groundwater levels. Are we correct in understanding that the results beyond the recharge wells is the basis for the indication on page 69 of the GWRA that "There are no areas influencing water resources where the groundwater level is not maintained or raised under these representative simulation conditions"?	GWRA Section 10	S.S. Papadopulos & Associates Inc.	It is correct that the predicted model results illustrate the proposed long-term conditions of maintaining (raising) the groundwater levels rehabilitation conditions. However, it is impor- to keep in mind that it is ultimately the protect provision of the AMP along with the associat approvals and legal agreements that ensure the long-term conditions are achieved that re- in suitably protective groundwater conditions cause any appropriate mitigation/rehabilitation refinements to occur to ensure the water resources are maintained as proposed.
30.	It is indicated in the GWRA Report that "It is possible that limited seasonal groundwater recharge may still be required to the east of the East Cell", although it is not indicated what "limited" might mean. Has any attempt been made to quantify the potential recharge requirements?	GWRA Section 10	S.S. Papadopulos & Associates Inc.	The potential recharge requirements have be assessed and they have been conservatively incorporated into the presented mitigation ar water budget evaluations. Refer to GWRA Section 10.3.3.2 and Table 10.2 as well as r documents listed in response to comments 3 and 35, below. The mitigation operation and flows have also been incorporated into the financial assurance provisions.
31.	The current planned final lake levels include assigning the North Quarry Lake a level of 318.5 m AMSL, consistent with the approved rehabilitation plans for the existing quarry. Our understanding is that the final lake level for the North Quarry Lake is still to be decided. A lower level of 315.5 m AMSL has been proposed. Will this difference in final lake levels affect the predictions of water requirements for mitigation during final rehabilitated conditions?	GWRA Section 10	S.S. Papadopulos & Associates Inc.	A lower lake level will not materially affect the assessment of the MQEE as the East Cell/M lake and mitigation measures will control groundwater levels to the east. While the increased gradient between the North Quarry and East Cell lake may induce somewhat mo leakage between the lakes, any such leakag captured by the North Quarry so there is no overall loss from the quarry water balance. We note the proposed level is a range of 316 317 m AMSL relative to the current approved elevation of 318.5 m AMSL. This is a relative small change and is not anticipated to have a effect on the MQEE or gradients to the east

)23)	JART Response
uate as 27. the be nditions.	
ts of of oportant tective ciated ure that t result ons or ation	
e been vely and A s related ts 34 and e	
the I/MQEE arry lake more age is no	
316 to ved tively /e any ist of the	

	LADT Comments (Nevember, 2022)	Deference	Source of	Applicant Decremes (January 2022)
	JART Comments (November, 2022)	Reference	Comment	Applicant Response (January 2023) combined East Cell and MQEE Lake.
32.	Referring to Appendix F, Figure F7.4, are we correct in understanding that for the currently approved final rehabilitation condition for the existing quarry that a level of 333.0 m for the East Cell Lake is not sufficiently high to fully mitigate all the wetlands? Is this the explanation for the inclusion of WMS recharge wells on the east side of the East Cell even in the absence of the MQEE?	Appendix F	S.S. Papadopulos & Associates Inc.	The existing approvals recognize that the East Cell lake level of 333.0 m AMSL may not be high enough to fully support the hydroperiod for all nearby wetlands and therefore allow for the potential limited use of some groundwater recharge to the east. It may be that local seasonal recharge provide all or most of the desired groundwater support; however, Dufferin took a conservative (protective) approach to ensure that groundwater recharge wells could be implemented to provide additional groundwater support if necessary. This situation exists in the absence of the MQEE. The MQEE would not change the overall situation but merely result in some adaptation of what the final rehabilitation conditions include. The potential requirements are conservatively
33.	It is assumed implicitly in the modelling analyses that once final lake levels are attained, conditions will not change. In his karst characterization (GWRA, Appendix E; page 5), Dr. Worthington indicates that a relevant consideration for long-term injection of water through recharge wells is the possibility that "there may be excessive dissolution of the bedrock over time that may cause solutional enlargement of fractures that increase rates of seepage and hence increase the mitigation effort required to maintain protection of water resources". Although Worthington's warning may be addressed on page 46 of the GWRA Report, we recommend that the proponent indicate formally that Dr. Worthington's concern should be discounted for the MQEE.	GWRA Section 7 and Appendix E	S.S. Papadopulos & Associates Inc.	 potential requirements are conservatively incorporated into the various proposal documents, including the AMP and legal agreements. Refer to GWRA, Section 9.4 for further information. The consideration of the potential for excessive dissolution has been clearly discounted in the GWRA main report and in the supporting appendix prepared by Dr. Worthington. Section 5.2 of Dr. Worthington's report clearly discounts this consideration with the statement: "Therefore the potential for future solution enhancement of fractures and associated increases in seepage rates is not a concern." [page 5]. Dr. Worthington also finishes his letter with the statement: "there are no issues of concern for the protection of water resources." [page 6]

y 2023)	JART Response
the East	
not be high od for all for the vater bcal t of the er, Dufferin bach to ulls could be bundwater	
the MQEE. rall situation of what the The vely l gal	
excessive d in the ing 1.	
t clearly tatement: tion ited ncern."	
with the	
he 6]	

	JART Comments (November, 2022)	Reference	Source of Comment	Applicant Response (January 2023)	
				 GHD's assessment presented in the GWRA main report (Section 6.5) also addressed this consideration and concluded: "the dolostone of the Amabel Formation is not anticipated to be subject to any substantial dissolution by the recirculation of recharge water in the vicinity of the recharge alignment."[page 35] Furthermore, the overall summary and conclusion of the GWRA indicates that there are no outstanding concerns with respect to water resources and specifically mentions karst matters were taken into consideration [GWRA, Section 11, page 75-77] 	
34.	The groundwater modelling analyses are limited to steady-state analyses. The results of the simulations do not provide any guidance of the likely duration of the evolution from interim conditions to fully-rehabilitated conditions. However, estimates of the duration of lake filling are presented in the main text and Table 10.4 of the GWRA Report. It was not initially clear to us how the lake filling times were estimated. Subsequent exchanges with the consultants for the proponent have clarified the analyses of final lake filling. In our opinion, the details in the follow-up exchanges are sufficiently important that this material be included as part of the formal documentation for the proposed MQEE.	GWRA Section 10 and Appendix G	S.S. Papadopulos & Associates Inc.	 CRH is agreeable to including the information exchanged between the consultants as part of a future addendum. This addendum will include the following: GHD Memorandum 294 – Clarification of Quarry Lake Filling Time Calculation, Dufferin Aggregates Milton Quarry East Extension, Region of Halton, Ontario, dated February 14, 2022 Email Correspondence between Kyle Fritz (GHD) and Chris Neville (SSPA), dated March 13, 2022 Email Correspondence between Kyle Fritz (GHD) and Chris Neville (SSPA), dated March 13, 2022 	
35.	We have reviewed the water budget calculations. In our opinion the analyses are appropriate and the results are reasonable. Subsequent exchanges with the consultants for the proponent clarified the calculations. We recommend that the materials in the follow-up exchanges be included as part of the formal documentation for the proposed MQEE.	GWRA Section 10 and Appendix G	S.S. Papadopulos & Associates Inc.	Agreed as per comment 34, above.	

anuary 2023)	JART Response
n the GWRA main sed this	
Formation is not substantial of recharge water ignment."[page 35]	
ary and conclusion re are no ect to water ions karst matters GWRA, Section	
he information tants as part of a um will include the	
 Clarification of Calculation, ton Quarry East alton, Ontario, 	
between Kyle Fritz (SSPA), dated	
between Kyle Fritz (SSPA), dated	
ove.	

		JART Comments (Novem	ber, 2022)	Reference	Source of Comment	Ар	plicant Respons	se (January 202
	 It is assumed in the impact assessment that during active operations of the MQEE, the existing mitigation measures have been extended and are functioning as designed. Therefore, a key question in the impact assessment is whether there is sufficient water to support the mitigation measures. Our review of the results of the water budget calculations summarized on GWRA Table 10.2 suggests there will be sufficient water to support mitigation during interim conditions. Estimated available annual surplus, interim extraction condition for the approved existing quarry: a value of 1,311,804 m³ is reported. Estimated available annual surplus, interim extraction condition for the approved existing quarry + MQEE: a value of 1,335,887 m³ is reported. Recognizing that the two values of the likely average annual surplus are reported with too much precision, the results of the water budget calculations suggest that the surplus will actually be higher with the addition of the MQEE. Is our understanding correct? What accounts for the additional water during operation of the MQEE? 			S.S. Papadopulos & Associates Inc.	variability of reasonable approxima The nomin a) A s to of larg the b) A s run exc c) A s exc act d) A s gro The most calculated quarry rec excavation of precipita lost due to conditions extraction runoff is ca	the difference is a of the predictions to interpret the s tely the same. al increase is the mall reduction in closer conforman ger recharge align MQEE. mall reduction in off from the MQE cavation footprint. mall increase in cavation footprint mall reduction in our balance b) mall reduction in our	. It would be surplus as e net result of: recharge demar ce to targets and nment in the vicin captured overlan E area due to th runoff from within (dry quarry rech simulated resulting in a r availability is th om within the ntly, a greater po the MQEE area ider active extract ipitation inside the reted to runoff. The d through dewated	
c L	omplete. The predictions o ake will extend lake filling b	n Table 10.3 suggest that add y 2 to 3 years, depending on th	n which final lake filling will be ling the MQEE to the East Cell ne assumed climate conditions. cted to have negligible impact		S.S. Papadopulos & Associates Inc.	evapotrans	ing annual rates f spiration were us G, Sub-Appendix	ed as noted in G
0	n the time required for final	lake filling. The results of the	analyses also suggest that the			Period	Precipitation	Evapotranspir
			ng climate change, are likely to			Current	[mm] 866	[mm] 573
			v do the assumed annual rates			2050s	937	646
	of precipitation and evapotranspiration change between the three assumed climate conditions?					2080s	1003	707
	Assumed climate	Currently approved lake	Lake filling final date with					
	conditions	filling final date	addition of MQEE					
Ĺ	1981-2010	2042	2045					
1	Predicted 2050s Predicted 2080s	2043	2045					
_		2043	2045			1		

23)	JART Response
the	
and due id a inity of	
and he	
in the harge),	
he dry	
ortion a is action the This atering e	
and GWRA A.4:	
iration	