APPENDIX B

Natural Heritage

Appendix B1 – Figures

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 1 Location of Subject Lands.mxd Date Saved: Tuesday, August 24, 2021

Comprehensive Environmental Servicing Study Figure 2 Landscape Setting and Designated Natural Heritage Features

Any information shown on Parcels 2, 3 and 5 should be considered preliminary and is subject to further investigations.

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 2 Landscape Setting and Designated Natural Heritage Features.mxd Date Saved: Tuesday, March 15, 2022

SAVANTA

A GEI Company

200 m

1:12,500

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 3 Bat Survey Locations.mxd Date Saved: Thursday, July 29, 2021

Any information shown on Parcels 2, 3 and 5 should be

considered preliminary and is subject to further investigations.

Bat Acoustic Point Count Stations (2016)

Bat Acoustic Transect (2015)

Figure 4 Orlando Lands Non-participating Lands Winter Wildlife Survey Transects Subject Lands For Comprehensive Environmental Servicing Study Hydro Corridor **Ecological Land Classification** Winter Wildlife Transects (2015/2016) SAVANTA 200 m Any information shown on Parcels 2, 3 and 5 should be A GEI Company 1:12,500 considered preliminary and is subject to further investigations.

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 4 Winter Wildlife Survey Transects.mxd Date Saved: Thursday, July 29, 2021

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 5 Ecological Land Classification.mxd Date Saved: Tuesday, March 15, 2022

Orlando Lands Figure 6 Non-participating Lands Subject Lands For Amphibian Survey Station Comprehensive Environmental Second Second Servicing Study Locations Hydro Corridor Ecological Land Classification **Calling Amphibian** Surveyed in 2015 and 2021 SAVANTA 200 m Surveyed in 2021 Any information shown on Parcels 2, 3 and 5 should be A GEI Company 1:12,500 considered preliminary and is subject to further investigations.

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 6 Amphibian Survey Station Locations.mxd Date Saved: Thursday, July 29, 2021

▲ Eastern Wood-Pewee Occurence

SAVANTA

A GEI Company

200 m

1:12,500

Any information shown on Parcels 2, 3 and 5 should be considered preliminary and is subject to further investigations.

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 7 Breeding Bird Survey Stations.mxd Date Saved: Friday, March 4, 2022

SAVANTA

A GEI Company

200 m

1:12,500

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 8 Insect Area Searches.mxd Date Saved: Thursday, July 29, 2021

Any information shown on Parcels 2, 3 and 5 should be

considered preliminary and is subject to further investigations.

Insect Area Search (2016)

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 9 Reptile Survey Locations.mxd Date Saved: Thursday, July 29, 2021

Non-participating Lands Salamander Coverboard Subject Lands For Comprehensive Environmental Servicing Study generation. Locations Hydro Corridor **Ecological Land Classification** \diamond Salamander Cover Boards (2016) SAVANTA 200 m Any information shown on Parcels 2, 3 and 5 should be A GEI Company 1:12,500 considered preliminary and is subject to further investigations.

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 10 Salamander Coverboard Locations.mxd Date Saved: Thursday, July 29, 2021

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 11 Headwater Drainage Features.mxd Date Saved: Wednesday, March 30, 2022

Figure 12 Regional Natural Heritage Feature Components

m N

Orlando Lands

- Non-participating Lands
- Subject Lands For Comprehensive Environmental Servicing Study
- Ecological Land Classification
- ----- NHS Staked Limit (Greater of Significant Woodland and/or Regionally Significant Wetland)
- —— Staked Top of Bank (Candidate Significant Valleyland)
- Candidate Significant Valleylands
- Significant Woodlands
- Regionally Significant Wetlands
 Permanent, Direct Fish Habitat

Significant Wildlife Habitat

Habitat for Species of Conservation Concern Eastern Wood-Pewee
Candidate Bat Maternity Colonies Habitat

- Rare Vegetation Type
- Candidate Turtle Overwintering Habitat
- Habitat for Species of Conservation Concern (Snapping Turtle)

🔀 Candidate Terrestrial Crayfish Habitat

- Other Components of the RNHS
- Linkage (as defined by Regional NHS)
- Environmental Linkage Area (Town of Milton OP)
- Other Wetlands
- Key Features (Halton OP Map 1G, Approximate)
- Enhancement Areas, Linkages and Buffers Key Features (Halton OP Map 1G, Approximate)
- Creenbelt Protected Countryside

Natural Feature Buffers/Vegetation Protection Zones

- ---- NHS Staked Limit (Greater of Significant Woodland and/or Regionally Significant Wetland) +30 m
- ---- Staked Top of Bank (Candidate Significant Valleyland) +15 m
- Direct Fish Habitat +30m

Any information shown on Parcels 2, 3 and 5 should be considered preliminary and is subject to further investigations.

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 12 Analysis of Significance.mxd Date Saved: Wednesday, March 30, 2022

Figure 14 Evaluation of Potential Wetland Compensation Areas

SAVANTA

Any information shown on Parcels 2, 3 and 5 should be considered preliminary and is subject to further investigations.

Corlando Lands

- Non-participating Lands
- ------ NHS Staked Limit (Greater of Significant Woodland and/or Regionally Significant Wetland)
- Staked Top of Bank (Candidate Significant Valleyland)
- ---- Staked Top of Bank (Candidate Significant Valleyland)+15 m
- ---- NHS Staked Limit (Greater of Significant Woodland and/or Regionally Significant Wetland) +30 m
- LTT Realigned Channel +15m
- CIII Greenbelt Protected Countryside
- **Restoration Areas**
- ZZZ Polygon 1
- ZZZZ Polygon 2
- ZZZZ Polygon 3 Proposed Natural Heritage System

Proposed Natural Heritage System

- Vegetated Buffers
- Naturalized Area Retained Features
- Created Wetland
 - Realigned Watercourse
- Created Wetland +15m

Path: C:\SAVANTA\7537 - Milton North Porta\gis\mxd\2021 06 15 report figures elc update\Figure 14 EvaluationOfPotential Restoration Areas.mxd Date Saved: Thursday, March 31, 2022

Figure 15 Concept Plan

Concept Plan: Milton North Concept Plan 2022-03-18 File: 17197 - SITEPLAN.dwg

* Final orientation of Potential Created Wetland Location to be defined during the detailed design phase.

SAVANTA A GEI Company

Any information shown on Parcels 2, 3 and 5 should be considered preliminary and is subject to further investigations.

Orlando Lands

- Non-participating Lands
- Subject Lands For Comprehensive
- Hydro Corridor
- Ecological Land Classification Greenbelt Protected Countryside
- NHS Staked Limit (Greater of Significant Woodland and/or Regionally Significant Wetland) Staked Top of Bank (Candidate Significant Valleyland)
- NHS Staked Limit (Greater of Significant Woodland and/or Regionally Significant Wetland) +30 m Staked Top of Bank (Candidate Significant Valleyland) +15 m
- Proposed New Channel
- New Pond
- Green Swale (TMIG 2022)

ELC Legend CUM1 Mineral Cultural Meadow Dry-Moist Cultural Meadow CUM1-1 Mineral Cultural Thicket CUT1 Mineral Cultural Woodland CUW1 Fresh-Moist Sugar Maple-Hardwood Deciduous Forest FOD6-5 Dry- Fresh HardWood-Hemlock Mixed Forest FOM3-1 MAM2-11* Mixed Mineral Meadow Marsh Bedrock Shallow Marsh MAS2 Cattail Mineral Shallow Marsh MAS2-1 SWD3-3 Swamp Maple Mineral Deciduous Swamp SWD4-5* Hickory Mineral Deciduous Swamp SWM5-1 Red Maple- Conifer Organic Mixed Swamp Agricultural AG Development DEV Disturbed DIST **Open Aquatic** OA Residential RES

* Not listed in Southern Ontario ELC Guide

Figure 16 Proposed Local Monitoring Locations

Concept Plan: Milton North Concept Plan 2022-03-18 File: 17197 - SITEPLAN.dwg

Non-participating Lands

- Subject Lands For Comprehensive Environmental Servicing Study
 - Hydro Corridor
- Proposed New Channel
 - Proposed Natural Heritage System

Proposed NHS Post-Construction Monitoring Stations *

- ۲ Amphibian Call Count Stations Aquatic Survey Locations (Fish
- Community Sampling and Aquatic Habitat Assessment)
- Vegetation Stations
- Wetland Hydrology Stations
- 🗭 **Breeding Bird Point Stations**

* Stations to be field fitted during year 1 post-construction monitoring

Any information shown on Parcels 2, 3 and 5 should be considered preliminary and is subject to further investigations.

Appendix B2 - Tables

SURVEYORS	SURVEY	SURVEY TYPE	DATE	TII	ME	AIR	HUMIDITY	CLOUD	BEAUFORT	PRECIPITATION
(SURNAME, INTL)	ROUND			START	END	TEMP (°C)	(%)	COVER (%)	WIND SPEED	COMMENTS
2014										
Zoladeski, C.	1	Summer Botanical and Ecological Land Classification Survey	04-JL	9:00	17:00	16	69	25	2	None
Zoladeski, C.	1	Fall Botanical and Ecological Land Classification Survey	06-OC	9:00	17:00	11	85	100	3	None
2015										
Lee, E. Leslie, J.	1	Winter Wildlife Survey	17-FB	9:00	12:00	-12	63	0	1	Light snow overnight
Davis, H. Lee, E.	1	Amphibian Call Count Survey	28-AP	21:05	22:46	13	50	10	0	None
Burke, P.	2	Amphibian Call Count Survey	20-MA	21:28	22:07	10	34	40	1	None
Lee, E.	1	Targeted Chimney Swift Survey								
Charlton, B.	1	Breeding Bird Point Count Survey	28-MA	5:57	8:48	15	82	40	4	None
Lee, E. Leslie, J.	1	Spring Botanical Survey	2-JU	9:00	17:00	15	71	25	2	None
Lee, E. Lee, R.	3	Amphibian Call Count Survey	9-JU	21:35	21:51	18	79	5	1	None
Charlton, B.	2	Breeding Bird Point Count Survey	17-JU	8:56	7:16	17	60	20	3	None
2016										

SURVEYORS	SURVEY	SURVEY TYPE	DATE	TII	ME	AIR	HUMIDITY	CLOUD	BEAUFORT	PRECIPITATION
(SURNAME, INTL)	ROUND			START	END	TEMP (°C)	(%)	COVER (%)	WIND SPEED	COMMENTS
Collinson, C. Lee, E.	1	Winter Wildlife Survey	17-FB	9:30	11:50	-3	87	75	1	Twelve hours since last snow event
Leslie, J. Lee, R.	1	Deployed Salamander and Snake Cover Boards	8-MR	9:00	11:20	8	77	75	2	None
Collinson, C. Kucharik, M.	1	Bat Snag Density Survey	22-MR	10:00	12:45	0	77	100	1	None
Lee, R. Zoladeski, C.	1	Road Transect Survey Salamander Cover Board Survey Snake Cover Board Survey	14-AP	10:30	11:30	7	51	0	0	None
Lee, R. Zoladeski, C.	2	Road Transect Survey Salamander Cover Board Survey Snake Cover Board Survey	20-AP	11:00	11:55	14	37	0	0	None
Lee, E. Lee, R.	3	Road Transect Survey Salamander Cover Board Survey Snake Cover Board Survey	4-MA	10:00	14:00	13	64	60	0	None
Leslie, J.	2	Spring Botanical Survey	16-MA	9:00	17:00	8	62	75	3	None
Lee, R. Lee, E.	1	Turtle Nesting Survey Road Transect Survey	31-MA	11:55	12:15	27	35	5	0	None
Park, O. Williamson, L.	1	Bat Acoustic Monitoring Survey	8-JU	22:01	23:04	12	44	10	5	None
Burke, P.	1	Insect Survey	14-JU	7:30	11:00	8	75	25	1	None

SURVEYORS	SURVEY	SURVEY TYPE	DATE	TIME		AIR	HUMIDITY	CLOUD BEAUFORT		PRECIPITATION
(SURNAME, INTL)	ROUND			START	END	TEMP (°C)	(%)	COVER (%)	WIND SPEED	COMMENTS
Lee, E. Lee, R.	2	Bat Acoustic Monitoring Survey	27-JU	22:20	23:21	25	64	25	2	None
Burke, P.	2	Insect Survey	29-JU	8:00	17	19	68	50	2	None
Lohnes, S. Collinson, C.	1	Aquatic Site Reconnaissance	30-JU	10:00	13:50	21	36	25	1	None
Burke, P.	3	Insect Survey	29-JL	7:30	10:30	21	76	25	0	None
Leslie, J.	2	Fall Botanical Survey	1-SE	9:00	17:00	18	71	25	2	None
2017										
Lee, R.		Road Transect Survey		9:00	12:00	21	73	30	0	None
Tibor- McMahon, M.	1	Snake Cover Board Survey	21-SE							
Park, O.		Road Transect Survey		9:40	14:45	15	63	100	2	None
Tibor- McMahon, M.	2	Snake Cover Board Survey	28-SE							
Park, O.		Road Transect Survey		12:10	14:00	17	48	0	2	None
Zoladeski, C.	3	Snake Cover Board Survey	2-0C							
2018										
Park, O. GEO Morphix	1	Headwater Drainage Feature Assessment	13-AP	10:21	16:49	2	93	75	3	None
Park, O. GEO Morphix	1	Headwater Drainage Feature Assessment	27-AP	10:22	12:46	17	40	75	1	None
Park, O. GEO Morphix	2	Headwater Drainage Feature Assessment	30-MA	10:00	13:48	21	52	75	3	None
Park, O. GEO Morphix	3	Headwater Drainage Feature Assessment	14-AU	9:41	10:59	29	43	75	2	None

SURVEYORS	SURVEY	SURVEY TYPE	DATE	TII	ME	AIR	HUMIDITY	CLOUD	BEAUFORT	PRECIPITATION
(SURNAME, INTL)	ROUND			START	END	TEMP (°C)	(%)	COVER (%)	WIND SPEED	COMMENTS
Burke, P.	1	Barn Swallow Nesting Survey	29-NO	8:00	9:00	-2	91	100	3	None
2021										
Lee, R. Lee, E.	1	Amphibian Call Count	30-AP	20:50	21:50	10	99	100	0	Light Drizzle
Williamson, L. Nieroda, M.	2	Amphibian Call Count	19-MA	21:55	22:40	10	53	0	1	None
Szabo, A.	1	Site Reconnaissance	4-MA	9:00	11:30	8	94	100	2	None
Robinson, O. Aitken, R.	1	Hydro Lands Reconnaissance	13-MA	9:30	11:00	16	35	30	1	None
Robinson, O. Leslie, J.	1	Feature Staking with Conservation Halton Site Reconnaissance Aquatic Habitat Assessment	4-JU	09:00	15:00	23.8	60	50	3	None
Robinson, O. Williamson, L. Rochon, M. Boucher, N.	1	Bat Exit Survey	16-JU	20:30	22:00	13.9	46	25	3	None
Robinson, O. Rochon, M. McDonald, S. Nieroda, M.	2	Bat Exit Survey	22-JU	20:30	22:00	13.1	61	0	3	None

LEGEND:

BEAUFORT WIND SPEED SCALE	мо	NTH (CODE)
1Calm (<1 km/hr)2Light Air (1-5 km/hr)3Light Breeze (6-11 km/hr)4Gentle Breeze (12-19 km/hr)5Moderate Breeze (20-28 km/hr)km/hr)Km/hr)	JA FB MR AP MA JU JL AU SE OC NO DE	January February March April May June July August September October November December

ELC TYPE	COMMUNITY DESCRIPTION	S-RANK / G-RANK (NHIC 2021)					
FOREST							
Deciduous F	orest						
FOD6-5 Fresh-Moist Sugar Maple- Hardwood Deciduous Forest	 Lowland community dominated by sugar maple and several other hardwoods, including bitternut hickory, green ash, beech and red oak. Shrub layer is moderately well developed and composed of choke cherry and running strawberry bush. A diverse herb layer includes graceful sedge, enchanter's nightshade, jewelweed, jack-in-the-pulpit, herb Robert, bloodroot and may-apple. Soil texture was silty clay, with mottles starting at 32cm. The soil moisture regime was 5. 						
Mixed Fores	t						
FOM3-2 Dry-Fresh Sugar Maple- Hemlock Mixed Forest	 Located on a steep slope, this is an assemblage of sugar maple, hemlock, beech and white ash. The shrub and herb understories are poorly developed. The soil texture was silty loam with only faint mottles observed. The soil moisture regime ranged from 2 to 3. 	S4S5					
CULTURAL							
Cultural Mea	dow						
CUM1-1 Dry-Moist Old Field Cultural Meadow	 This somewhat disturbed meadow community is dominated by tall goldenrod, spiked sedge and timothy. Secondary species are several and include ox-eye daisy, awnless brome, red-top, New England aster. The few clusters of shrubs are composed of grey dogwood and saplings of green ash and elm. 	Not ranked					
SWAMP							
Mixed Swam	p						
SWM5-1 Red Maple- Conifer Organic Mixed Swamp	 This is major unit on a rich organic soil on the bottom of valley. Red maple is accompanied by hemlock, yellow birch and green and black ash. The shrub layer consists of mostly tree saplings as well as low-growing dwarf raspberry. The herb layer is very rich and composed of heart-leaved foam-flower, ostrich fern, jewelweed, jack-in-the-pulpit, bulblet fern and Canada horse-balm. 	S3S4					

Table 2: Ecological Land Classification (ELC) Community Types

ELC TYPE	COMMUNITY DESCRIPTION	S-RANK / G-RANK (NHIC 2021)
	 Soil was organic at depths ranging from 30cm to >120cm (rarely shallower than 40cm), after which the texture consisted of silty clay- loam or silty clay. Gley was observed as shallow as 40cm, and ground water as shallow as 10cm; the soil moisture regime ranged from 6-8. 	
Deciduous S	Swamp	
SWD3-3 Swamp Maple Mineral Deciduous Swamp	 This is a diverse community dominated by swamp maple and several other species, such as bitternut hickory, basswood, shagbark hickory, green ash and beech. The shrub layer is well developed, with grey dogwood, choke cherry, blue beech and inserted Virginia creeper. In the herb layer dominated by jewelweed also grow various sedges, jack-in-the-pulpit, enchanter's nightshade and white avens. Soil texture was silty clay with mottles starting at 15cm. The soil moisture regime was 6. 	S5
SWD4-5* Hickory Mineral Deciduous Swamp	 A diverse and complex community in all of its strata. The tree canopy is dominated by shagbark hickory, followed by basswood, bur oak, red oak and green ash. The well-developed herb layer includes jewelweed, enchanter's nightshade, fowl meadow grass, and several woodland sedges. Soil texture was silty clay-loam, with mottles starting at 20cm and ground water observed also at 20cm. The soil moisture regime was 6. 	Not ranked
MARSH		
Meadow Mar	rsh	
MAM2-11* Mixed Mineral Meadow Marsh	This small meadow area is dominated by Bebb's sedge, red-top and tall white aster. Associate species include tall goldenrod, tufted vetch and reed-canary grass.	Not ranked
Shallow Mar	sh	
MAS2-1 Cattail Mineral Shallow Marsh	 Narrow-leaved cattail forms the main layer in this small marsh area, with the lower herbs being reed-canary grass and tall white aster. 	S5

Table 2: Ecological Land Classification (ELC) Community Types

*Denotes a type not listed in the Southern Ontario ELC Guide.

													REGIONAL STAT	'US
ORDER	FAMILY		COMMON NAME	COEFFICIENT OF CONSERVATISM	WETNESS INDEX	OWES WETLAND SPECIES	WEEDINESS INDEX	INVASIVE EXOTIC RANK (Urban Forest Associates 2002)	PROVINCIAL STATUS (S-RANK)	GLOBAL STATUS (G-RANK)	SARO List (MECP)	COSEWIC STATUS	HALTON (Varga 2005)	AUTHORITY
DICOTYLEDONS	Adoxaceae	Sambucus canadensis	Common Elderberry	5	-3	Т			S5	G5			X	L.
DICOTYLEDONS	Adoxaceae	Sambucus racemosa ssp. pubens	Red Elderberry	5	3			Р	S5	G5			X	(Michaux) Hultén
DICOTYLEDONS	Adoxaceae	Viburnum opulus ssp. opulus	Cranberry Viburnum		-3		-1	4	S5	G5			Х	L.
DICOTYLEDONS	Amaranthaceae	Amaranthus powellii	Powell's Amaranth		5		-1		SNA	G5			X	S. Watson
DICOTYLEDONS	Amaranthaceae	Atriplex patula	Spear Saltbush		-3				SNA	G5			Х	L.
DICOTYLEDONS	Amaranthaceae	Chenopodium album	Common Lamb's-Quarters		3		-1		SNA	G5T5			X	L.
DICOTYLEDONS	Anacardiaceae	Toxicodendron radicans var. rydbergii	Western Poison Ivy	2	0				S5	G5			Х	(Small ex Rydberg) Erskine
DICOTYLEDONS	Apiaceae	Cicuta maculata var. maculata	Spotted Water-Hemlock	6	-5	I			S5	G5T5			Х	L.
DICOTYLEDONS	Apiaceae	Daucus carota	Wild Carrot		5		-2		SNA	GNR			Х	L.
DICOTYLEDONS	Apjaceae	Heracleum mantegazzianum	Giant Hogweed		0				SNA	GNR				Sommier & Levier
DICOTYLEDONS	Apocynaceae	Asclepias incarnata ssp. incarnata	Swamp Milkweed	6	-5	1			S5	G5T5			x	
DICOTYLEDONS	Apocynaceae	Asclepias svriaca	Common Milkweed	0	5	-			S5	G5			x	-
	Araliaceae	Aralia racemosa ssp. racemosa	American Spikenard	7	5				85	G5T2			X	1
	Asteração	Achilles millefolium	Common Varrow	,	3		1		SNA	65			x	1
	Asteração	Ambrosio artemicijfelio	Common Pagwood	0	3		-1		95	05 05			× ×	1
	Asteraceae		Creat Burdack	0	3				55	CNP			×	L.
	Asteraceae		Great Buildock		3		0		SINA	GINK			×	L. (UIII) Dorph
DICOTYLEDONS	Asteraceae	Arclium minus			3		-2		SINA	Grir			×	(Hill) Bernn.
	Asteraceae	Bidens frondosa	Devil's Beggarticks	3	-3				\$5	G5			X	L.
DICOTYLEDONS	Asteraceae	Bidens vulgata	Tall Beggarticks	5	0	T			S5	G5			U	Greene
DICOTYLEDONS	Asteraceae	Centaurea jacea	Brown Knapweed		5		-1		SNA	GNR			X	L
DICOTYLEDONS	Asteraceae	Cichorium intybus	Wild Chicory		5		-1		SNA	GNR			X	L
DICOTYLEDONS	Asteraceae	Cirsium arvense	Canada Thistle		3		-1	1	SNA	GNR			X	(L.) Scop.
DICOTYLEDONS	Asteraceae	Cirsium vulgare	Bull Thistle		3		-1		SNA	G5			X	(Savi) Tenore
DICOTYLEDONS	Asteraceae	Erigeron annuus	Annual Fleabane	0	3				S5	G5			Х	(L.) Pers.
DICOTYLEDONS	Asteraceae	Erigeron canadensis	Canada Horseweed	0	3				S5	G5			X	(L.)
DICOTYLEDONS	Asteraceae	Erigeron philadelphicus var. philadelphicus	Philadelphia Fleabane	1	-3	Т			S5	G5			X	L.
DICOTYLEDONS	Asteraceae	Erigeron strigosus	Rough Fleabane	4	3				S5	G5			Х	Muhlenb. ex Willd.
DICOTYLEDONS	Asteraceae	Eurybia macrophylla	Large-Leaved Aster	5	5				S5	G5			Х	(L.) Cassini
DICOTYLEDONS	Asteraceae	Euthamia graminifolia	Grass-Leaved Goldenrod	2	0				S5	G5			Х	(L.) Nutt.
DICOTYLEDONS	Asteraceae	Gnaphalium uliginosum	Low Cudweed		0	Т	-1		SNA	G5			Х	L.
DICOTYLEDONS	Asteraceae	Inula helenium	Elecampane		3	Т	-2	4	SNA	GNR			Х	L.
DICOTYLEDONS	Asteraceae	Lactuca serriola	Prickly Lettuce		3		-1		SNA	GNR			Х	L.
DICOTYLEDONS	Asteraceae	Lapsana communis	Common Nipplewort		3		-2	Р	SNA	GNR			x	
DICOTYLEDONS	Asteraceae	Leucanthemum vulgare	Oxeve Daisy		5		-1		SNA	GNR			x	Lam
	Asteraçõe		White Battlesnakeroot	6	3	т	· ·		55	65				(L) Hooker
	Asteração	Pierie hieracieides		0	5	1	1		SNA	05 C5			v	
	Asteraceae				5		-1		SNA	GNR			^	L. (Vill.) Soiák
	Asteraceae		Common Bogwort		5		1		SNA	GINR			v	
	Asteraceae	Senecio vulgaris		4	5		-1		SINA	GNR			×	L.
DICOTYLEDONS	Asteraceae			1	3				55	GNR			^	L.
	Asteraceae	Solidago canadensis var. canadensis	Canada Goldenrod (var. canadensis)	1	3				55	G515				L.
	Asteraceae	Solidago flexicaulis	Zigzag Goldenrod	6	3				\$5	G5			X	L.
DICOTYLEDONS	Asteraceae	Solidago patula	Round-Leaved Goldenrod	8	-5	I			S4	G5			U	Muhlenb. ex Willd.
DICOTYLEDONS	Asteraceae	Solidago rugosa ssp. rugosa	Rough-Stemmed Goldenrod (ssp. rugosa)	4	0	T			S5	G5T5			X	Miller
DICOTYLEDONS	Asteraceae	Sonchus arvensis ssp. arvensis	Field Sow-Thistle		3				SNA	GNR			X	L.
DICOTYLEDONS	Asteraceae	Sonchus asper	Prickly Sow-Thistle		3		-1		SNA	GNR			X	(L.) Hill
DICOTYLEDONS	Asteraceae	Sonchus oleraceus	Common Sow-Thistle		3		-1		SNA	GNR			X	L
DICOTYLEDONS	Asteraceae	Symphyotrichum lanceolatum ssp. lanceolatum	Panicled Aster (ssp. lanceolatum)	3	-3	I			S5	G5T5			Х	(Willd.) G.L. Nesom
DICOTYLEDONS	Asteraceae	Symphyotrichum lateriflorum var. lateriflorum	Calico Aster	3	0	Т			S5	G5T5			Х	(L.) Á. & D. Löve
DICOTYLEDONS	Asteraceae	Symphyotrichum novae-angliae	New England Aster	2	-3				S5	G5			Х	(L.) G.L. Nesom
DICOTYLEDONS	Asteraceae	Symphyotrichum puniceum	Purple-Stemmed Aster	6	-5	I.			S5	G5			Х	(L.) Á. & D. Löve
DICOTYLEDONS	Asteraceae	Tanacetum vulgare	Common Tansy		5		-1	3	SNA	GNR			X	L.
DICOTYLEDONS	Asteraceae	Taraxacum officinale	Common Dandelion		3		-2		SNA	G5			Х	F.H. Wiggers
DICOTYLEDONS	Balsaminaceae	Impatiens capensis	Spotted Jewelweed	4	-3	I			S5	G5			X	Meerburgh
DICOTYLEDONS	Berberidaceae	Caulophyllum giganteum	Giant Blue Cohosh	5	5				S5	G4G5			X	(Farw.) Loconte & W.H. Blackw.
DICOTYLEDONS	Berberidaceae	Podophyllum peltatum	May-Apple	5	3				S5	G5			Х	L.
DICOTYLEDONS	Betulaceae	Betula alleghaniensis	Yellow Birch	6	0	Т			S5	G5			Х	Britton
DICOTYLEDONS	Betulaceae	Carpinus caroliniana ssp. virginiana	Blue-Beech	6	0	т			S5	G5T			x	(Marshall) Eurlow
DICOTYLEDONS	Betulaceae	Ostrva virginiana	Eastern Hop-Hornbeam	4	3				S5	G5			x	(Miller) K Koch
DICOTYLEDONS	Boraginaceae	Hydrophyllum virginianum var. virginianum	Virginia Waterleaf	6	0				S5	G5			x	L.
	Boraginaceae	Myosotis Java	Small Forget-Me-Not	6	-5	1			85	G5			X	Lehmann
	Brassicaceae	Alliaria netiolata	Garlic Mustard			I	-3	1	SNA	65			v	(M. Bieh.) Cayara & Grande
	Brassicação	Barbarea vulgarie	Bitter Wintercress		0		-3	2		CNIP			~ ~	W/T_Aiton
	Prassicaceae	Cardomino dinhullo		7	2		-1	3	SINA				×	(Michy) Alph Wood
			Limestene Bittererees	1	3				50 64	65			X	Pritton
				1	-3	I			54	65			U U	
	Brassicaceae	Cardamine pensylvanica		6	-3	1			55	G5			U	wumend. ex willd.
	Brassicaceae		Dame's ROCKET		3		-3	1	SNA	G4G5			X	L.
	Brassicaceae	I niaspi arvense	Field Pennycress		5		-1		SNA	GNR			X	L.
DICOTYLEDONS	Campanulaceae	Lobella siphilitica	Great Blue Lobelia	6	-3	1			\$5	G5			X	
DICOTYLEDONS	Caprifoliaceae	Diervilla lonicera	Northern Bush-Honeysuckle	5	5				S5	G5			X	Miller
DICOTYLEDONS	Caprifoliaceae	Dipsacus fullonum	Common Teasel		3		-1	3	SNA	G?T?			Х	L
DICOTYLEDONS	Caprifoliaceae	Lonicera tatarica	Tartarian Honeysuckle		3		-3	1	SNA	GNR			Х	L

													REGIONAL STA	<u>/US</u>
ORDER	FAMILY	LATIN NAME	COMMON NAME	COEFFICIENT OF CONSERVATISM	WETNESS INDEX	OWES WETLAND SPECIES	WEEDINESS INDEX	INVASIVE EXOTIC RANK (Urban Forest Associates 2002)	PROVINCIAL STATUS (S-RANK)	GLOBAL STATUS (G-RANK)	SARO List (MECP)	COSEWIC STATUS	HALTON (Varga 2005)	AUTHORITY
DICOTYLEDONS	Caryophyllaceae	Cerastium fontanum ssp. vulgare	Common Mouse-Ear Chickweed		3		-1	715555614165 2002)	SNA	GNR			X	(Hartman) Greuter & Burdet
DICOTYLEDONS	Caryophyllaceae	Dianthus armeria ssp. armeria	Deptford Pink		5		-1		SNA	GNR			Х	L.
DICOTYLEDONS	Caryophyllaceae	Stellaria longifolia	Long-Leaved Starwort	2	-3	1			S5	G5			U	Muhlenb. ex Willd.
DICOTYLEDONS	Celastraceae	Euonymus obovatus	Running Strawberry Bush	6	5				S4	G5			X	Nutt.
DICOTYLEDONS	Cornaceae	Cornus alternifolia	Alternate-Leaved Dogwood	6	3	т			S5	G5			X	L.t.
	Cornaceae	Cornus racemosa	Grey Dogwood	2	0	т			55	G5?			X	Lamarck
DICOTYLEDONS	Fabaceae		Garden Bird's-Foot Trefoil	4	3	1	-2	2	SNA	GNR			×	
DICOTYLEDONS	Fabaceae	Medicago lupulina	Black Medick		3		-1	4	SNA	GNR			X	L.
DICOTYLEDONS	Fabaceae	Medicago sativa ssp. sativa	Alfalfa (ssp. sativa)		5		-1	4	SNA	GNRTNR			x	L.
DICOTYLEDONS	Fabaceae	Melilotus albus	White Sweet-Clover		3		-3	2	SNA	GNR			Х	Medik.
DICOTYLEDONS	Fabaceae	Trifolium pratense	Red Clover		3		-2	4	SNA	GNR			x	L
DICOTYLEDONS	Fabaceae	Vicia cracca	Tufted Vetch		5		-1	2	SNA	GNR			X	<u>[L.</u>
DICOTYLEDONS	Fabaceae	Vicia tetrasperma	Four-Seed Vetch	<u> </u>	5		-1	3	SNA	GNR			X	(L.) Schreber
	Fagaceae	Fagus grandifolia	American Beech	6	3	т			54	G5 G5			×	Michaux
DICOTYLEDONS	Fagaceae	Quercus rubra	Northern Red Oak	6	3	1			S5	G5			×	
DICOTYLEDONS	Geranjaceae	Geranium maculatum	Spotted Geranium	6	3				S5	G5			U	L.
DICOTYLEDONS	Geraniaceae	Geranium robertianum	Herb-Robert	2	3		-2		S5	G5			x	L.
DICOTYLEDONS	Grossulariaceae	Ribes americanum	Wild Black Currant	4	-3	Т			S5	G5			X	Miller
DICOTYLEDONS	Grossulariaceae	Ribes cynosbati	Eastern Prickly Gooseberry	4	3				S5	G5			Х	L.
DICOTYLEDONS	Grossulariaceae	Ribes rubrum	European Red Currant		5	т	-2		SNA	G4G5			x	L
DICOTYLEDONS	Hypericaceae	Hypericum perforatum ssp. perforatum	Common St. John's-Wort		5		-3	4	SNA	GNR			X	<u>[L.</u>
DICOTYLEDONS	Juglandaceae	Carya cordiformis	Bitternut Hickory	6	0				S5	G5			X	(Wangenh.) K. Koch
	Juglandaceae	Carya ovata var. ovata	Shagbark Hickory	6	3	I			S5	G5	END		U V	(Miller) K. Koch
DICOTTLEDONS	Lamiaceae		Canada Horsebalm	8	0	т			52 f S4	G4 G5	END	END	^	1
DICOTYLEDONS	Lauraceae	Lindera benzoin	Northern Spicebush	6	-3	т			 S4	G5			x	(L.) Blume
DICOTYLEDONS	Malvaceae	Tilia americana	Basswood	4	3				S5	G5			X	L.
DICOTYLEDONS	Montiaceae	Claytonia virginica	Eastern Spring Beauty	5	3	т			S5	G5			U	L.
DICOTYLEDONS	Oleaceae	Fraxinus americana	White Ash	4	3				S4	G5			Х	L.
DICOTYLEDONS	Oleaceae	Fraxinus nigra	Black Ash	7	-3	1			S4	G5		THR	x	Marshall
DICOTYLEDONS	Oleaceae	Fraxinus pennsylvanica	Red Ash	3	-3	Т			S4	G5			x	Marshall
DICOTYLEDONS	Onagraceae	Circaea canadensis ssp. canadensis	Canada Enchanter's Nightshade	2	3				S5	G5T5			X	((L.) Hill
DICOTYLEDONS		Epilobium coloratum	Purple-Veined Willowherb	3	-5				S5	G5			U	Biehler
	Oragraceae	Ovalis stricta	Small-Flowered Evening Primose	0	3				SNA	G4 ?			× ×	<u> </u>
DICOTYLEDONS	Papaveraceae	Sanguinaria canadensis	Bloodroot	5	3				SinA S5	G5			×	1
DICOTYLEDONS	Penthoraceae	Penthorum sedoides	Ditch-Stonecrop	4	-5	1			S5	G5			U	L.
DICOTYLEDONS	Plantaginaceae	Chelone glabra	White Turtlehead	7	-5	I			S5	G5			U	L.
DICOTYLEDONS	Plantaginaceae	Veronica anagallis-aquatica	Water Speedwell		-5	I	-1		SNA	G5			Х	L.
DICOTYLEDONS	Plantaginaceae	Veronica officinalis	Common Speedwell		5		-2		SNA	G5			Х	L
DICOTYLEDONS	Polygonaceae	Persicaria maculosa	Spotted Lady's-Thumb		-3	т	-1		SNA	G3G5			x	Gray
DICOTYLEDONS	Polygonaceae	Polygonum aviculare ssp. aviculare	Prostrate Knotweed		3		-1		SNA	GNRTNR			X	<u> L.</u>
DICOTYLEDONS	Polygonaceae	Rumex crispus	Curled Dock		0	Т	-2		SNA	GNR			X	<u> L.</u>
	Portulacaceae	Portulaca grandiflora	Garden Portulaca		5		1		SNA	GNR			v	Hooker
DICOTYLEDONS	Primulaceae	Lysimachia aivensis	Fringed Vellow Loosestrife	4	-3	т	-1		51NA S5	G5			× ×	
DICOTYLEDONS	Primulaceae	Lysimachia nummularia	Creeping Yellow Loosestrife		-3		-3	2	SNA	GNR			x	 L.
DICOTYLEDONS	Ranunculaceae	Actaea pachypoda	White Baneberry	6	5		-		S5	G5			X	Elliott
DICOTYLEDONS	Ranunculaceae	Actaea rubra ssp. rubra	Red Baneberry	6	3				S5	G5			X	(Aiton) Willdenow
DICOTYLEDONS	Ranunculaceae	Anemone canadensis	Canada Anemone	3	-3	т			S5	G5			Х	L.
DICOTYLEDONS	Ranunculaceae	Anemone quinquefolia var. quinquefolia	Wood Anemone	7	0				S5	G5			х	L
DICOTYLEDONS	Ranunculaceae	Caltha palustris	Yellow Marsh Marigold	5	-5	1			S5	G5			U	<u> L.</u>
DICOTYLEDONS	Ranunculaceae	Ranunculus abortivus	Kidney-Leaved Buttercup	2	0				S5	G5			X	<u> L.</u>
	Ranunculaceae	Ranunculus acris	Common Buttercup	F	U 		-2		SNA	G5			X	L. (Greene) T. Duncan
	Ranunculaceae	Ranunculus nispidus var. caricetorum	Northern Swamp Buttercup	5	-5	1			55	6515			× ×	Reiret
DICOTYLEDONS	Ranunculaceae	Ranunculus sceleratus var. multifidus	Cursed Buttercup (var. multifidus)	2	-5	1			S5	G5T5			x	Nuttall
DICOTYLEDONS	Ranunculaceae	Thalictrum dioicum	Early Meadow-Rue	6	3				S5	G5			X	L.
DICOTYLEDONS	Rhamnaceae	Rhamnus cathartica	European Buckthorn		0	Т	-3	1	SNA	GNR			X	L
		Crataegus species	Hawthorn species											
DICOTYLEDONS	Rosaceae	Fragaria virginiana	Wild Strawberry	2	3				S5	G5			X	Miller
DICOTYLEDONS	Rosaceae	Geum aleppicum	Yellow Avens	2	0	т			S5	G5			х	Jacquin
DICOTYLEDONS	Rosaceae	Geum canadense	White Avens	3	0	Т			S5	G5			X	Jacquin
	Rosaceae	Geum fragarioides	Barren Strawberry	5	5				S5	G5			U	(IVIICNX.) Smedmark
	Rosaceae	Potentilla recta	Rough Avens	4	-3	1	_2	+		GNIP			X	
DICOTYLEDONS	Rosaceae	Prunus serotina var. serotina	Black Cherry	3	3		-2		Since S5	G5			x	Ehrhart
DICOTYLEDONS	Rosaceae	Prunus virginiana var. virginiana	Chokecherry	2	3			1	S5	G5T?			x	L.
DICOTYLEDONS	Rosaceae	Rubus idaeus ssp. strigosus	North American Red Raspberry	2	3				S5	G5T5			X	(Michaux) Focke
	•						•		•	·		I		A

													REGIONAL STA	rus
ORDER	FAMILY	LATIN NAME	COMMON NAME	COEFFICIENT OF CONSERVATISM	WETNESS INDEX	OWES WETLAND SPECIES	WEEDINESS INDEX	INVASIVE EXOTIC RANK (Urban Forest Associates 2002)	PROVINCIAL STATUS (S-RANK)	GLOBAL STATUS (G-RANK)	SARO List (MECP)	COSEWIC STATUS	HALTON (Varga 2005)	AUTHORITY
DICOTYLEDONS	Rosaceae	Rubus pubescens	Dewberry	4	-3	I*			S5	G5			Х	Raf.
DICOTYLEDONS	Rubiaceae	Galium asprellum	Rough Bedstraw	6	-5	1			S5	G5			U	Michaux
DICOTYLEDONS	Rubiaceae	Galium obtusum	Blunt-Leaved Bedstraw	6	-3	Ť			S4S5	G5			X	Bigelow
	Rubiaceae	Galium palustre	Common Marsh Bedstraw	5	-5	I			55	G5 G5			X	L. Michaux
DICOTYLEDONS	Rubiaceae	Mitchella repens	Partridgeberry	6	3					G5			×	
DICOTYLEDONS	Salicaceae	Populus tremuloides	Trembling Aspen	2	0	т			S5	G5			X	Michaux
DICOTYLEDONS	Sapindaceae	Acer negundo	Manitoba Maple	0	0	Т		1	S5	G5			Х	L.
DICOTYLEDONS	Sapindaceae	Acer nigrum	Black Maple	7	3				S4?	G5			Х	F. Michaux
DICOTYLEDONS	Sapindaceae	Acer platanoides	Norway Maple		5		-3	2	SNA	GNR			Х	L.
DICOTYLEDONS	Sapindaceae	Acer rubrum	Red Maple	4	0	Т			S5	G5			Х	L.
DICOTYLEDONS	Sapindaceae	Acer saccharum	Sugar Maple	4	3				S5	G5			X	Marshall
DICOTYLEDONS	Sapindaceae	Acer spicatum	Mountain Maple	6	3	T			S5	G5			X	Lamarck
	Sapindaceae	Acer x ireemanii Mitella diphylla	Freeman's Maple	5	-5	т			<u>HYB_</u> N	GNA			X	E. Murray
DICOTYLEDONS	Saxinagaceae	Mitella nuda	Naked Mitrewort	6	-3	I*			S5	65			×	1
DICOTYLEDONS	Saxifragaceae	Tiarella cordifolia	Heart-Leaved Foamflower	6	3	T			S5	G5			X	L.
DICOTYLEDONS	Scrophulariaceae	Verbascum thapsus ssp. thapsus	Common Mullein		5		-2		SNA	GNR			X	L.
DICOTYLEDONS	Solanaceae	Solanum dulcamara	Bittersweet Nightshade		0	Т	-2	3	SNA	GNR			Х	L.
DICOTYLEDONS	Solanaceae	Solanum emulans	Eastern Black Nightshade	1	3				S5	G5			Х	Rafinesque
DICOTYLEDONS	Ulmaceae	Ulmus americana	White Elm	3	-3	Т			S5	G5			х	L
DICOTYLEDONS	Urticaceae	Laportea canadensis	Canada Wood Nettle	6	-3	Т			S5	G5			X	(L.) Weddell
DICOTYLEDONS	Urticaceae	Pilea pumila	Dwarf Clearweed	5	-3				S5	G5			X	(L.) A. Gray
	Violaceae	Viola labradorica	Labrador Violet	3	0				S5	G5			X	Schrank
GYMNOSPERMS		Thuia occidentalis	Eastern White Cedar	4	-3	т				65			×	
GYMNOSPERMS	Pinaceae	Pinus strobus	Eastern White Pine	4	3	Т			S5	G5			X	L.
GYMNOSPERMS	Pinaceae	Tsuga canadensis	Eastern Hemlock	7	3	Т			S5	G5			X	(L.) Carrière
MONOCOTYLEDONS	Araceae	Arisaema triphyllum ssp. triphyllum	Jack-In-The-Pulpit	5	-3	Т			S5	G5			Х	(L.) Schott
MONOCOTYLEDONS	Asparagaceae	Maianthemum canadense ssp. canadense	Wild Lily-Of-The-Valley (ssp. canadense)	5	3				S5	G5T5			Х	Desf.
MONOCOTYLEDONS	Asparagaceae	Polygonatum pubescens	Hairy Solomon's Seal	5	5				S5	G5			х	(Willd.) Pursh
MONOCOTYLEDONS	Cyperaceae	Carex albursina	White Bear Sedge	7	5				S5	G5			X	E. Sheldon
MONOCOTYLEDONS	Cyperaceae	Carex bebbii	Bebb's Sedge	3	-5	I			S5	G5			U	(L.H. Bailey) Olney ex Fern.
	Cyperaceae	Carex bramaidas sen bramaidas	Woodland Sedge	7	0	1			55	G5 G5			X	Dewey Schkubr ex Willdenow
MONOCOTYLEDONS		Carex crinita var crinita	Fringed Sedge	6	-5	1			S5	65			U	Lamarck
MONOCOTYLEDONS	Cyperaceae	Carex cristatella	Crested Sedge	3	-3				S5	G5			X	Britton
MONOCOTYLEDONS	Cyperaceae	Carex gracillima	Graceful Sedge	4	3	т			S5	G5			Х	Schweinitz
MONOCOTYLEDONS	Cyperaceae	Carex intumescens	Bladder Sedge	6	-3	ļ			S5	G5			Х	Rudge
MONOCOTYLEDONS	Cyperaceae	Carex laxiculmis var. laxiculmis	Spreading Sedge	7	3				S4	G5T5			U	Schweinitz
MONOCOTYLEDONS	Cyperaceae	Carex laxiflora	Loose-Flowered Sedge	5	0				S5	G5			X	Lamarck
MONOCOTYLEDONS	Cyperaceae	Carex leptonervia	Finely-Nerved Sedge	5	0				S5	G5			X	(Fern.) Fernald
MONOCOTYLEDONS	Cyperaceae	Carex lupulina	Hop Sedge	6	-5	I			S5	G5			X	Muhlenb. ex Willdenow
	Cyperaceae	Carex ct. peckil	Peck's Sedge	5	5				55	G5 G5			X	Howe Mubleph ex Willdenow
MONOCOTYLEDONS			Plantain-I eaved Sedge	7	5				S5	65			×	Lamarck
MONOCOTYLEDONS	Cyperaceae	Carex radiata	Eastern Star Sedge	4	0	Т			S5	G5			X	(Wahlenb.) Small
MONOCOTYLEDONS	Cyperaceae	Carex rosea	Rosy Sedge	2	5				S5	G5			Х	Schkuhr ex Willdenow
MONOCOTYLEDONS	Cyperaceae	Carex scabrata	Rough Sedge	8	-5	I			S5	G5			U	Schweinitz
MONOCOTYLEDONS	Cyperaceae	Carex sparganioides	Burreed Sedge	5	3				S4S5	G5			Х	Muhlenb. ex Willdenow
MONOCOTYLEDONS	Cyperaceae	Carex spicata	Spiked Sedge		3		-1		SNA	GNR			Х	Hudson
MONOCOTYLEDONS	Cyperaceae	Carex stipata var. stipata	Awl-Fruited Sedge	3	-5	1			S5	G5			X	Muhlenb. ex Willdenow
MONOCOTYLEDONS	Cyperaceae	Carex tenera	Tender Sedge	4	0	Ť			S5	G5			X	Dewey
	Cyperaceae	Carex tribuloides var. tribuloides	Blunt Broom Sedge	5	-3	1			54	G5			0	Dowov
MONOCOTYLEDONS			Fox Sedge	3	-5	1				65			U	Michaux
MONOCOTYLEDONS	Cyperaceae	Carex voodii	Wood's Sedge	6	3	1			 S4	G4			X	Dewey
MONOCOTYLEDONS	Cyperaceae	Scirpus cyperinus	Common Woolly Bulrush	4	-5	1			S5	G5			X	(L.) Kunth
MONOCOTYLEDONS	Iridaceae	Iris pseudacorus	Yellow Iris		-5	I	-2	4	SNA	GNR			Х	L.
MONOCOTYLEDONS	Juncaceae	Juncus dudleyi	Dudley's Rush	1	-3	Т			S5	G5			Х	Wiegand
MONOCOTYLEDONS	Juncaceae	Juncus effusus ssp. solutus	Soft Rush (ssp. solutus)	4	-5	I			S5?	G5T5			Х	(Fernald & Wiegand) Hämet-Ahti
MONOCOTYLEDONS	Juncaceae	Juncus tenuis	Path Rush	0	0				S5	G5			X	Willdenow
MONOCOTYLEDONS	Liliaceae	Erythronium americanum ssp. americanum	Yellow Trout Lily	5	5				S5	G5T5		-	X	Ker Gawler
MONOCOTYLEDONS	Melanthiaceae	Trillium erectum		6	3				S5	G5			X	L.
		Frinanti granditiorum	vvnile Trillium Broad-Leaved Holloborino	5	3				S5 SNIA	G5			× ×	(IVIICITX.) Salisbury
MONOCOTYLEDONS	Poaceae	Agrostis digantea	Redton		-3		-2		SNA	G4G5			×	Roth
MONOCOTYLEDONS	Poaceae	Agrostis stolonifera	Creeping Bentgrass		-3	т	-2		SNA	G5		+ +	x	L.
MONOCOTYLEDONS	Poaceae	Bromus inermis	Smooth Brome		5	•	-3	4	SNA	G5TNR			x	Leysser
MONOCOTYLEDONS	Poaceae	Dactylis glomerata	Orchard Grass		3		-1	3	SNA	GNR		1 1	X	L.
MONOCOTYLEDONS	Poaceae	Digitaria ischaemum	Smooth Crabgrass		3		-1		SNA	GNR			Х	(Schreb.) Muhlenberg

													REGIONA	STATUS
ORDER	FAMILY	LATIN NAME	COMMON NAME	COEFFICIENT OF CONSERVATISM	WETNESS INDEX	OWES WETLAND SPECIES	WEEDINESS INDEX	INVASIVE EXOTIC RANK (Urban Forest Associates 2002)	PROVINCIAL STATUS (S-RANK)	GLOBAL STATUS (G-RANK)	SARO List (MECP)	COSEWIC STATUS	HALT((Varga 2	IN AUTHORITY
MONOCOTYLEDONS	Poaceae	Echinochloa crus-galli	Large Barnyard Grass		-3	Т	-1		SNA	GNR			X	(L.) Palisot de Beauvois
MONOCOTYLEDONS	Poaceae	Elymus repens	Quackgrass		3		-3	3	SNA	GNR			X	(L.) Gould
MONOCOTYLEDONS	Poaceae	Elymus virginicus var. virginicus	Virginia Wildrye	5	-3	Т			S5	G5T5			X	L.
MONOCOTYLEDONS	Poaceae	Glyceria striata	Fowl Mannagrass	3	-5	I			S5	G5			X	(Lam.) Hitchcock
MONOCOTYLEDONS	Poaceae	Hordeum jubatum ssp. jubatum	Foxtail Barley	0	0	Т			S5?	G5T5			X	L.
MONOCOTYLEDONS	Poaceae	Leersia oryzoides	Rice Cutgrass	3	-5	I			S5	G5			X	(L.) Swartz
MONOCOTYLEDONS	Poaceae	Lolium pratense	Meadow Fescue		3		-1		SNA	G5			X	(Hudson) Darbyshire
MONOCOTYLEDONS	Poaceae	Panicum capillare ssp. capillare	Common Panicgrass	0	0				S5	G5			X	L.
MONOCOTYLEDONS	Poaceae	Panicum dichotomiflorum ssp. dichotomiflorum	Fall Panicgrass		-3		-1		SNA	G5			X	Michaux
MONOCOTYLEDONS	Poaceae	Phalaris arundinacea var. arundinacea	Reed Canary Grass	0	-3	Т		Р	S5	GNR			X	L.
MONOCOTYLEDONS	Poaceae	Phleum pratense ssp. pratense	Common Timothy		3		-1		SNA	GNR			X	L.
MONOCOTYLEDONS	Poaceae	Poa compressa	Canada Bluegrass		3				SNA	GNR			X	L.
MONOCOTYLEDONS	Poaceae	Poa palustris	Fowl Bluegrass	5	-3	I			S5	G5			X	L.
MONOCOTYLEDONS	Poaceae	Poa pratensis ssp. pratensis	Kentucky Bluegrass (ssp. pratensis)		3				SNA	G5T5			X	L.
MONOCOTYLEDONS	Poaceae	Puccinellia distans	Spreading Alkaligrass		-3	Т	-1		SNA	G5			X	(Jacq.) Parlatore
MONOCOTYLEDONS	Poaceae	Setaria faberi	Giant Foxtail		3		-1	4	SNA	GNR			X	R.A.W. Herrmann
MONOCOTYLEDONS	Poaceae	Setaria pumila ssp. pumila	Yellow Foxtail		0		-1	4	SNA	GNR			X	(Poir.) Roemer & Schultes
MONOCOTYLEDONS	Smilacaceae	Smilax tamnoides	Bristly Greenbrier	6	0				S5	G5			U	L.
MONOCOTYLEDONS	Typhaceae	Typha angustifolia	Narrow-Leaved Cattail		-5	I		Р	SNA	G5			X	L.
MONOCOTYLEDONS	Typhaceae	Typha latifolia	Broad-Leaved Cattail	1	-5	I			S5	G5			X	L.
MONOCOTYLEDONS	Typhaceae	Typha x glauca	Blue Cattail		-5	I		Р	HYB_n	GNA			X	Godron
PTERIDOPHYTES	Cystopteridaceae	Cystopteris bulbifera	Bulblet Bladder Fern	5	-3	Т			S5	G5			X	(L.) Bernh.
PTERIDOPHYTES	Dryopteridaceae	Dryopteris carthusiana	Spinulose Wood Fern	5	-3	Т			S5	G5			X	(Vill.) H.P. Fuchs
PTERIDOPHYTES	Dryopteridaceae	Dryopteris cristata	Crested Wood Fern	7	-5	I			S5	G5			X	(L.) A. Gray
PTERIDOPHYTES	Dryopteridaceae	Dryopteris intermedia	Evergreen Wood Fern	5	0				S5	G5			X	(Muhlenb. ex Willd.) A. Gray
PTERIDOPHYTES	Dryopteridaceae	Dryopteris marginalis	Marginal Wood Fern	5	3				S5	G5			X	(L.) A. Gray
PTERIDOPHYTES	Equisetaceae	Equisetum arvense	Field Horsetail	0	0	Т			S5	G5			X	L.
PTERIDOPHYTES	Onocleaceae	Matteuccia struthiopteris var. pensylvanica	Ostrich Fern	5	0	Т			S5	G5			X	(Willd.) C.V. Morton
PTERIDOPHYTES	Onocleaceae	Onoclea sensibilis	Sensitive Fern	4	-3	I			S5	G5			Х	L.
PTERIDOPHYTES	Osmundaceae	Osmundastrum cinnamomeum	Cinnamon Fern	7	-3	I			S5	G5			Х	(L.) C. Presl
PTERIDOPHYTES	Thelypteridaceae	Thelypteris palustris var. pubescens	Eastern Marsh Fern	5	-3	1			S5	G5T?			X	(Lawson) Fernald

STATISTICS		
Species Diversity		
Total Number of Species:	243	
Native Species:	167	69%
Exotic Species:	76	31%
S1-S3 Species:	1	1%
S4 Species:	16	10%
S5 Species:	148	90%
Floristic Quality Indices		
Mean Co-efficient of Conservatism (CC)	4.3	
CC 0 - 3 = lowest sensitivity	50	30%
CC 4 - 6 = moderate sensitivity	98	59%
CC 7 - 8 = high sensitivity	18	11%
CC 9 - 10 = highest sensitivity	0	0%
Floristic Quality Index (FQI)	56	
Weedy & Invasive Species		
Mean Weediness Index (Oldham et al):	-1.6	
-1 = low potential invasiveness	39	58%
-2 = moderate potential invasiveness	18	27%
-3 = high potential invasivenss	10	15%
Mean Exotic Rank (Urban Forest Associates):	3	
Category 1	6	18%
Category 2	5	15%
Category 3	7	21%
Wetland Species		
Mean Wetness Index	0.6	
Upland	36	15%
Facultative upland	87	36%
Facultative	41	17%
Facultative wetland	46	19%
Obligate wetland	31	13%

		SPECIES CODE						WATER							
SURVEY ROUND NUMBER	STATION NUMBER	NOAM	АМТО	FOTO	GRTR	SPPE	CHFR	WOFR	NLFR	PIFR	GRFR	BULL	MIFR	Present (Y/N)	Depth (CM)
							2015								
1	А	Х												Y	15
2	A	Dry												N	Dry
1	В	Х												Y	Deep
2	В	Х												Y	30
3	В				1(5)									Y	22
1	с		1(2)			1(3)								Y	No Access
2	С	x												Y	No Access
3	С		1(2)			1(2)								Y	No Access
1	D	x												Y	No Access
2	D					3(TNTC)								Y	No Access
3	D		1(2)		3(TNTC)									Y	No Access
1	Е		1(2)			1(4)			1(1)					Y	No Access
2	E	x												Y	No Access
3	E				1(2)									Y	No Access
1	F	Х												Y	11
2	F	Dry												N	Dry
							2021								

Table 4: Amphibian Call Count Survey Station Results (2015, 2021)

		SPECIES CODE										WATER			
SURVEY ROUND	STATION NUMBER	NOAM	АМТО	FOTO	GRTR	SPPE	CHFR	WOFR	NLFR	PIFR	GRFR	BULL	MIFR	Present (Y/N)	Depth (CM)
1	А	Х													
2	A	Х													
1	В		3			1(5)									
2	В										1(3)				
1	С		1(2)												
2	С		1(2)			1(1)			1(1)						
1	D					3									
2	D					1(6)									
1	E		1(2)			1(5)									
2	E		1(2)		3	1(4)									
1	F		1(2)		3										
2	F	Х													
1	G	Х													
2	G	Х												N	Dry
1	Н		1(2)												
2	Н	Х													Dry

Table 4: Amphibian Call Count Survey Station Results (2015, 2021)

Table 4: Amphibian Call Count Survey Station Results (2015, 2021)

LEGEND:

SPECIES CODE	COMMON NAME	SCIENTIFIC NAME
NOAM	No Amphibians	No amphibians despite survey effort
AMTO	American Toad	Anaxyrus americanus
FOTO	Fowler's Toad	Anaxyrus fowleri
GRTR	Gray Treefrog	Hyla versicolor
CHFR	Western Chorus Frog	Pseudacris triseriata
WOFR	Wood Frog	Lithobates sylvaticus
NLRF	Northern Leopard Frog	Lithobates pipiens
PIFR	Pickerel Frog	Lithobates palustris
GRFR	Green Frog	Lithobates clamitans
BULL	American Bullfrog	Lithobates catesbeianus
MIFR	Mink Frog	Lithobates septentrionalis
SPPE	Spring Peeper	Pseudacris crucifer

	CALL CODES
Х	No amphibians heard
1	Calls can be counted without error
2	Calls overlap but can be reliably estimated
3	Calls overlap too much to estimate number

Note: For each species, the first number is the call code and the second number, which is in brackets, is the number of individuals of that species heard calling.

Common Name	Species Code	Scientific Name	Provincial Status (S Rank)	Global Status (G Rank)	SARO List (MECP)	COSEWIC (Federal)	SWH Indicator Species	Highest Breeding Evidence
Anseriformes								
Anatidae								
Greater White-fronted Goose	GWFG	Anser albifrons	S3M	G5				
Snow Goose	SNGO	Chen caerulescens	S5B	G5			Х	
Ross's Goose	ROGO	Chen rossi	S2B	G4				
Brant	BRAN	Branta bernicla	S4M	G5			Х	
Cackling Goose	CACG	Branta hutchinsii	SUB, S4M	G5			X	
Canada Goose	CANG	Branta canadensis	S5	G5			X	OB-X
Mute Swan	MUSW	Cygnus olor	SNA	G5			X	
Tumpeter Swan	THOS		54	G4			X	
Wood Duck	WODU		52D, 54N, 53M				× ×	
	CADW	Ana stronora	SOD, SON				× ×	
American Wigeon			54B, 54N, 55M	65			×	
American Black Duck			S40, 34N, 33M	G5 G5			X	
	MALL	Anas naturbunchos	54	65			×	
Blue-winged Teal	BWTE		53B 54M	65			×	
Northern Shoveler	NSHO	Anas clyneata	S4B S4N S5M	65			X	
Northern Pintail	NOPI	Anas acuta	S5B, S4N	G5			X	L
Green-winged Teal	GWTE	Anas crecca	S4B, S4N. S5M	G5			X	
Canvasback	CANV	Aythya valisineria	S1B, S3N, S4M	G5			х	
Redhead	REDH	Aythya americana	S2B, S4N, S4M	G5			Х	
Ring-necked Duck	RNDU	Aythya collaris	S5B, S4N	G5			Х	
Greater Scaup	GRSC	Aythya marila	S4B, S4N, S5M	G5			Х	
Lesser Scaup	LESC	Aythya affinis	S4B, S4N, S5M	G5			Х	
Surf Scoter	SUSC	Melanitta perspicillata	S4B, S5N	G5			Х	
White-winged Scoter	WWSC	Melanitta fusca	S4B, S5N	G5			Х	
Black Scoter	BLSC	Melanitta americana	S4	G5			Х	
Long-tailed Duck	LTDU	Clangula hyemalis	S3B, S5N	G5			Х	
Bufflehead	BUFF	Bucephala albeola	S5	G5			Х	
Common Goldeneye	COGO	Bucephala clangula	S5	G5			Х	
Barrow's Goldeneye	BAGO	Bucephala islandica	S2N	G5				
Hooded Merganser	HOME	Lophodytes cucullatus	S5	G5			Х	
Common Merganser	COME	Mergus merganser	S5	G5			Х	
Red-breasted Merganser	RBME	Mergus serrator	S5	G5			Х	
Ruddy Duck	RUDU	Oxyura jamaicensis	S3B, S4N, S5M	G5			Х	
Galliformes								
Odontiphoridae								
Northern Bobwhite	NOBO	Colinus virginianus	S1?B	G5	END	END		
Phasianinae								
Gray Partridge	GRPA	Perdix perdix	SNA	G5				
Ring-necked Pheasant	RNPH	Phasianus colchicus	SNA	G5				
Ruffed Grouse	RUGR	Bonasa umbellus	S5	G5			X	
Spruce Grouse	SPGR	Falcipennis canadensis	S5	G5			X	
Wild Turkey	WITU	Meleagris gallopavo	S5	G5			X	
Northern Bobwhite	NOBO	Colinus virginianus	S1?B	G5	END	END		
a								
Gaviiformes								
Gaviidae	0010		05	05				
Common Loon	COLO	Gavia immer	55	G5			X	
De disine difermente			-					
Podicipediformes								
	DDCD	De dilumetere ne dia se e	C4D C2N	C.F.			~	
Pled-billed Grebe	PDGR	Poullymbus poulceps	54D, 52N	65			^	
Culifornia								
Bhalacrocoracidae								
Double-crested Cormorant	DCCO	Phalacrocoray auritus	SER CAN	65				
	Deco		555, 54N	05				
Pelecaniformes								
Ardoidaa								
Amorican Bittorn	AMDT	Rotaurus Iontiginasus	CED	C1			- v	
			558	64		TUD	<u> </u>	
			548	65		інк		
Great Blue Heron	GBHE	Araea neroalas	54	G5			X	OR-X
	GREG	Ardea alba	52B, S3M	G5			X	
Green Heron	GRHE	Butorides virescens	S4B	G5			X	
Black-crowned Night-Heron	BCNH	Nycticorax nycticorax	S3B, S2N, S4M	G5			I X	

Common Name	Species Code	Scientific Name	Provincial Status (S Rank)	Global Status (G Rank)	SARO List (MECP)	COSEWIC (Federal)	SWH Indicator Species	Highest Breeding Evidence
Pelecanidae		Palacapus anythrathypehas	628 64M	C1	тир	NAD		
			338, 341			INAK		
Accipitriformes								
Cathartidae								ļ
Turkey Vulture	Τυνυ	Cathartes aura	S5B, S3N	G5				OB-X
Pandionidae								
Osprey	OSPR	Pandion haliaetus	S5B	G5			x	
Accipitridae								ļ
Bald Eagle	BAEA	Haliaeetus leucocephalus	S4	G4	SC	NAR	X	
Sharp-shipped Hawk	SSHA		55D, 54N	G5			X	
Cooper's Hawk	СОНА	Accipiter cooperii		G5			X	
Northern Goshawk	NOGO	Accipiter gentilis	S4	G5			Х	
Red-shouldered Hawk	RSHA	Buteo lineatus	S4B, S2N	G5	NAR	NAR	Х	
Broad-winged Hawk	BWHA	Buteo platypterus	S5B	G5			Х	ļ
Red-tailed Hawk	RTHA	Buteo jamaicensis	S5	G5			X	OB-X
Rough-legged Hawk		Buteo lagopus	S1B, S4N	G5		NAD	X	
	GUEA		51D, 54N	65		NAK		
Gruiformes								
Rallidae								
Yellow Rail	YEAR	Coturnicops noveboracensis	S3B	G4	SC	SC	Х	
King Rail	KIRA	Rallus elegans	S1B	G4G5	END	END		ļ
Virginia Rail	VIRA	Rallus limicola	S4S5B	G5			Х	ļ
Sora	SORA	Porzana carolina	S5B	G5			X	
Common Gallinule	COGA	Gallinula galeata	S3B	G5			X	
American Coot	АМСО	Fulica americana	53B, 54N	G5			X	
Gruidae								
Sandhill Crane	SACR	Grus canadensis	S5B, S3N	G5			х	
Charadriiformes								ļ
Charadriidae								
Black-bellied Plover	BBPL	Pluvialis squatarola	S4M	G5			X	
Seminalmated Plover	SEDI	Charadrius seminalmatus	52D, 54M	65			×	
Piping Plover	PIPL	Charadrius melodus	S1B	G3	END	END	~	
Killdeer	KILL	Charadrius vociferus	S4B	G5				
								[
Scolopacidae								
Spotted Sandpiper	SPSA	Actitis macularius	S5B	G5			X	РО-Н
Solitary Sandpiper	GRVE	Tringa solitaria	S4B, S5M	65			X	
Lesser Yellowlegs	LEYE	Tringa flavipes	S3S4B, S5M	G5			X	
Upland Sandpiper	UPSA	Bartramia longicauda	S2B	G5			Х	
Whimbrel	WHIM	Numenius phaeopus	S3B, S4M	G4			Х	[
Hudsonian Godwit	HUGO	Limosa haemastica	S3B, S4M	G5			X	
Marbled Godwit	MAGO	Limosa fedoa	S2B	G5			X	
Ruddy Turnstone		Arenaria interpres	54M S1M	G5 G4T2	END	END	X	
Sanderling	SAND	Calidris alba	S4M	G5		LND	X	
Semipalmated Sandpiper	SESA	Calidris pusilla	S2B, S4M	G5			Х	
Least Sandpiper	LESA	Calidris minutilla	S4B, S5M	G5			Х	
White-rumped Sandpiper	WRSA	Calidris fuscicollis	S5M	G5			X	
Baird's Sandpiper	BASA	Calidris bairdii	S4M	G4			X	
Pectoral Sandpiper	PESA	Calidris melanotos	51B, S4M	G5			X	
Purple Sandpiper		Calidris alnina	SZN SZR CEM	65			×	
Stilt Sandpiper	STSA	Calidris himantonus	S3B_S4M	65			x	İ
Short-billed Dowitcher	SBDO	Limnodromus griseus	S3B, S4M	G5			x	
Wilson's Snipe	WISN	Gallinago delicata	S5B	G5				
American Woodcock	AMWO	Scolopax minor	S4B	G5				
Wilson's Phalarope	WIPH	Phalaropus tricolor	S2B, S4M	G5				
Red-necked Phalarope	RNPH	Phalaropus lobatus	S3B, S4M	G5			X	1

Common Name	Species Code	Scientific Name	Provincial Status (S Rank)	Global Status (G Rank)	SARO List (MECP)	COSEWIC (Federal)	SWH Indicator Species	Highest Breeding Evidence
Laridae	DOCU		65	65				
	BUGU	Chroicocephaius philadelphia	55 61628 63M	65			v	
Ring-billed Gull	RBGU	l arus delawarensis	S152B, 55M	65			×	
Herring Gull	HEGU	Larus argentatus	S4B, S5N	G5			X	
Iceland Gull	ICGU	Larus glaucoides	S4N	G5				
Lesser Black-backed Gull	LBGU	Larus fuscus	S3N, S4M	G5				
Glaucous Gull	GLGU	Larus hyperboreus	S4N	G5				
Great Black-backed Gull	GBBG	Larus marinus	S1B, S4N	G5			Х	
Caspian Tern	CATE	Hydroprogne caspia	S3B, S5M	G5			X	
Black Tern	BLTE	Chlidonias niger	S3B, S4M	G4	SC	NAR	X	
Common Tern	COTE	Sterna hirundo	S4B	G5			X	
Forster's Tern	FOIE	Sterna forsteri	53B	65				
Columbiformes								
Columbidae								
Rock Pigeon	ROPI	Columba livia	SNA	G5				
Mourning Dove	MODO	Zenaida macroura	S5	G5				PR-D
Cuculiformes								
Cuculidae	_							
Yellow-billed Cuckoo	YBCU	Coccyzus americanus	S4B	G5				
Black-billed Cuckoo	BBCU	Coccyzus erythropthalmus	S5B	G5			X	PR-T
Strigiformos								
Strigitormes								
Eastern Screech-Owl	FASO	Megascons asio	54	65	NAR	NAR		
Great Horned Owl	GHOW	Bubo virginianus		G5				
Snowy Owl	SNOW	Bubo scandiacus	SNA	G5	NAR		х	
Barred Owl	BDOW	Strix varia	S5	G5			Х	
Long-eared Owl	LEOW	Asio otus	S4	G5				
Short-eared Owl	SEOW	Asio flammeus	S2N, S4B	G5	SC	SC	Х	
Boreal Owl	BOOW	Aegolius funereus	S4	G5				
Northern Saw-whet Owl	NSOW	Aegolius acadicus	S4	G5				
	_							
Tytonidae								
Barn Owl	BARO	Tyto alba	S1	G5	END	END		
Caprimulgiformes								
Caprimulgidae								
Common Nighthawk	CONI	Chordeiles minor	S4B	65	sc	THR		
Eastern Whip-poor-will	EWWI	Antrostomus vociferus	S4B	G5	THR	THR		
Apodiformes								
Apodidae								
Chimney Swift	CHSW	Chaetura pelagica	S4B, S4N	G5	THR	THR		
Trochilidae								
Ruby-throated Hummingbird	RTHU	Archilochus colubris	S5B	G5				
	_							
Coraciiformes								
Alcedinidae Belted Kingfisher	BEKI	Megaceryle alcyon	S/B	65				
			370					
Piciformes								
Picidae								
Red-headed Woodpecker	RHWO	Melanerpes erythrocephalus	S4B	G5	SC	THR		
Red-bellied Woodnecker	RBWO	Melanerpes carolinus	54	65				РО-Н
Yellow-bellied Sansucker	YBSA	Sphyrapicus varius	S5B	G5	1		x	
Downy Woodpecker	DOWO	Picoides pubescens	55	G5				РО-Н
Hairy Woodpecker	намо	Picoides villosus		65				1011
Black-backed Woodpacker	RRMO	Picoides arcticus	 	65				
Northorn Elicker		Colontes autotus	54 C / D					PO S
Pilested Woodpecker			54D	 			~	PU-5
rneateu wooupecker	PIWU		50	65				РК-А
Falconiformes								
Falconidae					-			
American Kestrel	AWKE	Falco sparverius	54	65			×	
principali Nebu di			J J4	1 35	1	1	. ^	

Common Name Species Code		Scientific Name	Provincial Status (S Rank)	Global Status (G Rank)	SARO List (MECP)	COSEWIC (Federal)	SWH Indicator Species	Highest Breeding Evidence
Merlin	MERL	Falco columbarius	S5B	G5				
Peregrine Falcon	PEFA	Falco peregrinus	S3B	G4	SC	SC		
Passeriformes								
Tyrannidae	0551	Contonus coonori	C 4 P		60	тир		
Eastern Wood-Pewee	FAWP	Contopus virens	54B 54B	65	SC SC	SC		CO-CE
Yellow-bellied Flycatcher	YBFL	Empidonax flaviventris	S5B	G5				
Acadian Flycatcher	ACFL	Empidonax virescens	S2S3B	G5	END	END		
Alder Flycatcher	ALFL	Empidonax alnorum	S5B	G5				
Willow Flycatcher	WIFL	Empidonax traillii	S5B	G5			X	
Least Flycatcher	LEFL	Empidonax minimus	S4B	G5				PO C
Great Crested Elycatcher	GCEL	Sayornis prioebe	55B 54B	65				PU-S PR-T
Eastern Kingbird	EAKI	Tyrannus tyrannus	S4B	G5				CO-CF
	2,		010					
Laniidae								
Loggerhead Shrike	LOSH	Lanius ludovicianus	S2B	G5	END	END		
Northern Shrike	NSHR	Lanius excubitor	SNA	G5				
Mine e mi de e								
White-eved Vireo		Vireo ariseus	SJE	65				
Yellow-throated Vireo	YTVI	Vireo flavifrons	52B 54B	65				
Blue-headed Vireo	BHVI	Vireo solitarius	S1B S5B	G5			x	
Warbling Vireo	WAVI	Vireo gilvus	S5B	G5				PO-S
Philadelphia Vireo	PHVI	Vireo philadelphicus	S5B	G5				
Red-eyed Vireo	REVI	Vireo olivaceus	S5B	G5				PR-T
Corvidae	CDA1	Devienneus considencia	CE	C.F.				
Blue lav	BI 1A	Cvanocitta cristata	55	65				CO-CE
American Crow	AMCR	Corvus brachyrhynchos	S5B	G5				PO-H
Common Raven	CORA	Corvus corax	S5	G5				OB-X
Alaudidae								
Horned Lark	HOLA	Eremophila alpestris	S4B	G5				PO-S
Hirundinidae								
Purple Martin	PUMA	Progne subis	S4B	G5				
Tree Swallow	TRES	Tachycineta bicolor	S4B	G5				
Northern Rough-winged Swallow	NRWS	Stelgidopteryx serripennis	S4B	G5			Х	OB-X
Bank Swallow	BANS	Riparia riparia	S4B	G5	THR	THR	Х	
Cliff Swallow	CLSW	Petrochelidon pyrrhonota	S4B	G5			Х	
Barn Swallow	BARS	Hirundo rustica	S4B	G5	THR	THR		PR-P
Paridae								
Black-capped Chickadee	BCCH	Poecile atricapillus	S5	G5				PR-T
Boreal Chickadee	BOCH	Poecile hudsonicus	S5	G5				
Tufted Titmouse	TUTI	Baeolophus bicolor	S4	G5				
Sittidae								
Red-breasted Nuthatch	RBNU	Sitta canadensis	S5	G5			х	
White-breasted Nuthatch	WBNU	Sitta carolinensis	S5	G5				CO-CF
Certhiidae								
Brown Creeper	BRCR	Certhia americana	S5B	G5				
Iroglodytidae	CAND	The sether set la dessi - i	64	65				
Carolina Wren CAWR House Wren HOWR		Troglodytes actor	54 CER	65				pp_T
House Wren HC Winter Wren wr		Troglodytes deuon	53D 55R	65			×	FK-1
Sedge Wren	SEWR	Cistothorus platensis	535 54B	65			x	
Marsh Wren	MAWR	Cistothorus palustris	S4B	G5			x	
Polioptilidae								
Blue-gray Gnatcatcher	BGGN	Polioptila caerulea	S4B	G5				

Common Name Species Code		Scientific Name	Provincial Status (S Rank)	Global Status (G Rank)	SARO List (MECP)	COSEWIC (Federal)	SWH Indicator Species	Highest Breeding Evidence
Regulidae								
Golden-crowned Kinglet	GCKI	Regulus satrapa	S5B	G5				
Ruby-crowned Kinglet	RCKI	Regulus calendula	S4B	G5				
Turdidae								
Eastern Bluebird	EABL	Sialia sialis	S5B	G5				
Veery	VEER	Catharus fuscescens	S4B	G5			Х	
Gray-cheeked Thrush	GCTH	Catharus minimus	S4B	G5				
Swainson's Thrush	SWTH	Catharus ustulatus	S4B	G5				
Hermit Thrush	HETH	Catharus guttatus	S5B	G5				
Wood Thrush	WOTH	Hylocichla mustelina	S4B	G5	SC	THR		
American Robin	AMRO	Turdus migratorius	S5B	G5				CO-CF
			-					
Mimidae Crox Cathird	CRCA	Dumotolla carolinoncia	C 4 P	CE				DO S
Gray Calbird		Mimus polyglottas	54D	65				PU-5
Rrown Thrashor		Toxostoma rufum	54 64P	65			v	
	חואט		340					
Sturnidae								
European Starling	EUST	Sturnus vulgaris	SNA	G5				PO-H
Motacillidae								
American Pipit	AMPI	Anthus rubescens	S4	G5				
Bombycillidae								
Bohemian Waxwing	BOWA	Bombycilla garrulus						
Cedar Waxwing	CEDW	Bombycilla cedrorum	S5B	G5				
Calcariidae								
Lapland Longspur	LALO	Calcarius lapponicus	S3B	G5				
Snow Bunting	SNBU	Plectrophenax nivalis	SNA	G5				
Parulidae								
Ovenbird	OVEN	Seiurus aurocapilla	S4B	G5			Х	
Louisiana Waterthrush	LOWA	Parkesia motacilla	S3B	G5	SC	THR		
Northern Waterthrush	NOWA	Parkesia noveboracensis	S5B	G5		TUD		
Golden-winged Warbler	GWWA	Vermivora chrysoptera	S4B	G4	SC	THK	X	
Blue-winged Warbler	BWWA	Vermivora cyanoptera	S4B SEB	G5				
Black-allo-Wille Warbler		Protopotaria citroa	53D 61P	65	END	END		
Tennessee Warbler			51D 55B	65		LIND		
Orange-crowned Warbler		Oreothlypis celata	53B 54B	65				
Nashville Warbler	NAWA	Oreothlypis ruficanilla	S5B	G5				
Connecticut Warbler	CONW	Oporornis agilis			S4B	G4		
Mourning Warbler	MOWA	Geothlypis philadelphia	S4B	G5	S4B	G5		
Common Yellowthroat	COYE	<i>Geothlypis trichas</i>	S5B	G5	S5B	G5		PO-S
Hooded Warbler	HOWA	Setophaga citrina	S4B	G5	S4B	G5	NAR	NAR
American Redstart	AMRE	Setophaga ruticilla	S5B	G5	S5B	G5		
Kirtland's Warbler	KIWA	Setophaga kirtlandii	S1B	G1	END	END		
Cape May Warbler	CMWA	Setophaga tigrina	S5B	G5				
Cerulean Warbler	CERW	Setophaga cerulea	S3B	G4	THR	END	Х	
Northern Parula	NOPA	Setophaga americana	S4B	G5			Х	
Magnolia Warbler	MAWA	Setophaga magnolia	S5B	G5				
Bay-breasted Warbler	BBWA	Setophaga castanea	S5B	G5				
Blackburnian Warbler	BLWA	Setophaga fusca	S5B	G5			X	
Yellow Warbler	YWAR	Setophaga petechia	S5B	G5				PR-T
Chestnut-sided Warbler	CSWA	Setophaga pensylvanica	S5B	G5				
Blackpoll Warbler BLWA Setophaga striata		S4B	G5			~		
Black-throated Blue Warbler	BANN	Setophaga caerulescens	S5B	G5			X	
Palm Warbler PAWA Setophaga palmarum (palmarum) Pine Warbler PIWA Setophaga pinus		55B	G5					
Pine Warbler PIWA Setophaga pinus Yellow-rumped Warbler YRWA Setophaga coronata		Setophaga coronata	55B	65				
Prairie Warbler		Setophaga discolor	530	65				
Black-throated Green Warbler	BTGW	Setophaga virens	530 558	65			x	

Common Name	Species Code Scientific Name		Provincial Status (S Rank)	Global Status (G Rank)	SARO List (MECP)	COSEWIC (Federal)	SWH Indicator Species	Highest Breeding Evidence
Canada Warbler	CAWA	Cardellina canadensis	S4B	G5	SC	THR		
Wilson's Warbler	WIWA	Cardellina pusilla	S4B	G5				
Yellow-breasted Chat	YBCH	Icteria virens	S2B	G5	END	END	Х	
Emberizidae								
Eastern Towhee	EATO	Pipilo erythrophthalmus	S4B	G5			Х	
American Tree Sparrow	ATSP	Spizella arborea	S4B	G5				
Chipping Sparrow	CHSP	Spizella passerina	S5B	G5				PO-S
Clay-colored Sparrow	CCSP	Spizella pallida	S4B	G5			Х	
Field Sparrow	FISP	Spizella pusilla	S4B	G5			Х	
Vesper Sparrow	VESP	Pooecetes gramineus	S4B	G5			х	CO-FY
Savannah Sparrow	SAVS	Passerculus sandwichensis	S4B	G5			х	PR-T
Grasshopper Sparrow	GRSP	Ammodramus savannarum	S4B	G5	SC	SC	х	
Henslow's Sparrow	HESP	Ammodramus henslowii	SHB	G4	END	END		
Fox Sparrow	FOSP	Passerella iliaca	S4B	G5				
Song Sparrow	SOSP	Melospiza melodia	S5B	G5				PR-A
Lincoln's Sparrow	LISP	Melospiza lincolnii	S5B	G5				
Swamp Sparrow	SWSP	Melospiza georgiana	S5B	65				
White-throated Sparrow	WTSP	Zonotrichia albicollis	S5B	G5				
White-crowned Sparrow	WCSP	Zonotrichia leucophrys	S4B	G5				
Dark-eved Junco	DEILI	Junco hvemalis	S 1B	65				
	DLJO		555	05				
Cardinalidae								
Scarlet Tanager	SCTA	Piranga olivacea	S/B	65			v	
Northern Cardinal	NOCA	Cardinalis cardinalis	540	65				DO S
Northern Cardinal		Carumans carumans	55	G5				P0-5
Rose-Dreasted Grospeak	TNDU		54B	65				P0-5
	INDU		540	65				PU-5
Istoridae								
Icteridae Behelink	RORO	Delieben v. en riverve	C 4 P	CE	тир	TUD		
BODOIINK	BOBO		54B	65	IHR	IHK		60.6F
	RWBL		54 64P	65	TUD	TUP		LU-LF
	EAME	Sturnella magna	S4B	GS	IHK	ІНК		
	WEME	Sturnella neglecta	S3B	65				
Yellow-headed Blackbird	YHBL	Xanthocephalus xanthocephalus	S2B	G5				
Rusty Blackbird	RUBL	Euphagus carolinus	S4B	G5	NAR	SC		
Brewer's Blackbird	BRBL	Euphagus cyanocephalus	S4B	G5			X	
Common Grackle	COGR	Quiscalus quiscula	S5B	G5				РО-Н
Brown-headed Cowbird	BHCO	Molothrus ater	S4B	G5				PR-P
Orchard Oriole	OROR	Icterus spurius	S4B	G5				
Baltimore Oriole	BAOR	Icterus galbula	S4B	G5				PR-T
Fringillidae								
Pine Grosbeak	PIGR	Pinicola enucleator	S4B	G5				
Purple Finch	PUFI	Carpodacus purpureus	S4B	G5				
House Finch	HOFI	Carpodacus mexicanus	SNA	G5				PR-P
Red Crossbill	RECR	Loxia curvirostra	S4B	G5				
White-winged Crossbill	WWCR	Loxia leucoptera	S5B	G5				
Common Redpoll	CORE	Acanthis flammea	S4B	G5				
Pine Siskin	PISI	Spinus pinus	S4B	G5				
American Goldfinch	AMGO	Spinus tristis	S5B	G5				PR-P
Evening Grosbeak EVGR Coccothraustes vespertinus		S4B	G5					
Passeridae								
House Sparrow	HOSP	Passer domesticus	SNA	G5				PR-P

Inside Study 1 Area	Outside Study Area	Background Reference	COMMON NAME	SCIENTIFIC NAME	SRANK	GLOBAL	SARO LIST (MECP)	COSEWIC	AREA SENSITIVE (ha)	Local Status Halton	Source	Area Sensitive Reference
2 X	X	X					(()			
3 X	х	х	ODONATA									
5 X			Ebony Jewelwing	Calopteryx maculata	55	G5				ш		
0 X 10 Y			Spotted Spreadwing	Lestes congener	55	65				HU		
10 X 14 X			Slender Spreadwing	Lestes rectangularis	55	G5						
33 X			Tule Bluet	Enallagma carunculatum	S5	G5				HR		
34 X			Familiar Bluet	Enallagma civile	S5	G5						
37 X			Marsh Bluet	Enallagma ebrium	S5	G5						
46 X			Eastern Forktail	Ischnura verticalis	S5	G5						
52 X			Lance-Tipped Darner	Aesnna constricta	55	65						
80 X			Lancet Clubtail	Gomphus exilis	55	G5				ни		
139 X			Eastern Pondhawk	Erythemis simplicicollis	S5	G5				110		
145 X			Dot-tailed Whiteface	Leucorrhinia intacta	S5	G5						
149 X			Widow Skimmer	Libellula luctuosa	S5	G5						
150 X			Twelve-Spotted Skimmer	Libellula pulchella	S5	G5						
151 X			Four-spotted Skimmer	Libellula quadrimaculata	S5	IG5						
155 X			Blue Dasher	Pachydiplax longipennis	55	65				ш		
150 A			Common Whitetail	Parilara navescens	S4 S5	65				HU		
164 X			Cherry-faced Meadowhawk	Sympetrum internum	55	G5						
166 X			Ruby Meadowhawk	Sympetrum rubicundulum	S5	G5						
168 X			Yellow-legged Meadowhawk	Sympetrum vicinum	S5	G5				HU		
170 X			Black Saddlebags	Tramea lacerata	S4	G5						
X												
177 X			BUTTERFLIES	Formala invessella	CF	CF						
177 X			Juvenal's Duskywing	Angulowypha pumitor	55	65						
184 X			European Skipper	Thymelicus lineola	SNA	G5						
188 X			Tawny-edged Skipper	Polites themistocles	S5	G5						
195 X			Hobomok Skipper	Poanes hobomok	S5	G5						
200 X			Dun Skipper	Euphyes vestris	S5	G5		THR				
203 X			Black Swallowtail	Papilio polyxenes	S5	G5						
205 X			Canadian Tiger Swallowtail	Papilio canadensis	S5	65						
210 A				Colias philodice	SINA S5	65						
225 X			Banded Hairstreak	Satvrium calanus	S4	G5						
226 X			Hickory Hairstreak	Satyrium caryaevorum	S4	G4						
227 X			Striped Hairstreak	Satyrium liparops	S5	G5						
232 X			Eastern Tailed Blue	Everes comyntas	S5	G5						
234 X			Silvery Blue	Glaucopsyche lygdamus	S5	G5						
244 X			Northern Crescent	Phycoides pascoensis	55	G5				ЦВ		
249 A			American Lady	Vanessa virginiensis	55	65				пк		
255 X			Red Admiral	Vanessa atalanta	S5B	65						
256 X			White Admiral	Limenitis arthemis	S5	G5						
257 X			Red-spotted Purple	Limenitis arthemis astyanax	S5	G5T5						
262 X			Northern Pearly Eye	Enodia anthedon	S5	G5						
265 X			Little Wood-Satyr	Megisto cymela	S5	G5						
266 X			Common Ringlet	Coenonympha tullia	55	65						
270 X			Monarch	Danaus plevinnus	53 S4B S2N	165	SC	END				
X			Honarch	Danads piexippus	J-D, J2N	105	50	LIND				
X			MOTHS									
326 X			Virginia Ctenucha	Ctenucha virginica	S5	G5						
X												
X			AMPHIBIANS		65	CT.						
387 X	-		American Toad	Anaxyrus americanus Hyla versicolor	55	105						
392 X			Spring Peeper	Pseudacris crucifer	55	65						
397 X			Northern Leopard Frog	Lithobates pipiens	S5	G5		NAR				
X					1							
X			REPTILES									
401	Х		Snapping Turtle	Chelydra serpentina	S4	G5	SC	SC				
413 X			Eastern Gartersnake	Thamnophis sirtalis	IS5	G5						
419 X			Northern Red-Bellied Shake	Storeria occipitomaculata	55	165		NAD				
420 A 428 X			Fastern Milksnake	Lampropeltis triangulum	53	G5	NAR	INAK SC				
X			Lustern mikshake		1.57							

	Inside	Outside								AREA	Local		Area
	Study	Study	Background				GLOBAL	SARO LIST		SENSITIVE	Status		Sensitive
1	Area	Area	Reference		SCIENTIFIC NAME	SRANK	STATUS	(MECP)	COSEWIC	(ha)	Halton	Source	Reference
	X			BIRDS									
437	X		FO	Canada Goose	Branta canadensis	55	G5						
4//	X		FO	Great Blue Heron	Ardea herodias	54	65						
482	X		FO	Turkey Vulture	Cathartes aura	55B, 53N	65						
491	X		FO	Red-tailed Hawk	Buteo jamaicensis	55	G5						
506	X		FO	Spotted Sandpiper	Actitis macularius	55	65						
543	X		FO	Mourning Dove	Zenaida macroura	55	GS						
545	A V		F0	Didck-Dilled Cuckoo	Coccyzus erytinoptilainus	5453D	GS				HU		
501	A V		F0	Red-Deliled Woodpecker	Melanerpes caronnus	55	GS				ΠU		
563	X		FU	Downy woodpecker	Picolaes pubescens	55	GS						
500	X		FU	Northern Flicker	Colaptes auratus	55	GS			20 50*			Neulan et al. 1000
50/	A V	V	F0	Fielden Woodpecker	Diyocopus pileatus	55	GS	50	50	30-30**	ΠU		Nayior et al., 1996
5/2	^	÷	F0	Edstern Phases	Contopus virens	54D	GS	SC	SC				
570	V	^	F0	Creat Created Elyesteher	Sayonnis phoebe	53D	GS						
5/9	1 2		50	Eastorn Kinghird		530	65						
500	1 2		50	Warbling Viroa	Viroo ailuuc	54D	65						
500	1 2		50	Red aved Viree	Vireo glivasous	550	65						
500	Ŷ	ly	FO	Blue lav	Cvanocitta cristata	55	65						
590	Ŷ	<u>^</u>	FO	American Crow	Convus brachyrhynchos	55	65						
591	Ŷ		FO	Common Paven	Convus coray	55	65				нр		
592	x	-	FO	Horned Lark	Fremonhila alnestris	54	65				HU		
595	X		FO	Northern Pough-winged Swallow	Stelaidonteryy serrinennis	S4B	65				HU		
500	X	v	FO	Barn Swallow	Hirupdo rustica	S4B	65	тнр	тнр		110		
600	X	X	FO	Black-capped Chickadee	Poecile atricanillus	55	65		THIN				
604	X	×	FO	White-breasted Nuthatch	Sitta carolinensis	55	65			10			
607	X	x	FO	House Wren	Troglodytes aedon	S5B	65			10			
620	X	X	FO	American Bohin	Turdus migratorius	55	G5						
621	X	~	FO	Gray Cathird	Dumetella carolinensis	S58 S3N	G5						
624	X		FO	European Starling	Sturnus vulgaris	SNA	G5						
642	X		FO	Common Yellowthroat	Geothlynis trichas	S58 S3N	G5						
652	X		FO	Yellow Warbler	Setophaga petechia	S5B	G5						
666	Х		FO	Chipping Sparrow	Spizella passerina	S5B, S3N	G5						
669	Х		FO	Vesper Sparrow	Pooecetes gramineus	S4B	G5				HU		
670	Х		FO	Savannah Sparrow	Passerculus sandwichensis	S5B, S3N	G5						
674	X	x	FO	Song Sparrow	Melospiza melodia	S5	G5						
681	X	x	FO	Northern Cardinal	Cardinalis cardinalis	S5	G5						
682	X		FO	Rose-breasted Grosbeak	Pheucticus Iudovicianus	S5B	G5						
683	Х		FO	Indigo Bunting	Passerina cyanea	S5B	G5						
685	Х	X	FO	Red-winged Blackbird	Agelaius phoeniceus	S5	G5						
691	Х		FO	Common Grackle	Quiscalus quiscula	S5	G5						
692	Х		FO	Brown-headed Cowbird	Molothrus ater	S5	G5						
694	Х		FO	Baltimore Oriole	Icterus galbula	S4B	G5						
697	Х		FO	House Finch	Carpodacus mexicanus	SNA	G5						
702	Х		FO	American Goldfinch	Spinus tristis	S5	G5						
704	х	Х	FO	House Sparrow	Passer domesticus	SNA	G5						
	Х												
	х			MAMMALS									
719	Х			Eastern Red Bat	Lasiurus borealis	S4	G3G4						
720	х			Big Brown Bat	Eptesicus fuscus	S4	G5						
721	х			Hoary Bat	Lasiurus cinereus	S4	G3G4						
722	Х		FO	Eastern Cottontail	Sylvilagus floridanus	S5	G5						
725	Х			Eastern Chipmunk	Tamias striatus	S5	G5						
728	Х		FO	Eastern Gray Squirrel	Sciurus carolinensis	S5	G5						
729	X			Red Squirrel	Tamiasciurus hudsonicus	S5	G5						
732	X			Beaver	Castor canadensis	55	G5						
734	X			Deer Mouse	Peromyscus maniculatus	55	65						
738	X			Meadow Vole	Microtus pennsylvanicus	55	65						
745	X			Loyote	Canis latrans	55	65						
748	X			Ked Fox	vuipes vuipes	55	65						
751	X			Northern Kaccoon	Procyon lotor	55	65						
/ /58	X			IStriped Skunk	mepnitis mepnitis	55	65						1

SUMMARY

Total Odonata:			
Total Moths:			
Total Amphibians: Total Reptiles:			

Turida	Outside							1	4054	11			
Inside	Outside	·							AREA	Local		Area	
Study	Study	Background	COMMON NAME		CDANK	GLOBAL	SARU LIST	COSTWIC	SENSITIVE	Status	6	Sensitive	
I Area	Area	Reference		SCIENTIFIC NAME	SKANK	STATUS	(MECP)	COSEWIC	(na)	Halton	Source	Reference	
			Total Menoreales	44									
			i otal mammais:	14									
			SIGNIEICANT SPECIES										
			SIGNIFICANT SPECIES										
			Clabali	0									
			National:	0									
			Provincial	4									
			Regional:										
			Local:	3									
				-									
			Explanation of Status and Acronymns										
			COSSARO: Committee on the Status of Species at Risk in O	ntario									
			COSEWIC: Committee on the Status of Endangered Wildlife	in Canada									
			REGION: Rare in a Site Region										
			S1: Critically Imperiled-Critically imperiled in the province (often 5 or fewer occurrences)									
			S2: Imperiled-Imperiled in the province, very few population	s (often 20 or fewer),									
			S3: Vulnerable-Vulnerable in the province, relatively few pop	oulations (often 80 or fewer)									
			S4: Apparently Secure—Uncommon but not rare										
			S5: Secure-Common, widespread, and abundant in the pro-	/ince									
			SX: Presumed extirpated										
			SH: Possibly Extirpated (Historical)										
			SNR: Unranked										
			SU: Unrankable—Currently unrankable due to lack of information	ation									
			SNA: Not applicable—A conservation status rank is not appli	cable because the species is not a suitab	ole target for	conservation a	ctivities.						
			S#S#: Range Rank—A numeric range rank (e.g., S2S3) is us	ed to indicate any range of uncertainty a	bout the sta	tus of the specie	es						
			S#B- Breeding status rank										
			S#N- Non Breeding status rank										
			?: Indicates uncertainty in the assigned rank										
			G1C2: Extremely rare globally; usually fewer than 5 occurrences	s in the overall range									
			G1: Venu rare globally: usually between 5.10 occurrences in t	he overall range									
			G2G3: Very rare to uncommon diobally	ne overall range									
			G3: Rare to uncommon globally: usually between 20-100 occ	urrences									
			G3G4: Rare to common globally										
			G4: Common globally: usually more than 100 occurrences in	the overall range									
			G4G5: Common to very common globally										
			G5: Very common globally: demonstrably secure										
			GU: Status uncertain, often because of low search effort or ca	ryptic nature of the species; more data n	eeded.								
			T: Denotes that the rank applies to a subspecies or variety										
			Q: Denotes that the taxonomic status of the species, subspec	cies, or variety is questionable.									
			END: Endangered										
			THR: Threatened										
			SC: Special Concern										
			NAR: Not At Risk										
			IND: Indeterminant, insufficient information to assign status										
			DD: Data Deficient										
			6: Rare in Site Region 6										
			7: Rare in Site Region 7										
			Area: Minimum patch size for area-sensitive species (ha)										
			H- nigniy significant in Hamilton Region (i.e. rare)										
			m- moderately significant in Hamilton Region (i.e. uncommor	1)									
			L 1- extremely rare locally (Toronto Region)										
			L2- very rare locally (I oronto Region)										
			L3- rare to uncommon locally (Toronto Region)										
			nk- rare in nation Region, nignly significant										
			* The Pileated Woodpecker will incorporate smaller woodlote	into its homerange, therefore it moving	he a true on	og_concitivo or	cies (Navlor et e	1 1996)					
			The Fileated woodpecker will incorporate stillallet woodlots	into no nomerange, meretore it may not	ve a une ali	ca-actionitive spe	oros (mayror et a	. 1350)					
			LATEST STATUS UPDATE										
			Odonata: July 2021										
			,										

Odonata: July 2021 Butterflies: July 2021 Other Arthropods: July 2021 Amphibans: July 2021 Reptiles: July 2021 Birds: July 2021 Mammals: July 2021

NOTE

Inside	Outside								AREA	Local		Area
Study	Study	Background				GLOBAL	SARO LIST		SENSITIVE	Status		Sensitive
1 Area	Area	Reference	COMMON NAME	SCIENTIFIC NAME	SRANK	STATUS	(MECP)	COSEWIC	(ha)	Halton	Source	Reference

All rankings for birds refer to breeding birds unless the ranking is followed by N

REFERENCES

SARO List

Endangered Species Act, 2007 (Bill 184). Species at Risk in Ontario List (O. Reg. 230/08). Accessed October 7, 2016.

COSEWIC Status

COSEWIC. 2016. Canadian Species at Risk. Committee on the Status of Endangered Wildlife in Canada.

Local Status

Dwyer, Jill K. 2003. Nature Counts Project Hamilton Natural Areas Inventory 2003. Species Checklists. Hamilton Naturalists Club. Halton Natural Areas Inventory. 2006. Volume 2 Species Checklists (ISBN 0-9732488-7-4). Region of Waterico. 1996. Regionally Significant Breeding Birds. Toronto and Region Conservation Authority (TRCA). 2016. Revised Fauna Scores and Ranks, February 2016 Hamilton Conservation Authority (HCA). 2014. Hamilton Natural Areas Inventory Project (3rd Edition).

Significant Wildlife Habitat (SWH) Indicator Species

Ministry of Natural Resources and Forestry (MNRF). 2015. Significant wildlife habitat criteria schedules for ecoregion 6E. Available at: https://dr6j45jk9xcmk.cloudfront.net/documents/4775/schedule-6e-jan-2015-access-ver-final-s.pdf. Ministry of Natural Resources and Forestry (MNRF). 2015. Significant wildlife habitat criteria schedules for ecoregion 7E. Available at: https://dr6j45jk9xcmk.cloudfront.net/documents/4776/schedule-7e-jan-2015-access-ver-final-s.pdf. Natural Heritage Information Center (NHIC). 2021. Draitis Speeis ELI: All Species.

Area-sensitive information

Austen, M.J.W., M.D. Cadman, and R.D. James. 1994. Ontario birds at risk: status and conservation needs. Toronto and Port Rowan, ON: Federation of Ontario Naturalists and Long Point Bird Observatory. 165 pp.

Dunn, Erica H. and David J. Agro. 1995. Black Tern (Childonias niger), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Omithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/147

Herkert, J.R. 1991. An ecological study of the breeding birds of grassland habitats within Illinois. Ph.D. dissertation. University of Illinois, Urbana, IL. 112 pp.

Hejl, S.J., J.A. Holmes, and D.E. Kroodsma. 2002. Winter Wren (Troglodtyes troglodytes). In Poole, A., and F. Gill, eds. The birds of North America, No. 623. Philadelphia, PA: The Birds of North America, Inc. 31 pp.

Naylor, B. J., J. A. Baker, D. M. Hogg, J. G. McNicol and W. R. Watt. 1996. Forest Management Guidelines for the Provision of Pileated Woodpecker Habitat. Ontario Ministry of Natural Resources, Forest Management Branch, Sault Ste. Marie, Ontario. 26 pp.

Page, A.M., and M.D. Cadman. 1994. Status report on the Acadian Flycatcher Empidonax virescens in Canada. Prepared for the Committee on the Status of Endangered Wildlife in Canada. 27 pp

Robbins, C.S. 1979. Effect of forest fragmentation on bird populations. Pp. 198-212 in DeGraaf, R.M., and K.E. Evans, eds. Management of northcentral and northeastern forests for nongame birds. United States Department of Agriculture, Forest Service General Technical Report NC-51. 268 pp. Sandilands, A. 2005. Birds of Ontario. Habitat Requirements, Limiting Factors and Status. UBC Press.

GEI	Consultants
Sava	nta Division

Table 7: Turtle Nesting Survey Results

DATE	SURVEY	TRANSECT OR	ISECT OR SPECIES CODE								
SURVEYED	ROUND	STATION NUMBER	ΝΟΤυ	MPTU	SNTU	MATU	BLTU	SSTU	WOTU	STIN	SPTU
31-MA-16	1	TN 1	х								

JA FE

MR AP MA JN JL AU SE

00

NO

DE

Turtle Survey Results – Nesting

- Soil sampling was completed on the site, one transect (TN1) was surveyed.
- TN1 had silty clay loam dominated soils and no south facing slope making area surveyed poor turtle nesting habitat.
- No nesting evidence (i.e., test digs, claw marks, predated nests) were observed on site.

LEGEND:

SPECIES	COMMON NAME	SCIENTIFIC NAME	DATE
CODE			MONTH
NOTU	No Turtles	No turtles despite survey effort	January
MPTU	Midland Painted Turtle	Chrysemys picta marginata	February
SNTU	Snapping Turtle	Chelydra serpentina	March
MATU	Northern Map Turtle	Graptemys geographica	April
BLTU	Blanding's Turtle	Emydoidea blandingii	May
SSTU	Spiny Soft-shelled Turtle	Apalone spinifera	June
WOTU	Wood Turtle	Glyptemys insculpta	July
STIN	Stinkpot Turtle	Stemotherus odoratus	August
SPTU	Spotted Turtle	Clemmys guttata	September
			October

Appendix	B2

November

December

Table 8: Salamander Survey Results

DATE	SURVEY	TRANSECT OR		SPECIES CODE							
SURVEYED	ROUND	STATION NUMBER	NOSA	RBSA	YSSA	BSSA	JEFF	JESA	TRSA	JEHY	SISA
AP 14, 2016	1	CB1	Х								
AP 14, 2016	1	CB2	Х								
AP 14, 2016	1	CB3	Х								
AP 14, 2016	1	CB4	Х								
AP 14, 2016	1	CB5	Х								
AP 14, 2016	1	CB6	Х								
AP 14, 2016	1	CB7	Х								
AP 14, 2016	1	CB8	Х								
AP 14, 2016	1	CB9	Х								
AP 14, 2016	1	CB10	Х								
AP 14, 2016	1	CB11	Х								
AP 14, 2016	1	CB12	Х								
AP 14, 2016	1	R1	Х								
AP 14, 2016	1	R2	Х								
AP 20, 2016	2	CB1	Х								
AP 20, 2016	2	CB2	Х								
AP 20, 2016	2	CB3	Х								
AP 20, 2016	2	CB4	Х								
AP 20, 2016	2	CB5	Х								
AP 20, 2016	2	CB6	Х								
AP 20, 2016	2	CB7	Х								
AP 20, 2016	2	CB8	Х								
AP 20, 2016	2	CB9	Х								
AP 20, 2016	2	CB10	Х								
AP 20, 2016	2	CB11	Х								
AP 20, 2016	2	CB12	Х								
AP 20, 2016	2	R1	Х								
AP 20, 2016	2	R2	Х								
MA 4, 2016	3	CB1	Х								
MA 4, 2016	3	CB2	Х								

Table 8: Salamander Survey Results

DATE	SURVEY	TRANSECT OR		SPECIES CODE								
SURVEYED	ROUND	STATION NUMBER	NOSA	RBSA	YSSA	BSSA	JEFF	JESA	TRSA	JEHY	SISA	
MA 4, 2016	3	CB3	Х									
MA 4, 2016	3	CB4	Х									
MA 4, 2016	3	CB5	Х									
MA 4, 2016	3	CB6	Х									
MA 4, 2016	3	CB7	Х									
MA 4, 2016	3	CB8	Х									
MA 4, 2016	3	CB9	Х									
MA 4, 2016	3	CB10	Х									
MA 4, 2016	3	CB11	Х									
MA 4, 2016	3	CB12	Х									
MA 4, 2016	3	R1	Х									
MA 4, 2016	3	R2	Х									

LEGEND:

SPECIES CODE	COMMON NAME	SCIENTIFIC NAME
NOSA	No Salamanders	No salamanders despite survey effort
RBSA	Eastern Red-backed Salamander	Plethodon cinereus
YSSA	Spotted Salamander	Ambystoma maculatum
BSSA	Blue-spotted Salamander	Ambystoma laterale
JEFF	Jefferson complex (Undetermined)	Ambystoma (Jeffersoniuanum complex)
JESA	Jefferson Salamander	Ambystoma jeffersonianum
TRSA	Jefferson Salamander x Blue-spotted Salamander (BSSA dom.)	Ambystoma jeffersonianum laterale (LLJ)
JEHY	Jefferson Salamander x Blue-spotted Salamander (DNA unknown)	Ambystoma jeffersonianum (DNA Unknown)
SISA	Jefferson Salamander x Blue-spotted Salamander (Jefferson genome dominates)	Ambystoma jeffersonianum (ЦЈ)

DATE					
MONTH	CODE				
January	JA				
February	FE				
March	MR				
April	AP				
May	MA				
June	JN				
July	JL				
August	AU				
September	SE				
October	OC				
November	NO				
December	DE				

Table 9: Snake Coverboard and Transect Survey Results

DATE	SURVEY	TRANSECT 'T' # OR		SPECIES CODE													
SURVEYED	ROUND	COVERBOAD 'C' #	NOSN	EAGA	MISN	BRSN	RBSN	RASN	RISN	BLRA	BUGA	FOSN	HOSN	MASS	RNSN	SGSN	QUSN
2016																	
14-AP-16	1	CB1	Х														
14-AP-16	1	CB2	Х														
14-AP-16	1	CB3	Х														
14-AP-16	1	CB4	Х														
14-AP-16	1	CB5	Х														
20-AP-16	2	CB1	Х														
20-AP-16	2	CB2	Х														
20-AP-16	2	CB3	Х														
20-AP-16	2	CB4	Х														
20-AP-16	2	CB5	Х														
04-MA-16	3	CB1	Х														
04-MA-16	3	CB2	Х														
04-MA-16	3	CB3	Х														
04-MA-16	3	CB4	Х														
04-MA-16	3	CB5	Х														
2017																	
21-SE-17	1	CB1	Х														
21-SE-17	1	CB2	Х														
21-SE-17	1	CB3	Х														
22-SE-17	2	CB1	Х														
22-SE-17	2	CB2	Х														
22-SE-17	2	CB3	Х														
02-OC-17	3	CB1	Х														

Table 9: Snake Coverboard and Transect Survey Results

DATE	SURVEY	TRANSECT 'T' # OR							S	PECIES COD	DE						
SURVEYED	ROUND	COVERBOAD 'C' #	NOSN	EAGA	MISN	BRSN	RBSN	RASN	RISN	BLRA	BUGA	FOSN	HOSN	MASS	RNSN	SGSN	QUSN
02-OC-17	3	CB2	Х														
02-OC-17	3	CB3	Х														

LEGEND:

SPECIES	COMMON NAME	SCIENTIFIC NAME	
CODE			MONTH
NOSN	No Snakes	No snakes despite survey effort	January
EAGA	Eastern Gartersnake	Thamnophis sirtalis sirtalis	February
MISN	Eastern Milksnake	Lampropeltis triangulum triangulum	March
BRSN	Northern Brownsnake	Storeria dekayi dekayi	April
RBSN	Northern Red-bellied Snake	Storeria occipitomaculata occipitomaculata	May
RASN	Gray Rat Snake	Elaphe obsolete obsoleta	June
RISN	Eastern Ribbonsnake	Thamnophis sauritus	July
BLRA	Blue Race Snake	Coluber constrictor foxii	August
BUGA	Butlers Gartersnake	Thamnophis butleri	September
FOSN	Eastern Foxsnake	Elaphi gloydi	October
HOSN	Eastern Hog-nosed Snake	Heterodon platifhinos	November
MASS	Eastern Massassauga	Sistrusus catenatus catenatus	December
RNSN	Ring-necked Snake	Diadophis punctatus	
SGSN	Smooth Greensnake	Opheodrys vernalis	
QUSN	Queen Snake	Regina septemvittata	

DA	TE
MONTH	CODE
January	JA
February	FE
March	MR
April	AP
May	MA
June	JU
July	JL
August	AU
September	SE
October	OC
November	NO
December	DE

SURVEY	SURVEY	TRANSECT	SPECIES OBSERVED	UTM OF OBSERVATION		INDIV	INDIVIDUALS	
DATE (DD-MM-YY)	ROUND	NO.		EASTING	NORTHING	QTY	STATUS	
2016								
14-AP-16	1	R1	Ground Hog	589316	4823015	1	Dead	
14-AP-16	1	R1	Mammal Spp.	589600	4822726	1	Dead	
14-AP-16	1	R2	None observed	-	-	-	-	
20-AP-16	2	R1	None observed	-	-	-	-	
20-AP-16	2	R2	Eastern Gartersnake	588483	4821951	1	Live	
20-AP-16	2	R2	American Toad	588408	4822026	1	Dead	
20-AP-16	2	R2	Mourning Dove	588361	4822076	1	Dead	
20-AP-16	2	R2	Barn Swallow	588207	4822230	1	Live	
04-MA-16	3	R1	None observed	-	-	-	-	
04-MA-16	3	R2	Eastern Cottontail	588332	4822116	1	Dead	
04-MA-16	3	R2	American Toad	588410	4822043	1	Dead	
04-MA-16	3	R2	American Toad	588419	4822027	1	Dead	
31-MA-16	4	R1	Eastern Milksnake	589649	4822669	1	Dead	
31-MA-16	4	R1	Peromyscus Spp.	589389	4822946	1	Dead	
31-MA-16	4	R1	Eastern Gartersnake	589377	4822940	1	Dead	
31-MA-16	4	R1	Grey Squirrel	589357	4822952	1	Dead	
31-MA-16	4	R1	Red Squirrel	589358	4822955	1	Dead	
31-MA-16	4	R1	Eastern Chipmunk	589358	4822961	1	Dead	
31-MA-16	4	R1	Eastern Chipmunk	589348	4822967	2	Dead	
31-MA-16	4	R1	Eastern Chipmunk	589293	4823030	1	Dead	
31-MA-16	4	R1	Eastern Chipmunk	589292	4823031	1	Dead	
31-MA-16	4	R1	American Robin	589271	4823050	1	Dead	
31-MA-16	4	R1	Downy Woodpecker	589342	4822985	1	Dead	
31-MA-16	4	R1	Redwing Blackbird	589459	4822860	1	Dead	
31-MA-16	4	R2	None observed	-	-	-	-	
2017			I				1	
21-SE-17	1	R1	Unidentified Mammal	589574	4822736	1	Dead	
21-SE-17	1	R1	Unidentified Mammal	589573	4822733	1	Dead	
21-SE-17	1	R1	Eastern Gartersnake	589563	4822753	1	Dead	
21-SE-17	1	R1	Unidentified Mammal	589562	4822763	1	Dead	
21-SE-17	1	R1	Unidentified Mammal	589363	4822979	1	Dead	
21-SE-17	1	R1	American Robin	589337	4822979	1	Dead	
21-SE-17	1	R1	Chipmunk	589303	4823015	1	Dead	

Table 10: Wildlife Road Crossing Survey Results

SURVEY	SURVEY	TRANSECT	SPECIES OBSERVED	UTM OF OI	SERVATION	INDIV	INDIVIDUALS		
(DD-MM-YY)	ROOND	NO.		EASTING	NORTHING	QTY	STATUS		
21-SE-17	1	R1	Eastern Gartersnake	589306	4823014	1	Dead		
21-SE-17	1	R1	Eastern Gartersnake	589308	4823019	1	Dead		
21-SE-17	1	R1	Eastern Gartersnake	589303	4823020	1	Dead		
21-SE-17	1	R1	Eastern Gartersnake	589348	4822973	1	Dead		
21-SE-17	1	R1	Eastern Gartersnake	589389	4822940	1	Dead		
21-SE-17	1	R1	Eastern Gartersnake	589437	4822871	1	Dead		
21-SE-17	1	R1	Dekay's Brownsnake	589481	4822838	1	Dead		
21-SE-17	1	R2	Eastern Gartersnake	588312	4822118	1	Dead		
21-SE-17	1	R2	Unidentified Mammal	588433	4822018	1	Dead		
21-SE-17	1	R2	Unidentified Frog	588434	4822010	1	Dead		
21-SE-17	1	R2	Eastern Gartersnake	588326	4822103	1	Dead		
21-SE-17	1	R2	Eastern Gartersnake	588313	4822126	1	Dead		
21-SE-17	1	R2	Eastern Gartersnake	588309	4822129	1	Dead		
28-SE-17	2	R2	Northern Leopard Frog	588312	4822127	1	Dead		
28-SE-17	2	R2	Northern Leopard Frog	588408	4822024	1	Dead		
28-SE-17	2	R2	American Toad	588430	4822005	1	Dead		
28-SE-17	2	R2	Eastern Gartersnake	588425	4821999	1	Dead		
28-SE-17	2	R1	Northern Raccoon	589573	4822734	1	Dead		
28-SE-17	2	R1	Eastern Gartersnake	589589	4827723	1	Dead		
28-SE-17	2	R1	Chipmunk	589605	4822722	1	Dead		
28-SE-17	2	R1	American Toad	589585	4822732	1	Dead		
28-SE-17	2	R1	Northern Raccoon	589578	4822737	1	Dead		
28-SE-17	2	R1	Northern Raccoon	589564	4822750	1	Dead		
28-SE-17	2	R1	Striped Skunk	589526	4822791	1	Dead		
28-SE-17	2	R1	Eastern Gartersnake	589383	4822934	1	Dead		
28-SE-17	2	R1	American Robin	589324	4822987	1	Dead		
28-SE-17	2	R1	American Toad	589308	4823014	1	Dead		
28-SE-17	2	R1	Chipmunk	589308	4823014	1	Dead		
28-SE-17	2	R1	Eastern Gartersnake	589250	4823068	1	Dead		
28-SE-17	2	R1	Chipmunk	589227	4823088	1	Dead		
28-SE-17	2	R1	Eastern Gartersnake	589224	4823095	1	Dead		
28-SE-17	2	R1	Northern Leopard Frog	589142	4823168	1	Dead		
28-SE-17	2	R1	Northern Raccoon	589023	4823299	1	Dead		
28-SE-17	2	R1	Northern Leopard Frog	588907	4823387	1	Dead		
28-SE-17	2	R1	Eastern Gartersnake	588877	4823442	1	Dead		

Table 10: Wildlife Road Crossing Survey Results

SURVEY	SURVEY	TRANSECT	SPECIES OBSERVED	UTM OF OI	UTM OF OBSERVATION		
DATE (DD-MM-YY)	ROUND	NO.		EASTING	NORTHING	QTY	STATUS
28-SE-17	2	R1	Eastern Gartersnake	589215	4823143	1	Dead
28-SE-17	2	R1	Eastern Gartersnake	589211	4823119	2	Dead
28-SE-17	2	R1	Eastern Gartersnake	589216	4823113	1	Dead
28-SE-17	2	R1	Eastern Gartersnake	589216	4823115	1	Dead
28-SE-17	2	R1	Eastern Gartersnake	589230	4823099	1	Dead
28-SE-17	2	R1	Unidentified Mammal	589234	4823096	1	Dead
28-SE-17	2	R1	Eastern Gartersnake	589244	4823086	1	Dead
28-SE-17	2	R1	Chipmunk	589299	4823028	1	Dead
28-SE-17	2	R1	Unidentified Frog	589340	4822984	1	Dead
28-SE-17	2	R1	Eastern Gartersnake	589442	4822886	1	Dead
28-SE-17	2	R1	Red-bellied Snake	589508	4822816	1	Dead
28-SE-17	2	R1	Eastern Gartersnake	589512	4822814	1	Dead
02-OC-17	3	R2	Striped Skunk	588587	4821857	1	Dead
02-OC-17	3	R1	Snapping Turtle	589061	4823277	1	Dead
02-OC-17	3	R1	Snapping Turtle	589079	4823249	23	Dead

Table 10: Wildlife Road Crossing Survey Results

LEGEND:

Μ	IONTH
JA	January
FE	February
MR	March
AL	April
MA	May
JN	June
JL	July
AU	August
SE	September
OC	October
NO	November
DE	December

Table 11: Cavity Density Survey Results

AREA IDENTIFICATION	COMMUNITY TYPE	AREA SIZE (ha)	# OF CAVITY TREES OBSERVED	# OF CAVITY TREES/HECTARE
Polygon 1	SWD3-3	2.0	22	11
Polygon 2	SWD4-5, FOD6-5, SWM5-1	10.5	17	1.6

Table 12: 2016 Bat Acoustic Survey Results

SURVEY	SURVEY	TRANSECT/										
DATES	ROUND	POINT COUNT/SM3BAT	NOBA	LACI	LANO	EPFU	LABO	PESU	MYLU	MYSE	MYLE	40K Myotis Species
8-JUN-16	1	BT1					Х					
8-JUN-16	1	BP1	Х									
8-JUN-16	1	BP2	Х									
27-JUN-16	2	BT1				Х						
27-JUN-16	2	BP1		Х		Х						
27-JUN-16	2	BP2					Х					

LEGEND:

SPECIES CODE	COMMON NAME	SCIENTIFIC NAME	
NOBA	No Bats	No recorded despite survey effort	
LACI	Hoary bat	Lasiurus cinereus	
LANO	Silver-haired bat	Lasionycteris noctivagans	
EPFU	Big Brown bat	Eptesicus fuscus	
LABO	Eastern Red bat	Lasiurus borealis	
PESU	Tri-coloured bat	Perimyotis subflavus	
MYLU	Little Brown Myotis	Myotis lucifugus	
MYSE	Northern Myotis	Myotis septentrionalis	
MYLE	Eastern Small-footed Myotis	Myotis leibii	

SURVEY DATE	SURVEY ROUND NO.	TRANSECT NO.	SPECIES OBSERVED	EVIDENCE TYPE (# OF TRACKS, TRAILS, SCAT, BROWSE, ETC.)
2015	L		I	
05-FEB	1	1	Red Fox	Tracks
05-FEB	1	1	Meadow Vole	Tracks
05-FEB	1	2	Red Fox	Tracks
05-FEB	1	2	Deer Mouse	Tracks
05-FEB	1	2	Meadow Vole	Tracks
05-FEB	1	3	Red Fox	Tracks
05-FEB	1	3	Eastern Gray Squirrel	Tracks
05-FEB	1	3	Meadow Vole	Tracks
05-FEB	1	4	Red Fox	Tracks
05-FEB	1	4	Eastern Gray Squirrel	Tracks
05-FEB	1	4	Coyote	Tracks
05-FEB	1	5	Red Fox	Tracks
05-FEB	1	6	Red Fox	Tracks
05-FEB	1	7	Red Fox	Tracks
05-FEB	1	8	Red Fox	Tracks
05-FEB	1	8	Eastern Gray Squirrel	Tracks
05-FEB	1	9	Red Fox	Tracks
05-FEB	1	9	Coyote	Tracks
05-FEB	1	9	Deer Mouse	Tracks
05-FEB	1	10	Red Fox	Tracks
05-FEB	1	10	Eastern Gray Squirrel	Tracks
05-FEB	1	10	Coyote	Tracks
05-FEB	1	11	Red Fox	Tracks
05-FEB	1	11	Beaver	Browsed trees, Tracks
2016				
17-FEB	2	1	Red Fox	Tracks
17-FEB	2	1	Coyote	Tracks
17-FEB	2	1	Meadow Vole	Tracks
17-FEB	2	2	Red Fox	Tracks
17-FEB	2	2	Meadow Vole	Tracks
17-FEB	2	3	Eastern Gray Squirrel	Tracks
17-FEB	2	3	Meadow Vole	Tracks

Table 13: Winter Wildlife Survey Results

SURVEY DATE	SURVEY ROUND NO.	TRANSECT NO.	SPECIES OBSERVED	EVIDENCE TYPE (# OF TRACKS, TRAILS, SCAT, BROWSE, ETC.)
17-FEB	2	4	Red Fox	Tracks
17-FEB	2	4	Eastern Gray Squirrel	Tracks
17-FEB	2	4	Meadow Vole	Tracks
17-FEB	2	4	Eastern Cottontail	Tracks
17-FEB	2	5	Red Fox	Tracks
17-FEB	2	5	Eastern Cottontail	Tracks
17-FEB	2	5	Meadow Vole	Tracks
17-FEB	2	6	Red Fox	Tracks
17-FEB	2	6	Meadow Vole	Tracks
17-FEB	2	6	Eastern Cottontail	Tracks
17-FEB	2	6	Eastern Gray Squirrel	Tracks
17-FEB	2	7	Red Fox	Tracks
17-FEB	2	7	Coyote	Tracks
17-FEB	2	7	Canada Goose	Tracks
17-FEB	2	7	Meadow Vole	Tracks
17-FEB	2	8	Red Fox	Tracks
17-FEB	2	8	Eastern Gray Squirrel	Tracks
17-FEB	2	8	Meadow Vole	Tracks
17-FEB	2	9	Red Fox	Tracks
17-FEB	2	9	Meadow Vole	Tracks
17-FEB	2	10	Red Fox	Tracks
17-FEB	2	10	Eastern Gray Squirrel	Tracks
17-FEB	2	11	Red Fox	Tracks
17-FEB	2	11	Eastern Gray Squirrel	Tracks
17-FEB	2	12	Eastern Gray Squirrel	Tracks

Table 13: Winter Wildlife Survey Results

DRAINAGE FEATURE	STEP 1. HYDROLOGY		STEP 2. - RIPARIAN	STEP 3. FISH HABITAT	AT STEP 4. TERRESTRIAL HABITAT	MANAGEMENT RECOMMENDATION PER HDFA GUIDELINES	FINAL MANAGEMENT RECOMMENDATION	
SEGIVIENT	FUNCTION	MODIFIERS						
R1S1	FT – 7 FC – 4 (Round 1) FC – 2 (Round 2) FC – 1 (Round 3) Valued – feature was flowing during first round assessments and was holding water during second round assessments; feature was dry upon third round	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	Conservation – feature is downstream from a wetland	Mitigation – Wetland (R1S2) flows are being redirected into R3S1, therefore this feature only warrants Mitigation for downstream hydrological contributions.	
	downstream of a wetland							
R1S1A	FT – 7 FC – 4 (Round 1) FC – 1 (Round 2) Limited – feature was flowing during first round assessments and was dry by second round	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	No Management Required	No Management Required	
R1S2	FT – 6 FC – 2 (Round 1) FC – 1 (Round 2) Valued – feature had standing water during first round surveys and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Important – Forest and wetland	Contributing - No direct fish habitat	Valued – No breeding amphibians were observed during targeted amphibian call count surveys	Conservation – feature is a wetland	Protection – Feature is being conserved in its current location, with outflows being redirected to R3S1	
R2S1	FT – 2 FC – 4 (Round 1) FC – 2 (Round 2) FC – 1 (Round 3) Contributing – feature was flowing during first round assessments, had standing water during second round assessments and was dry by third round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	Mitigation	Mitigation	
R2S1A	FT – 7 FC – 2 (Round 1) FC – 1 (Round 2)	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	No Management Required	No Management Required	

DRAINAGE FEATURE	STEP 1. F	IYDROLOGY	STEP 2. RIPARIAN	STEP 3. FISH HABITAT	STEP 4. TERRESTRIAL HABITAT	MANAGEMENT RECOMMENDATION PER HDFA GUIDELINES	FINAL MANAGEMENT RECOMMENDATION
SEGIVIENT	FUNCTION	MODIFIERS					
	Limited – feature had standing water during first round assessments and was dry by second round assessments						
R2S1B	 FT – 7 FC – 2 (Round 1) FC – 1 (Round 2) Limited – feature that had standing water during first round assessments and was dry by second round assessments 	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	No Management Required	No Management Required
R2S1C	FT – 7 FC – 2 (Round 1) FC – 1 (Round 2) Limited – feature that had standing water during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	Mitigation – Downstream of R2S1D	Mitigation
R2S1D	FT – 4 FC – 2 (Round 1) FC – 2 (Round 2) FC – 1 (Round 3) Contributing – feature had standing water during first and second round assessments; feature was dry by third round	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	No Management Required	No Management Required
R3S1A	FT – 7 FC – 4 (Round 1) FC – 1 (Round 2) Contributing – feature had flowing water during first round assessments and was dry upon second round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	Mitigation	Mitigation
R3S1B	FT – 7 FC – 2 (Round 1) FC – 1 (Round 2) Limited – feature had standing water during first round	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	No Management Required	No Management Required

DRAINAGE FEATURE SEGMENT	STEP 1. HYDROLOGY		STEP 2. RIPARIAN	STEP 3. FISH HABITAT	STEP 4. TERRESTRIAL HABITAT	MANAGEMENT RECOMMENDATION PER HDFA GUIDELINES	FINAL MANAGEMENT RECOMMENDATION
SEGIVIEINT	FUNCTION	MODIFIERS					
	assessments and was dry by second round assessments						
R3S1C	 FT – 7 FC – 2 (Round 1) FC – 1 (Round 2) Limited – feature had standing water during first round assessments and was dry by second round assessments 	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	No Management Required	No Management Required
R3S1D	FT – 7 FC – 4 (Round 1) FC – 1 (Round 2) Contributing – feature was flowing during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Important – Forest/Wetland	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field; Feature flows adjacent to residential hedgerow	Conservation – adjacent to forested/wetland communities.	Mitigation – Reach will be maintained within a post-development scenario within the 30 m vegetated buffer from the RNHS (greater of the significant wetland and/or significant woodland setback). Construction of the green swale from SWD3-3 community will be located immediately south of this HDF and could intercept drainage from the existing agricultural field. The construction of the green swale will continue to convey flows and allochthonous materials to downstream habitats; therefore, the functions of this HDE will be replicated
R3S1E	FT – 7 FC – 2 (Round 1) FC – 1 (Round 2) Limited – feature had standing water during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Important - Forest	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field; Feature flows adjacent to residential hedgerow	No Management Required	No Management Required
R3S1F	FT – 7 FC – 2 (Round 1) FC – 1 (Round 2) Limited – feature had standing water during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	No Management Required	No Management Required
R3S1G	FT – 4	Agriculture land use results in	Limited - Cropped	Contributing - No	Limited – feature flows	Mitigation – Downstream of R3S1H	Mitigation
	FC – 2 (Round 1)	altered runoff patterns	1	direct fish habitat	through actively		

DRAINAGE FEATURE	STEP 1. HYDROLOGY		STEP 2. RIPARIAN	STEP 3. FISH HABITAT	STEP 4. TERRESTRIAL HABITAT	L MANAGEMENT RECOMMENDATION PER HDFA GUIDELINES	FINAL MANAGEMENT RECOMMENDATION	
SEGMENT	FUNCTION	MODIFIERS						
	FC – 1 (Round 2) Limited – feature had standing water during first round assessments and was dry by second round assessments				managed agricultural field			
R3S1H	FT – 2 FC – 2 (Round 1) FC – 2 (Round 2) FC – 1 (Round 3) Valued – feature had standing water during first and second assessments; feature was dry by third round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	Mitigation	Mitigation	
R3S1I	FT – 7 FC – 2 (Round 1) FC – 1 (Round 2) Limited – feature had standing water during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	No Management Required	No Management Required	
R4S1	FT – 4 FC – 2 (Round 1) FC – 1 (Round 2) Limited – feature had standing water during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	No Management Required	No Management Required	
R5SO	FT – 2 FC – 5 (Round 1) FC – 1 (Round 2) Contributing – feature was flowing during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field; feature is actively altered on the agricultural landscape	Mitigation	Mitigation	
R5SOA	FT – 4 FC – 4 (Round 1) FC – 1 (Round 2)	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows through actively managed agricultural field	Mitigation	Mitigation	

DRAINAGE	STEP 1. HYDROLOGY		STED 2		STEP 4. TERRESTRIAL	MANAGEMENT RECOMMENDATION DEP	
FEATURE SEGMENT	FUNCTION MODIFIERS		RIPARIAN STEP 3. FISH HABITAT		HABITAT	HDFA GUIDELINES	FINAL MANAGEMENT RECOMMENDATION
	Contributing – feature was flowing during first round assessments and was dry by second round assessments						
R5S1	FT – 7 FC – 5 (Round 1) FC – 1 (Round 2) Contributing – feature was flowing during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows adjacent to railway and through actively managed agricultural field; feature is actively altered on the agricultural landscape	Mitigation	Mitigation
R5S2	FT – 8 FC – 2 (Round 1) FC – 1 (Round 2) Contributing – feature was holding standing water during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature flows adjacent to 5 Sideroad/Campbellville Road West	No Management Required	No Management Required
R6S0	FT – 7 FC – 4 (Round 1) FC – 1 (Round 2) Contributing – feature was flowing during first round assessments and was dry by second round assessments	Agriculture land use results in altered runoff patterns	Valued - Meadow	Contributing - No direct fish habitat	Limited – feature flows through meadow community from agricultural field into roadside ditch	Mitigation	Mitigation
R6S1	 FT - 2 FC - 2 (Round 1) FC - 2 (Round 2) Valued - Feature was holding standing water during first and second assessments within isolated pockets. The feature was removed from the landscape in between second and third round assessments as a result of agricultural practices, and was unable to be assessed. 	Agriculture land use results in altered runoff patterns	Limited - Cropped	Contributing - No direct fish habitat	Limited – feature is altered to flow adjacent to an abandoned track feature adjacent to agricultural fields	No Management Required	No Management Required

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT				
1. SEASONAL CONCENTRATION AREAS									
Waterfowl Stopover and Staging Areas (terrestrial)	Yes – CUM1 vegetation communities are present on the Orlando Lands.	No – No evidence of sheet water during spring surveys was recorded, very small CUM1 unit, highly disturbed from adjacent agricultural practices.	No	N/A	Not Present				
Waterfowl Stopover and Staging Areas (aquatic)	Yes – MAS and SWD vegetation communities are present on the Orlando Lands.	No – While MAS and SWD vegetation communities are present on the Orlando Lands they are not large enough to attract or support large congregations of waterfowl.	No	N/A	Not Present				
Shorebird Migratory Stopover Areas	Yes – MAM vegetation communities are present on the Orlando Lands.	No - MAM vegetation communities on the Orlando Lands are small and would not attract or support significant numbers of waterfowl.	No	N/A	Not Present				
Raptor Wintering Areas	Yes - FOD, FOM and CUM vegetation communities are present on the Orlando Lands.	No – the upland and forested communities do not meet the minimum combined size criteria (>20 ha).	No	N/A	Not Present				

LEGEND:

FT Feature Types (1-defined natural channel, 2-channelized, 3-multi-thread, 4-no defined feature, 5-tiled drainage, 6-wetland, 7-swale, 8-roadside ditch, 9-online pond outlet)

FC Flow Conditions (1-no surface water, 2-standing water, 3-interstitial flow, 4-surface flow minimal, 5-surface flow substantial)

Note: Codes correspond with Ontario Stream Assessment Protocol (OSAP) guidelines.

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT
Bat Hibernacula	No – Cave ecosites are absent from the Orlando Lands.	No	No	N/A	Not Present
Bat Maternity Colonies	Yes – FOD, FOM, SWM and SWD vegetation communities are present on the Orlando Lands.	Yes	Yes	Two nights of mobile acoustic bat surveys were completed in 2016. Presence of Eastern Red Bat (<i>Lasiurus borealis</i>), Hoary Boat (<i>Lasiurus cinereus</i>) and Big Brown Bat (<i>Eptesicus</i> <i>fuscus</i>) were confirmed on the Orlando Lands (Table 12, Appendix B2). Suitable habitat is present on the Orlando Lands within the Greenbelt, which is outside of the proposed development area.	Candidate
Turtle Wintering Areas	Yes – MA and SW vegetation communities are present on the Orlando Lands.	Yes – Wetland units on the Orlando Lands do not provide sufficient hydroperiod and/or wetland depth to provide ice-free overwintering conditions for turtles. However, portions of Sixteen Mile Creek may provide suitable	No – Sixteen Mile Creek is greater than 50 m removed from site alteration and development; no targeted surveys were completed.	N/A	Candidate

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT
		overwintering habitats in deeper pools.			
Reptile Hibernacula	Yes – Ecosites are present on the Orlando Lands.	No – No rock outcrops, old foundations, abandoned wells or natural/naturalized features were identified on the Orlando Lands. No access was permitted within adjacent lands; however, no candidate habitat appeared present based on aerial interpretation and/or reconnaissance from property boundary.	No	N/A	Not Present
Colonial Bird Nesting Sites (bank/cliff)	No – While CUM1 vegetation communities are present on the Orlando Lands, no eroding sandy slopes or cliff faces are present.	No	No	N/A	Not Present
Colonial Bird Nesting Sites (tree/shrubs)	Yes – SWD and SWM vegetation communities are present on the Orlando Lands.	Yes	Yes	Only one indicator species was recorded on the Orlando Lands; SWH indicator species diversity and abundance criteria are not met.	Not Present

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT	
Colonial Bird Nesting Sites (ground)	No – No rocky islands or peninsulas are present on the Orlando Lands. Brewer's Blackbird is not known to occur in southwestern Ontario.	No	No	N/A	Not Present	
Migratory Butterfly Stopover Areas	Yes – CUM, FOM and FOD vegetation communities are present on the Orlando Lands.	No – Orlando Lands are greater than 5 km from Lake Ontario.	No	N/A	Not Present	
Migratory Landbird Stopover Areas	Yes – FOD, FOM, SWM and SWD vegetation communities are present on the Orlando Lands.	No – Orlando Lands are greater than 5 km from Lake Ontario.	No	N/A	Not Present	
Deer Winter Congregation Areas	No – Mapping from the MNRF LIO database did not depict any deer wintering areas on or adjacent to the Orlando Lands.	Νο	No	N/A	Not Present	
2. RARE VEGETATION COMMUNITIES OR SPECIALIZED HABITAT FOR WILDLIFE						
2a. Rare Vegetation Communities						

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT
Rare Vegetation Types	No	No	No	N/A	Not Present
(cliffs, talus slopes, sand barrens, alvars, old-growth forests, savannahs, and tallgrass prairies)					
Other Rare Vegetation Types (S1 to S3 communities)	Yes – The SWM5-1 (Red Maple – Conifer Organic Mixed Swamp) community present on- site is S3S4 (vulnerable – apparently common and secure in Ontario)	N/A	Yes	SWM5-1 is provincially rare; the SWH polygon is shown on Figure 12 (Appendix B1)	Present
2b. Specialized Wildlife Habitat	:				
Waterfowl Nesting Area	Yes – MAS, MAM and SWD vegetation communities are present on the Orlando Lands.	No – no suitable nesting area is available within 120 m of wetland communities as the landscape is actively farmed (row crop).	No	N/A	Not Present
Bald Eagle and Osprey Habitats	Yes – FOD, FOM, SWM and SWD vegetation communities are present on the Orlando Lands.	No – large aquatic features are absent from the Orlando Lands.	No	N/A	Not Present
Woodland Raptor Nesting Habitat	Yes – Forested vegetation communities	No – The forested vegetation communities on the Orlando	No	N/A	Not Present

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT
	are present on the Orlando Lands.	Lands do not meet the minimum size criteria (>30 ha with > 4 ha interior habitat that is greater than 200m from the woodland edge).			
Turtle Nesting Areas	Yes – MAS vegetation communities are present on the Orlando Lands.	No – the Orlando Lands are highly disturbed (actively farmed) and would not provide suitable turtle nesting opportunities; soil auger tests found no suitable nesting substrate. No access to adjacent lands was permitted. Road embankments and shoulders are not considered SWH.	No	N/A	Not Present
Seeps and Springs	Yes – Forested vegetation communities are present on the Orlando Lands.	Yes – headwater drainage features are documented within and adjacent to forested communities.	Yes – data will be collected incidentally during ecological surveys.	No seeps or springs were recorded during ecological investigations.	Not Present
Woodland Amphibian Breeding Habitats (within or < 120m from woodland)	Yes – FOD, FOM, SWM and SWD vegetation communities are present on the Orlando Lands.	Yes – presence of wetland communities adjacent to and within FO and SW vegetation communities. Size criteria (>25 m diameter) is met.	Yes	None of the amphibian stations on the Orlando Lands met the SWH criteria for species diversity and abundance; off-site station	Candidate

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT
				D provides candidate breeding woodland amphibian SWH (no site access) , however habitat criteria could not be confirmed.	
Wetland Amphibian Breeding Habitats (wetland >120m from woodland)	Yes – MA and SW vegetation communities are present on the Orlando Lands.	Yes – Size criteria (>25 m diameter) is met.	Yes	None of the amphibian stations on the Orlando Lands met the SWH criteria for species diversity and abundance	Not Present
Woodland Area-Sensitive Bird Breeding Habitat	Yes – FO and SW vegetation communities are present on the Orlando Lands.	No – Vegetation communities do not meet the minimum size criteria (no interior habitat >200m from the woodland edge)	No	N/A	Not Present
3. SPECIES OF CONSERVATION	CONCERN				
Marsh Bird Breeding Habitat	Yes – MAM vegetation communities are present on the Orlando Lands.	No – MAM vegetation communities are highly disturbed due to adjacent land uses (actively managed agricultural).	No	N/A	Not Present
Open Country Bird Breeding Habitat	Yes – CUM1 vegetation communities are present on the Orlando Lands.	No – size criterion is not met (>30 ha) and are highly disturbed from adjacent agricultural land uses (row- crop).	No	N/A	Not Present

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT
Shrub/Early Successional Bird Breeding Habitat	No – CUT, CUS and CUW vegetation communities are absent.	No	No	N/A	Not Present
Terrestrial Crayfish	Yes – MAM and SWD vegetation communities are present on the Orlando Lands.	Yes – no minimum size requirement.	Yes – incidental recordings will be documented during ecological surveys.	Five terrestrial crayfish chimneys were recorded along R3S1 during second round headwater drainage feature assessments in 2018, however they are located within active agricultural lands, which are not considered to meet the habitat criteria for this type of SWH. While terrestrial crayfish and high groundwater table levels were recorded within the Subject Lands, candidate terrestrial crayfish SWH may be present within the SWD communities.	Candidate
Special Concern and Rare Wildlife Species (S1-S3; NHIC 2016)					

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT
(i) Carey's Sedge (<i>Carex</i> <i>careyana)</i>	N/A	Yes – mature forested vegetation communities are present.	Yes	Multiple rounds of botanical surveys were completed on the Orlando Lands during 2014 and 2015 field seasons; this species was not recorded (Table 3 , Appendix B2).	Not Present
(ii) Virginia Bluebells (<i>Mertensia virginica)</i>	N/A	No – soils on the Orlando Lands are not well drained.	No	N/A	Not Present
(iii) Eastern Wood-Pewee (<i>Contopus virens</i>)	N/A	Yes – forested vegetation communities are present on and adjacent to the Orlando Lands.	Yes	Two rounds of breeding bird surveys were completed during 2015; confirmed breeding evidence was recorded for this species (Table 5 , Appendix B2). SWH polygon is shown on Figure 12 (Appendix B1)	Present
(iv) Wood Thrush (<i>Hylocichla mustelina</i>)	N/A	Yes – Forested vegetation communities are present on and adjacent to the Orlando Lands.	Yes	Two rounds of breeding bird surveys were completed during 2015; this species was not recorded on the Orlando Lands (Table 5, Appendix B2).	Not Present

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT
 (v) Red-headed Woodpecker (Melanerpes erythrocephalus) 	N/A	No – Pine Savannah vegetation communities and other open forest communities are absent from the Orlando Lands.	No	N/A	Not Present
(vi) Canada Warbler (<i>Cardellina canadensis)</i>	N/A	Yes – Forested vegetation communities are present on and adjacent to the Orlando Lands.	Yes	Two rounds of breeding bird surveys were completed during 2015; this species was not recorded on the Orlando Lands (Table 5, Appendix B2).	Not Present
(vii) Golden-winged Warbler (<i>Vermivora</i> chrysoptera)	N/A	Yes – Forested vegetation communities are present on and adjacent to the Orlando Lands.	Yes	Two rounds of breeding bird surveys were completed during 2015; this species was not recorded on the Orlando Lands (Table 5, Appendix B2).	Not Present
(viii) Grasshopper Sparrow (Ammodramus savannarum)	N/A	No – Grassland habitat is not present on the Orlando Lands.	No	N/A	Not Present
(ix) Snapping Turtle (Chelydra serptentina)	N/A	Yes – While MAM and MAS vegetation communities are present on the Orlando Lands, these wetland communities have insufficient hydroperiod to support summer foraging or	No – Sixteen Mile Creek greater than 50 m away from proposed site alteration and development, therefore survey	N/A	Candidate

SIGNIFICANT WILDLIFE HABITAT (SWH) TYPE	ELC ECOSITE(S) PRESENT	HABITAT CRITERIA MET	TARGETED FIELD STUDIES REQUIRED	DEFINING CRITERIA MET (MINIMUM ABUNDANCES AND/OR DIVERSITY REQUIRED TO CONFIRM SWH)	SWH TYPE PRESENT
		overwintering life processes of Snapping Turtle. Sixteen Mile Creek may provide overwintering habitat in deeper pools for turtles.	work was not required.		
(x) Western Chorus Frog (Great Lakes/St. Lawrence – Canadian Shield Population) (<i>Pseudacris triseriata</i>)	N/A	Yes – forested wetland vegetation communities are present on the Orlando Lands.	Yes	Three rounds of amphibian call count surveys were conducted in 2015 on the Orlando Lands; this species was not recorded (Table 4 , Appendix B2).	Not Present
(xi) Eastern Ribbonsnake (<i>Thamnophis sauritus)</i>	N/A	No –No candidate habitat on the Orlando Lands as wooded communities had no standing water throughout May (saturated soils were observed).	No	N/A	Not Present
(xii) Monarch (<i>Danaus</i> plexippus)	N/A	No – A small CUM1 vegetation community is present on the Orlando Lands however no concentrations of Milkweed species were recorded.	No	N/A	Not Present
4. ANIMAL MOVEMENT CORF	RIDORS				
Amphibian Movement Corridors	N/A	No - Amphibian breeding SWH types are absent from the Orlando Lands.	No	N/A	Not Present

 Table 15: Significant Wildlife Habitat Assessment (7E Ecoregion)

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFECTS	MONITORING AND MANAGEMENT
PPS NATURAL HERITAGE FEATUR	RES					
1. Significant Wetlands	Not Present/not applicable	N/A	N/A	N/A	N/A	N/A
2. Significant Coastal Wetlands	Not Present/not applicable	N/A	N/A	N/A	N/A	N/A
3. Significant Woodlands	 The following ELC vegetation communities were assessed to determine their significance on the landscape: FOD6-5 (Fresh-Moist Sugar Maple-Hardwood Deciduous Forest) FOM3-1 (Dry-Fresh Hardwood-Hemlock Mixed Forest) SWD3-3 (Swamp Maple Mineral Deciduous Swamp) SWD4-5 (Hickory Mineral Deciduous Swamp) SWD4-5 (Hickory Mineral Deciduous Swamp) SWM5-1 (Red Maple-Conifer Organic Mixed Swamp) Patch sizes were measured and each patch was considered in terms of the presence of other indicators for potential significance. One significant woodland was identified on the Orlando Lands (Figure 12, Appendix B1). This feature is located within the Regional Natural Heritage System (RNHS) and the Greenbelt Planning Area (Protected Countryside) as shown on Figure 2 (Appendix B1). The woodlands meet the test for significance as they meet the criteria outlined under the Halton Region Official Plan (2018). The significant woodland is a contiguous feature greater than 4 ha in size that hosts SAR, a section 	 Potential impacts to the Significant Woodland on the Orlando Lands could potentially occur as a result of the following: Development and site alteration adjacent to the woodland; Increased pedestrian use of the woodland; Increase in lighting from development; and Construction activity adjacent to dripline. Minor grading will be required to install a bioswale adjacent to the woodland. The swale will convey flows from the SWD3-3 vegetation community into the realigned channel to ensure the hydroperiod of the wetland community is not impacted by site alteration/development. This bioswale will be naturalized. Creation of replicated wetland adjacent to significant woodlands. 	 No direct removal of any part of the Significant Woodland will occur to accommodate development and/or alteration. Without mitigation, the following effects to the Significant Woodland could potentially occur as a result of the grading impacts associated with the bioswale and the proposed development: Potential alterations in water balance within the woodland; Wildlife disturbance due to increase in human access in the woodland may occur due to increased human access; Wildlife disturbance due to increase in light penetrating the woodland; Potential construction-related impacts from on-site grading and other machinery including: Soil compaction and potential for microdrainage changes that could cause localized ponding and inundation of rooting systems; Introduction of nonnative plant species throughout disturbed margins of the development footprint – 	The development plan respects the RNHS polygon and its associated significant woodland feature. A 30 m vegetated buffer from the staked NHS limit (i.e., greater of dripline or wetland boundary) will be maintained adjacent to the woodland. The bioswale will be vegetated and naturalized within the 30 m vegetated buffer from the Key Features. No effects on edge trees are expected as a result of the minor shallow grading at the outer edge of the 30 m buffer. Opportunities to relocate the bioswale outside of the buffer were explored. Large portions of the bioswale were removed from the 30 m vegetated buffer to the significant woodlands; however, portions of the swale needed to be located within the buffer to avoid overlapping it with the regional floodline. If the bioswale was to cross the regional floodline associated with the realigned channel, it could increase the floodline into the development area. Native species plantings (shrubs and trees) will be established within vegetated buffer zones. Native thorny shrubs (i.e., raspberry species – <i>Rubus ssp</i> .) will be installed throughout the	No negative effects on the Significant Woodland are predicted as a result of the proposed development. The form and function of the Significant Woodland feature within the RNHS will be protected and enhanced through vegetated buffers.	Construction monitoring to ensure that woodland setbacks are maintained apart from the identified encroachments (i.e., bioswale construction).

NATURAL HERITAGE FEATURESSIGNIFICANT (AND ASSOCIATED FUNCTIONSAND SENSITIV	CHARACTERISTICS IMPACTOR /ITY	PREDICTED EFFECTS AVOIDANCE, MITIC AND/OR RESTORA	GATION NET EFFECTS TION	MONITORING AND MANAGEMENT
AND ASSOCIATED FUNCTIONS AND SENSITIV of Sixteen Mile interior forest h	Creek and provides habitat.	AND/OR RESTORAdisplacement of some native flora is possible; ovegetated buffer to c pedestrian access.oStress/dieback (root impact, contaminants, increased sediment).The replicated wetland will be created outside of the 30 m setback to the significant woodlands. Water balance to the woodland communities will be maintained given the shallow groundwater inputs and installation of LID measures.New lighting within t development will be renovals, ground dis dislodgement of sedi Heavy equipment use managed to prevent damage to woodlot f 	TION discourage the directed away etation timpacts to of bird friendly may also be collisions. ing, and it control talled adjacent e features and kcess vegetation sturbance and iment. e will be inadvertent features and n-native and he Orlando ter fed, except ion excites both rface water predicts there surface water SWM5-1 s topographic o the int, and no ndwater ed site-wide ntained ppropriate LID filtration	
4. Significant Valleylands One valleyland i Orlando Lands a Orlando tento tento tento	is identified on the along the northeast arcel 4. The is identified on the from the staked vallevland top of	onstruction will m of 15 m evland top of to be similar to those the significant	vell confined No negative impacts are predicted to the significant valleylands.	Construction monitoring to ensure the effectiveness and maintenance

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFECTS	MONITORING AND MANAGEMENT
	valleyland contains a portion of Sixteen Mile Creek – Middle East Branch. The valleyland supports a permanent watercourse (warmwater fisheries), contains habitat for Endangered species and hosts a Rare Vegetation Community Type (SWM5-1; S3S4). Limited data on the physiography of the valleyland is available for assessment. Based purely on ecological data, the valleyland meets the criteria outlined under the Natural Heritage Reference Manual (2010) for significance. However, due to the lack of physical data available, the valleyland has been identified as a Candidate Significant Valleyland.	bank. The valleyland is located within the Significant Woodlands. Potential indirect impacts will be similar to Significant Woodlands.	identified for Significant Woodlands.	and Greenbelt Planning Area (Protected Countryside). A 30 m buffer will be applied to edge of the staked NHS limit and a 15 m buffer will be applied from the staked top of bank. The greatest constraint will form the new limits of the RNHS, with no site alteration or development occurring in the area.		of the erosion and sediment control measures.
5. Significant Wildlife Habitat	 The following SWH types are found on the Orlando Lands: Candidate Bat Maternity Colony Habitat Candidate Turtle Overwintering Habitat Candidate Species of Conservation Concern (Snapping Turtle) habitat; Candidate Woodland Amphibian Breeding Habitat (offsite) Rare Vegetation Community Type (S3S4 – SWM5-1) Species of Conservation Concern (Eastern Wood- Pewee) Habitat Candidate Terrestrial Crayfish Habitat All SWH types identified on the Orlando Lands are located within 	No direct impacts are predicted to SWH (i.e., no development footprint encroachment). The proposed development will be set a minimum of 30 m from the staked limit feature. The RNHS will not be removed from the landscape, therefore habitat for all SWH types will remain on the landscape. As previously discussed within the Significant Woodland section, a bioswale is proposed within the outer portion of the RNHS 30 m vegetated buffer. Potential indirect impacts could occur as a result of: • Short-term impacts (i.e., related to construction activities)	 There are no direct effects predicted from development near the NHS that will affect the SWH types present. Potential indirect effects associated with the installation and establishment of the bioswale and proposed development include: (1) Increased soil disturbance: Soil compaction reduces the pore space within soils, limiting what plant species are able to root in the substrate Colonization of invasive species on disturbed soils (2) Loud Disturbance of wildlife patterns and behaviours (i.e., 	The bioswale will be vegetated and naturalized within the 30 m vegetated buffer. Opportunities to relocate the bioswale outside of the buffer weree explored. Large portions of the bioswale were removed from the 30 m vegetated buffer to the retained NHS; however, portions of the swale needed to be located within the buffer to avoid overlapping it with the regional floodline. If the bioswale was to cross the regional floodline associated with the realigned channel, it could increase the floodline into the development area. Tree protection fencing, and erosion and sediment control measures will be installed protect the integrity of the feature and eliminate excess disturbance	No negative effects are predicted. The addition of a 30 m vegetated buffer will strengthen and enhance existing wildlife linkages and corridors across Parcel 4, specifically connecting the SWD3-3 vegetation community to the larger woodland.	Construction monitoring to ensure the effectiveness and maintenance of the erosion and sediment control measures.

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFECTS	MONITORING AND MANAGEMENT
	the RNHS on Parcel 4, except for Candidate Woodland Amphibian Breeding Habitat. SWH types found on the Orlando Lands are found within the RNHS which has also been identified as Significant Woodlands, Habitat for Endangered and/or Threatened Species (Butternut), and is identified as Protected Countryside within the Greenbelt Planning Area. Candidate Woodland Amphibian Breeding Habitat was identified on offsite lands east of Esquesing Road at AMC D (see Figure 6, Appendix B1 for station locations). Habitat criteria was unable to be evaluated, therefore it is assumed candidate habitat since abundance criteria was met. This SWH type will not be considered in the impact assessment as it is located outside of the development footprint and the Subject Land area.	 Increased soil disturbance (e.g., soil compaction or erosion) Loud disturbances Potential long-term impacts (i.e., related to industrial development) could occur as a result of: Increased pedestrian usage Increased traffic Increased lighting 	 interfere with bird breeding calls) Wildlife may temporarily vacate habitats near construction Long-term indirect effects could include: (1) Increased pedestrian usage: Increased invasive species transport Degradation of surrounding vegetation (2) Increased traffic Injury or mortality of wildlife crossing roadways Increased road runoff (decrease water quality) (3) Increased lighting: Disrupt wildlife behaviours (i.e., disturb day/night cycles) 	through vegetation removals, ground disturbance and dislodgement of sediment. Noise associated with construction is only temporary and will have short term impacts on wildlife behavior. The development limit will be at least 30 m from the Key Features. Native vegetation (shrubs and trees) will be planted within vegetated buffer zones protecting the Key Features. Native thorny plant material (i.e., raspberry species – <i>Rubus spp.</i>) will be installed at strategic locations to discourage access into the RNHS by humans and pets. Signage adjacent to the RNHS will be installed outlining the importance of maintaining the RNHS undisturbed. New lighting within the development will be directed away from the RNHS to limit impact to wildlife activity.		
6. Fish Habitat	A portion of the Middle East Branch of Sixteen Mile Creek is present along the northeastern portion of Parcel 4. This permanent watercourse is identified as direct fish habitat for warmwater fisheries. This watercourse is protected within the Greenbelt Protected Countryside planning area (discussed in further detail in the Greenbelt Plan row below). Several headwater drainage features (HDF)s were identified within the Orlando Lands. HDFs are sorted into six main drainage	Use of heavy equipment during construction and associated potential for accidental spills of potentially toxic materials (e.g., fuel, oil, hydraulic fluid). A total of sixteen HDFs will be removed from the landscape, including: R1S1 – Mitigation; R1S1A – No Management Required; R2S1 – Mitigation; R2S1A – No Management Required;	Erosion and sediment from the disturbed work areas (grading, natural channel realignment) could result in increased turbidity and suspended sediment loading within the watercourse, retained HDFs and conveyance swales. This could negatively affect fish habitat (e.g., infilling of interstitial spaces in riffles) and mortality, health effects or altered behaviour of aquatic biota (i.e. fish and benthic invertebrates) and aquatic vegetation. Accidental spills during construction could impair water	Erosion and sediment control measures will be used throughout construction to avoid/minimize the potential for negative effects on fish habitat. Conveyance swales and realignment of R3S1 should be constructed during minimal flow periods or in the dry to reduce impact. A phasing approach may be taken to reduce impacts to downstream habitats. All construction works within features must be completed outside of the	Potential for effects due to erosion and sedimentation and/or accidental spills will be minimized. No net effects to Middle East Branch of Sixteen Mile Creek are predicted due to adjacent tablelands development. SWM Pond outlets into downstream offsite Middle East Branch will be minimized through proper design and installation of SWM discharge infrastructure. Bottom-draw (3 m depth) from the SWM facilities will aid in reducing thermal loading into downstream fisheries habitats.	A construction monitoring program (including turbidity monitoring) will be developed and implemented to ensure that the ESC measures are installed correctly and maintained in good working order throughout construction. Monitoring of adherence to and effectiveness of the spill prevention and response measures is recommended throughout the construction period. Monitoring of vegetation growth within areas of the riparian setback (where revegetation is required) is

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFECTS	MONITORING AND MANAGEMENT
	features on the landscape. All individual reaches were assessed using CVC and TRCA's Evaluation, Classification and Management of Headwater Drainage Feature Guidelines (2014) resulting in three final management recommendation designations (Conservation, Mitigation and No Management Required). Most HDFs assessed as contributing allochthonous material and flows to downstream fisheries habitat (i.e., indirect fish habitat), except for individual reaches Other headwater drainage features on the Orlando Lands are solely supported through surface water contributions (as found through PECG's studies). Feature R3S1 is considered a regulated feature under CH, and is also identified as a watercourse. Approximately 12-15 Eastern Blacknose Dace were observed in 2015 during round 1 surveys. R3S1 has been assessed as providing seasonal direct fish habitat for warmwater fisheries and this feature is identified as receiving seasonal groundwater discharge (PECG 2019).	 R2S1B – No Management Required; R2S1C – Mitigation; R2S1D – No Management Required; R3S1A – Mitigation; R3S1B – No Management Required; R3S1C – No Management Required; R3S1D – Mitigation; R3S1E – No Management Required; R3S1F – No Management Required; R3S1G – Mitigation; R3S1H – Mitigation; R3S1H – No Management Required; R4S1 – No Management Required; R4S1 – No Management Required; R5S0A – Mitigation; R6S0 – Mitigation; and R6S1 – No Management Required. R3S1 (Medium Constraint watercourse), HDF R5S1 (Mitigation) and HDF R5S0 (Mitigation) will be realigned. R3S1 has been classified as supporting seasonal direct fisheries, whereas R5S0 and R5S1 contribute allochthonous material and flows to downstream habitats (indirect fish habitat). No grading within the 30 m vegetated buffer to the existing RNHS will occur to facilitate the tie-in location of the R3S1 realigned channel. Flows from R1S2 to R1S1 will be diverted into R3S1 through a conveyance swale. 	 quality and have negative effects on aquatic biota and vegetation. No site alteration or development will occur adjacent to the Middle East Branch of Sixteen Mile Creek on the Orlando Lands. HDFs designated "No Management Required" can be removed from the landscape without any predicted long-term effects. HDFs designated "Mitigation" are able to be removed but their hydrological function must be replicated to ensure no negative impacts on downstream fish habitat. Potential alteration in surface water quantity and quality within the Middle East Branch of Sixteen Mile Creek and its associated retained HDFs due to stormwater management on the Orlando Lands. Potential short-term negative effects, but long-term positive effects associated with the realignment of R3S1 along the Parcel 4 development boundary. Existing R3S1 reach is a heavily eroded feature with limited instream and riparian habitat, that provides seasonal direct fish habitat for warmwater fish species. Intermittent flows will be maintained in the reach downstream from R1S1 through the provision of clean roof drainage. No long-term negative effects are predicted to downstream reaches as R1S1 does not provide any direct fish habitat and the downstream reach flows through a heavily industrialized 	warmwater fisheries window (March 15 to July 15). Spill prevention and response measures will be implemented to minimize the potential for negative effects due to accidental spills during construction. All site alteration and development will occur greater than 100 m away from the Middle East Branch of Sixteen Mile Creek. Vegetation plantings will be installed within the 15 m vegetated buffer adjacent to the realigned R3S1 channel to provide enhanced riparian function and stabilize banks to reduce erosion. The removals of HDFs that require mitigation (R1S1, R2S1, R2S1C, R3S1A, R3S1D, R3S1G, R5S0A and R6S0) requires the replication of their functions. Replication of these functions will occur through the implementation of Low Impact Development (LID) and SWM infrastructure. Post-construction surface water will be conveyed through SWM ponds and LIDs to provide enhanced quality control. SWM facilities will contain 3 m deep pools to allow for bottom- draw outlet to reduce thermal loading of downstream systems. SWM discharge infrastructure (e.g., outlet headwalls and discharge channels) should be designed to minimize negative impacts on instream and riparian habitat in Sixteen Mile Creek (offsite).	Positive effect on R3S1 through the realignment of the watercourse providing stabilization and riparian enhancement opportunities. Creation of an additional 220 m of direct fisheries habitat. No net effect on R5S0 and R5S1 through the realignment and conversion to a bioswale. These HDFs only contribute flows to downstream offsite industrial SWM ponds south of James Snow Parkway. Water quality will be maintained or enhanced through treatment in LIDs and SWM infrastructure compared to runoff from existing agricultural fields. No net effects on fish habitat within Sixteen Mile Creek are predicted due to changes in surface water or groundwater conveyance and infiltration provided water balance is maintained through the use of SWM and LID strategies. Positive effects on fish habitat within R3S1 through the creation of enhanced fisheries habitat. Vegetation plantings adjacent to the realigned channel will increase the riparian cover and stabilize the banks to reduce erosion and sediment loading from the floodplain. Through the use of appropriate mitigation strategies (i.e., ESC control, construction when the channel is dry and/or completion of a fish and wildlife rescue), no negative impacts are predicted to fish and fish habitat during the	recommended to confirm form and functional objectives are satisfied. Aquatic monitoring (fish community sampling, aquatic habitat assessment, fluvial geomorphological stability monitoring) within realigned channel (R3S1) is recommended to ensure the natural channel is providing and supporting aquatic life. Monitoring of reach downstream from R1S1 will be completed to ensure that pre-development flow volumes and water quality are maintained post-construction.

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFEC
		Changes in surface water runoff and groundwater infiltration due to increased imperviousness. Grading identified within the conceptual site plan will not affect retained headwater drainage features or Sixteen Mile Creek. Direct discharge from the SWM Pond on Parcel 4 into Middle East Branch of Sixteen Mile Creek (offsite) through the existing culverts at Esquesing Road. Direct discharge of SWM facilities on Parcels 1, 2 and 3 into conveyance swales. Three conveyance swales are shown on the conceptual site plan will be constructed: one on Parcels 1 and 2 along the railway, one on Parcel 4 connecting the SWD3-3 vegetation community and the realigned channel, and one on Parcel 3. Conveyance swales will have the same tie-in and outlet connection to existing hydrologic connections. The conveyance swale constructed on Parcel 1 will be constructed adjacent to the railway. The conveyance swale constructed on Parcel 3 will be adjacent to the roadway.	area before entering into a SWM facility. Potential long-term positive effects associated with the realignment and naturalization of R5S1 and R5S0 into a bioswale before ultimately draining into the SWM pond on Parcel 1. Potential short- term effects during realignment process. Alteration in water delivery (e.g., timing, volume of discharge) to the watercourse via surface and /or groundwater pathways due to changes in stormwater runoff and infiltration could potentially result in negative impacts on fish habitat. Positive effects to surface water quality in Sixteen Mile Creek could occur as the stormwater management infrastructure may reduce the total suspended solids prior to release into the creek, compared to existing surface water runoff from agricultural fields. SWM infrastructure may result in increases in water temperature being discharged directly into Sixteen Mile Creek. Conveyance swales adjacent to Boston Church Road and the railway will have a vegetated berm to separate the feature to reduce runoff inputs of contaminants from the railway and roadway.	Vegetation setbacks will assist in mitigating potential impaired quality of surface runoff from portions of lots draining via overland flow directly to aquatic features (realigned HDFs and ultimately Sixteen Mile Creek). A 15 m vegetated buffer will be placed on the realigned channel (R3S1). Realignment of R3S1 using natural channel design principles will enhance direct fish habitat. Contributions of flows redirected from SWD3-3 will provide intermittent fisheries habitat within R3S1 consistent with existing flows to support seasonal fisheries habitat. The design of the realigned channel is predicted to facilitate ongoing seasonal groundwater inputs (as found through PECG's studies). Realignment of R5S0 and R5S1 will reduce sediment loading to downstream fisheries habitats. Clean roof drainage will be directed downstream of R1S1 to maintain existing hydrological conditions following diversion of flow from R1S2 into R3S1.	construction channel. Site water li maintained measures s redirecting

CTS	MONITORING AND MANAGEMENT
on of the realigned	
balance will be I through mitigative such as LIDs and roof-runoff.	

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	S SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFECTS
7. Habitat of Endangered and Threatened Species	 Two SAR were observed within the Orlando Lands: Butternut (Juglans cinerea) - Endangered Barn Swallow (Hirundo rustica) - Threatened Potential impacts to SAR will be addressed directly with the Province through the Endangered Species Act Information Gathering Form with MECP. Any necessary permits or registrations (as determined through consultation with MECP) will be obtained prior to commencement of any activities impacting the species or its habitat. 	N/A	N/A	N/A	N/A
8. Significant Areas of Natural and Scientific Interest OTHER PROVINCIAL PLANS	Not Present/not applicable	N/A	N/A	N/A	N/A
1. Greenbelt Plan	The RNHS is designated as Protected Countryside within the Greenbelt Planning Area (see Figure 2, Appendix B1) . The Protected Countryside includes woodland, wetlands and actively managed agricultural fields.	 Direct alteration of 0.26 ha of Protected Countryside, currently agricultural in nature, to accommodate a portion of the wetland compensation area. Construction of the green swale within a portion of the Protected Countryside 30 m vegetative buffer. Potential indirect impacts associated with development and site alteration of the adjacent lands to the Greenbelt may include: Vegetation clearing adjacent to significant woodland; Increased pedestrian use of the woodlands; 	Permanent alteration of 0.26 ha of actively managed agricultural field to accommodate wetland compensation area. This alteration will occur outside the 30 m vegetation protection zone from Key Natural Heritage Features in the Greenbelt Plan area. Indirect effects are similar to Significant Woodland and Significant Wildlife Habitat. Positive long-term effects associated with the realignment of R3S1 adjacent to Protected Countryside boundary through the enhancement of direct fish habitat	The Key Natural Heritage Features in the Greenbelt are located within the RNHS which will be protected with a 30 m vegetated buffer. The vegetation buffer will enhance and increase the size of the Greenbelt features and/or functions. No negative effects associated with the realignment of R3S1 adjacent to the designated Protected Countryside Area are predicted. The channel will be realigned using natural channel design principles to enhance fish habitat. Wetland compensation (0.26 ha) will occur within a portion of the Protected Countryside.	Wetland compensation is p within 0.26 ha of the Prote Countryside adjacent to the existing woodland and the proposed realigned channed corridor. Through the establishment of the wetla compensation area, increas communication and connec between the existing Key F and the realigned channel will occur allowing for the movement of biotic and ab materials. This is perceived net benefit on the landscap current land-uses (actively managed agricultural field) impact the movement and

ECTS	MONITORING AND MANAGEMENT
	N/A
compensation is proposed 26 ha of the Protected de adjacent to the voodland and the realigned channel Through the nent of the wetland ation area, increased cation and connectivity the existing Key Features ealigned channel corridor allowing for the nt of biotic and abiotic . This is perceived to be a it on the landscape as nd-uses (actively agricultural field) may	Monitor success of wetland compensation area. Monitor success of vegetated buffer zones to ensure no further impacts to existing Significant Woodland. Construction monitoring to ensure the effectiveness and maintenance of erosion and sediment control measures.

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFECTS	MONITORING AND MANAGEMENT
		 Increased lighting from residential development; and, Construction activity adjacent to dripline. 	within existing agricultural (row- crop) landscape. Additional indirect impacts associated with the realignment of R3S1 adjacent to the Protected Countryside boundary may result in similar impacts to Fish Habitat (use of construction equipment, potential for accidental spills).	The bioswale will be vegetated and naturalized within the 30 m vegetated buffer from the adjacent Key Natural Heritage Features. Opportunities to relocate the bioswale outside of the Vegetated Protection Zone (VPZ) were explored. Large portions of the bioswale were removed from the 30 m VPZ from Key Features; however, portions of the swale needed to be located within the buffer to avoid overlapping it with the regional floodline. If the bioswale was to cross the regional floodline associated with the realigned channel, it could increase the floodline into the development area.	ecological connectivity between these features. No negative impacts are predicted to the RNHS and its associated functions, rather an increase in habitat quality and ecological diversity will be provided through the creation of meadow marsh habitats.	
2. Halton Region Official Plan	 The following Key Natural Heritage Features were identified within the Orlando Lands: Significant Wildlife Habitat; Candidate Significant Valleylands; Significant Woodlands; Habitat for Threatened and Endangered Species; Regionally Significant Wetlands; Other RNHS Components present include: Enhancements to Key Features; Linkages; Buffers; Watercourses within Conservation Authority Regulation Limit (R3S1 and Sixteen Mile Creek); 	Please refer to the significant wildlife habitat, significant valleylands, significant woodlands, habitat for endangered and threatened species, fish habitat and non-regionally significant wetlands sections for potential indirect effects to these RNHS components. A total of 0.61 ha of wetland (non- regionally significant) habitat is proposed for removal within the Phase 1 lands. Please refer to the "other wetlands" section below for potential direct effects. Realignment of one regulated watercourse (R3S1) is proposed within Phase 4 lands. Please refer to the "Fish Habitat" section for potential direct effects. No development is proposed within the area currently mapped in the RNHS as linkage, however R3S1 will	Please refer to the significant wildlife habitat, significant valleylands, significant woodlands, habitat for endangered and threatened species, fish habitat and non-regionally significant wetlands sections for potential indirect effects. Please refer to "Other Wetlands" and "Fish Habitat" regarding potential direct effects. No predicted effects will occur to the linkage associated with R3S1 as a result of the realigned channel. The channel will still provide the same linkage functions in a more robustly vegetated channel. It is predicted that the movement of wildlife within the hydro corridor is relatively limited and would not be impacted as a result of the construction of two road crossings.	 Please refer to the significant wildlife habitat, significant valleylands, significant woodlands, habitat for endangered and threatened species, fish habitat and non-regionally significant wetlands sections for potential indirect effects. Please refer to "Other Wetlands" and "Fish Habitat" regarding avoidance, mitigation and restoration measures. No negative impacts are predicted as a result of the proposed site alteration and development to the RNHS and its associated functions, so long as mitigative strategies are followed. The two road crossings within the hydro corridor will be designed in accordance with CH's Road Ecology Guideline (2018). The road crossings will have an openness 	Direct removal of 0.61 ha of wetland habitat, which is located outside of the mapped RNHS. Wetland compensation will occur adjacent to existing Key Features and create a more robust and connected system. Further information is provided below within "Other Wetlands". Realignment of a regulated watercourse within the RNHS. The watercourse will be enhanced and provide additional fish habitat within the system. More information is provided above within "Fish Habitat". No net negative impacts are predicted within the RNHS corridor.	Refer to proposed monitoring outlined within the significant wildlife habitat, significant woodlands, habitat for endangered and threatened species, fish habitat and non-regionally significant wetlands sections.

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFECTS	MONITORING AND MANAGEMENT
	 Wetlands other than those considered significant (MAM2-11 and MAS2-1); and Regulated floodplains. Two local linkages are identified within the Orlando Lands: one is associated with R3S1 and another with the hydro corridor. The R3S1 is designated as a linkage under the Regional Official Plan, while the hydro corridor is designated as a linkage under the Milton Official Plan. One Regional Linkage is also identified along Sixteen Mile Creek. The woodlands within Parcel 4 are identified within the Regional NHS (Figure 2, Appendix B1). 	be realigned (as discussed within the "Fish Habitat" section). Two road crossings are proposed within the hydro corridor, which will result in permanent infrastructure within the linkage. No natural heritage features are identified within the actively managed hydro corridor, except for the downstream extent of HDF R2S1. Limited wildlife movement is expected within this corridor given it is actively farmed and is removed from the larger NHS. Minor alteration is proposed within the 30 m vegetated setback from the staked feature limit to facilitate the construction and establishment of the bioswale. No alteration within the remaining vegetative buffers (15 m from floodline) are predicted as a result of the proposed site alteration and development. No temporary or long-term maintenance/access/development will occur on the north side of the realigned channel within the vegetative buffers. Regulated floodplain associated with Middle Branch of Sixteen Mile Creek will not be impacted by the proposed development as it is located well within the RNHS. The regulated floodplain associated with R3S1 will be altered as part of the proposed channel alignment.	Predicted effects associated with the bioswale are discussed above within the significant woodland and SWH sections. Unmitigated, alteration of the regulated floodplain associated with R3S1 could cause adverse impacts to downstream habitats. A minimum of a 15 m setback from the limit of floodplain within the corridor will be provided.	ratio of 0.1, which will facilitate movement of small to medium sized mammals, amphibians and reptiles. This will continue to support existing linkage functions within the hydro corridor.		
OTHER FEATURES AND FUNCTIONS						

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFECTS	MONITORING AND MANAGEMENT
1. Other Wetlands	A total of five wetland ELC community types are present on the Orlando Lands: Mixed Mineral Meadow Marsh (MAM2-11) Cattail Mineral Shallow Marsh (MAS2-1) Red Maple-Conifer Organic Mixed Swamp (SWM5-1) Swamp Maple Mineral Deciduous Swamp (SWD3-3) Hickory Mineral Deciduous Swamp (SWD4-5). All forested wetland communities are associated with the RNHS, and will be protected as they meet the criteria for Significant Woodland. The SWD and SWM vegetation communities were identified as Regionally Significant Wetlands, whereas the MAM and MAS vegetation communities were identified as non-regionally significant. One rare wetland community is present: SWM5-1. This was discussed under the Significant Wildlife Habitat section of this table. PECG found that SWM5-1 vegetation community is fed by groundwater discharge, SWD3-3 vegetation community receives seasonal groundwater contributions, and SWD4-5 and MAM2-11 vegetation communities are fed solely through surface water contributions and precipitation events. PECG has indicated that the catchment areas for the SWD3-3 and SWD4-5 communities will not be altered,	No direct removal of woodland (swamp) wetlands will occur to accommodate development. Removal of two non-regionally significant wetland communities (MAM2-11 and MAS2-1) on Parcel 1 will occur. Water balance will be maintained within retained wetland communities (regionally significant wetlands). Potential indirect impacts are similar to Significant Woodland and Significant Wildlife Habitat.	Direct removal of non-regionally significant wetlands: 0.55 ha (MAS2-11) and 0.06 ha (MAS2-1). Indirect impacts to woodland wetlands are similar to Significant Woodland and Significant Wildlife Habitat.	Removals of 0.61 ha of wetland (MAM2-11 and MAS2-1) located adjacent to Boston Church Road. Onsite wetland creation at a 1:1 ratio will occur within the proposed wetland compensation area (Figure 13 , Appendix B1). The wetland compensation area will be planted with a variety of native plant species to provide increased wildlife function and habitat availability to terrestrial and semi- aquatic species. Wildlife enhancement opportunities will be explored in the detailed design phase and will be outlined within the Natural Heritage Design Brief. Both MAS2-11 and MAM2-1 did not provide amphibian habitat and are highly disturbed from adjacent residential and agricultural land uses. Through onsite wetland creation, new diverse wetland habitat will be created within the realigned watercourse, which will enhance the RNHS and may provide additional amphibian breeding habitat. A formal restoration plan will be completed during the detailed design phase. Mitigation strategies such as conducting wildlife salvages from the wetlands proposed for removal and consideration of phasing opportunities will be considered. Native species plantings (shrubs and trees) will be established within vegetated buffer zones. Native thorny shrubs (i.e., raspberry species – <i>Rubus spp.</i>) will be installed at strategic locations to	Permanent removal of 0.61 ha of non-regionally significant wetlands on the Orlando Lands. Wetland compensation will occur within the Phase 4 lands between the realigned channel and the existing woodland feature providing increased wildlife functions to the RNHS. Existing wetlands are located adjacent to roadways and are likely impacted by road contaminants. These features were not documented as supporting amphibians or reptiles. Appropriate mitigative strategies should be implemented. No negative impacts to Regionally Significant Wetlands are expected as a result of the proposed 30 m setback. No negative impacts to existing woodland wetland communities are predicted provided site-wide water balance is maintained through the use of appropriate LID measures to meet infiltration targets specified by PECG.	Monitor success of vegetated buffer zones to ensure buffer functions are being achieved. Construction monitoring to ensure the effectiveness and maintenance of erosion and sediment control measures. Ecological monitoring of created wetland units within realigned channel. A formal monitoring plan will be established during the detailed design phase.

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFECTS	MONITORING AND MANAGEMENT
	and that groundwater contributions to SWM5-1 will be maintained through LID strategies. It was determined that a feature- based water balance is not required at this time.			discourage access into the retained wetland units. The Greenbelt is located within the RNHS which will be protected with a 30 m vegetated buffer. The vegetated buffer will enhance and increase the size of the Greenbelt features and/or functions. Opportunities to relocate the bioswale outside of the buffer were explored. Large portions of the bioswale were removed from the 30 m vegetated buffer to the regionally significant wetlands; however, portions of the swale needed to be located within the buffer to avoid overlapping it with the regional floodline. If the bioswale was to cross the regional floodline associated with the realigned channel, it could increase the floodline into the development area. Site-wide water balance will be maintained through the use of LID measures. This is predicted to ensure that existing groundwater discharge to natural features that are supported by seasonal groundwater contributions (i.e., SWM5-1 wetland) will be maintained.		
2. Regionally and Locally Important Species	 The following species are identified as being locally important (Crins et al. 2006; Varga 2005): Tule Bluet (<i>Enallagma</i> <i>carunculatum</i>) - Rare Gray Comma (<i>Polygonia</i> <i>progne</i>) – Rare Common Raven (<i>Corvus</i> <i>corax</i>) – Rare. 	No direct removal of Gray Comma habitat will occur to accommodate development. Potential indirect impacts are similar to Significant Wildlife Habitat.	Indirect impacts are similar to Significant Wildlife Habitat.	The Greenbelt is located within the RNHS which will be protected with a 30 m vegetated buffer. The vegetation buffer will enhance and increase the size of the Greenbelt features and/or functions. Woodland buffers will be planted with native <i>Ribes spp</i> . to supplement food sources for Gray Comma.	No negative impacts are predicted.	Monitor success of vegetated buffer zones to ensure no further impacts to existing Significant Woodland. Construction monitoring to ensure the effectiveness and maintenance of erosion and sediment control measures.

NATURAL HERITAGE FEATURES AND ASSOCIATED FUNCTIONS	SIGNIFICANT CHARACTERISTICS AND SENSITIVITY	IMPACTOR	PREDICTED EFFECTS	AVOIDANCE, MITIGATION AND/OR RESTORATION	NET EFFE
	No suitable breeding evidence was recorded for both Common Raven and Tule Bluet.				
	Gray Comma's host plants (currants and gooseberries – <i>Ribes</i> <i>spp</i> .) are present on the Orlando Lands within the woodland features associated with the Greenbelt Planning Area and Significant Woodland.				
3. Environmentally Significant Areas	Not Present/not applicable	N/A	N/A	N/A	N/A
4. Other – Presence of Species under the ESA	Not Present/not applicable	N/A	N/A	N/A	N/A
5. Other - Presence of Species Under the <i>Migratory Birds</i> <i>Convention Act</i>	The federal <i>Migratory Birds</i> <i>Convention Act</i> (MBCA) prohibits the killing, capturing, injuring, taking or disturbing of migratory birds (including eggs) or the damaging, destroying, removing or disturbing of nests.	During construction, tree removal, migratory birds, and eggs and nests of these birds could inadvertently be harmed.	Inadvertent harm to migratory birds or their eggs or nests.	Any tree or vegetation removal should occur outside of the migratory bird-nesting window of April 1 – August 31 (approximate). In rare circumstances where this window cannot be avoided, a nest search is recommended, and a buffer will be marked off surrounding any active nests that must be maintained until activity in the nest has ceased.	With the ir mitigation is predicte

MONITORING AND MANAGEMENT
N/A
None

Table 17: Invasive Species Management – Garlic Mustard (Alliaria petiolata) (Ontario Invasive Plant Council 2016; Anderson 2012b)

CONTROL MEASURE	TIMING	ADVANTAGES	DISADVANTAGES
Mechanical E	Early Spring (April- May) before plants	- Removes plants	- Must be maintained
Pulling	have set seed	- Prevents seed production	- Soil disturbance will stimulate seed bank germination
		- Likely to be successful if followed by replanting of native species	 The entire root must be removed to prevent re-sprouting
		- Species specific	
Mechanical	After plants flower,	- Prevents yearly seed production	- Must be maintained
Removal –before seed isMowing andproduced (May)Cutting	before seed is produced (May)	- Preferred over pulling to reduce soil disturbance	 May flower at different times requiring multiple treatments per growing season Mowing is not species selective
Clipping Flower	After plants flower,	- Prevents yearly seed production	- Must be maintained continually until the end of the growing season as
Heads before s produce	before seed is produced (May)	- Species specific	it encourages new flowers to emerge
Over-planting of	Following removal,	- Eradication through competition	
Ephemerals	early Spring	- Best used in combination with other control measures	
	 Species shown to outcompete Garlic Mustard when planted in high densities (9-11 plants/m²) include: 		
		 Bloodroot (Sanguinaria canadensis) 	
		 Mayapple (Podophyllum peltatum) 	
		 Zigzag Goldenrod (Solidago flexicaulis) 	
		 Canada Anemone (Anemone canadensis) 	
		 Virginia Waterleaf (Hydrophyllum virginianum) 	
		 Canada Waterleaf (Hydrophyllum canadense) 	

CONTROL MEASURE	TIMING	ADVANTAGES	DISADVANTAGES
		 White Avens (Geum canadense), 	
		 Ostrich Fern (Matteucia struthiopteris) 	
		 Woolly Blue Violet (Viola sororia) 	
		 Woodland Sedge (Carex blanda) 	
		 Starry False-Solomon's-Seal (Mainthemum stellatum) 	
		 Lady Fern (Athyrium filix-femina) 	
		 American Currant (<i>Ribes americanum</i>) 	
		 Bush Honeysuckle (<i>Diervilla lonicera</i>) 	
Burning	Fall or early Spring	- Removal of top growth, depletion of root reserves	 Controlled burns should only be used where fire is part of the natural disturbance regime
			- May be required annually until the seed bank is depleted
			- Replanting or soil rehabilitation may need to be completed after the seed bank has been depleted
Herbicide Application (Foliar	Early Spring or late Fall (when	- Useful for established populations	 Replanting or soil rehabilitation may need to be completed after the seed bank has been depleted
Spray or Wick and Wiper Applications)	other plants are dormant)		- Herbicides used for control are not selective
Biocontrol	N/A	 Useful for established populations that are no longer manageable or treatable 	 Four weevils have been chosen as candidates for further study <i>Ceutorhynchus scrobicollis</i> is the most promising. Its presence on Garlic Mustard in trials has shown increased plant mortality, reduced biomass, and reduced seed production.

Table 17: Invasive Species Management – Garlic Mustard (Alliaria petiolata) (Ontario Invasive Plant Council 2016; Anderson 2012b)

CONTROL MEASURE	TIMING	ADVANTAGES	DISADVANTAGES
Mulching	Following use of mechanical or biological controls	 May aid in the recovery of native species and prevent immediate recolonization by invasive species 	 Costly at large disturbance sites Short-term control measure To be used in conjunction with other control measures
Replenish Mycorrhizae	Following invasive plant removal	 Reduces allelopathic effects and encourages native plant growth Reduce soil compaction 	 To be used in conjunction with other control measures Will not negatively impact the growth of Garlic Mustard

Table 17: Invasive Species Management – Garlic Mustard (Alliaria petiolata) (Ontario Invasive Plant Council 2016; Anderson 2012b)

CONTROL MEASURE	TIMING	ADVANTAGES	DISADVANTAGES
Mechanical Removal – Pulling and Digging	Spring to early Summer	 Most effective method Removes all plants Species specific 	 Must be maintained Soil disturbance will stimulate seed bank germination and increase the plant population the year following treatment The entire root must be removed to prevent re-sprouting
Herbicide Application (Glyphosate)	Late Fall	- Useful for established populations	 Require repeated or annual application Must be used in conjunction with other control methods Replanting or soil rehabilitation may need to be completed after the seed bank has been depleted Not species specific
Burning	Spring or Fall	 Can be effective Removal of top growth, depletion of root reserves 	 Controlled burns should only be used where fire is part of the natural disturbance regime For effective control, burns must be repeated

Table 18: Invasive Species Management – Dame's Rocket (Hesperis matronalis) (Invasive Species Council of Manitoba 2017)

CONTROL MEASURE	TIMING	ADVANTAGES	DISADVANTAGES
Mechanical Removal – Pulling and Digging	Fall	 Removes plants Prevents seed production Effective for small, young populations Species specific 	 Must be maintained Soil disturbance will stimulate seed bank germination Labour-intensive Roots must be removed
Mechanical Removal – Clipping	Spring, Summer or Fall, 3-5 year treatment	 Reduce seed production and plant density Species specific 	- Cut stumps will re-sprout, herbicide treatments must be applied
Mechanical Removal – Cutting and Girdling	Late Spring to early Summer preferred	 Treatment weakens large shrubs for mechanical removal the following year 	 Herbicide treatments must be applied to cut areas Girdling may need to be repeated after 1-2 years
Mechanical Removal – Mowing	Following leaf out	 Effective for young populations Reduce seed production and plant density 	 Must be repeated later in the season and continued for several seasons Must be maintained Not species selective
Targeted Grazing (Goats)	N/A	 Reduces flowering populations Removal of top growth and depletion of root reserves May control several nuisance species at once (ex. Reed Canary Grass) Protect other communities with fencing 	 Often does not cause enough damage to plants to provide control Not recommended for high quality natural areas
Burning	N/A	- Removal of top growth, depletion of root reserves	 Controlled burns should only be used where fire is part of the natural disturbance regime

Table 19: Invasive Species Management – Tartarian Honeysuckle (Lonicera tatarica) (Ontario Invasive Plant Council 2016; Tassie and Sherman 2014)

CONTROL MEASURE	TIMING	ADVANTAGES	DISADVANTAGES
			 Not effective when used as a stand-alone method Re-sprouting will occur after the initial burn Not species specific For effective control, burns must be repeated every 3-5 years
Herbicide Application - Foliar Spray	N/A	- Effective for larger populations of young trees	 Not species specific Provide short-term control May not be applied over water
Herbicide Application - Cut Stump Method	N/A	 Targets small to large populations of adult shrubs Preferred herbicide application method in sensitive areas 	 Not species specific Provide short-term control May not be applied over water

Table 19: Invasive Species Management – Tartarian Honeysuckle (Lonicera tatarica) (Ontario Invasive Plant Council 2016; Tassie and Sherman 2014)

CONTROL MEASURE	TIMING	ADVANTAGES	DISADVANTAGES
Mechanical Mid-C Removal – mid-N	Mid-October to mid-November	Removes plantsPrevents seed production	 Must be maintained Soil disturbance will stimulate seed bank germination
Fulling			- The entire root must be removed to prevent re-sprouting
Mechanical	Late spring to	- Effective method for larger shrubs	- Herbicide must be applied to prevent re-sprouting
Removal – early summer Cutting & Girdling		- Treatment weakens large shrubs for mechanical removal the following year	- Girdling may need to be repeated
Mechanical Early to late	Early to late	- Reduces stem numbers and vigour	- Must be done for at least 2-3 consecutive years
Mowing	summer	- Effective for killing seedlings	- Not species specific
Targeted Grazing	Early season	- Reduces flowering populations	- Not recommended for high quality natural areas
(Sheep)		- Removal of top growth and depletion of root reserves	
		- May control several nuisance species at once (e.g., Reed Canary Grass)	
		- Protect other communities with fencing	
Burning		- Removal of top growth, depletion of root reserves	 Controlled burns should only be used where fire is part of the natural disturbance regime
			 For complete control in established stands, burning yearly or every other year may be required for 5 to 6 years or more
			- Success depends on fire intensity
			- Not species specific

Table 20: Invasive Species Management – European Buckthorn (*Rhamnus cathartica*) (Ontario Invasive Plant Council 2016; Anderson 2012b)

CONTROL MEASURE	TIMING	ADVANTAGES	DISADVANTAGES
Flooding		 Can prevent germination of seeds or the establishment of seedlings Minimal effects on wildlife 	 Only applicable in areas where water levels can be controlled or areas that are naturally prone to flooding Soil disturbance will stimulate seed bank germination Not species specific
Herbicide Application		- Useful for established populations	 Replanting or soil rehabilitation may need to be completed after the seed bank has been depleted Herbicides used for control may not be selective
Biocontrol	N/A	 Useful for established populations that are no longer manageable or treatable 	 Testing for Common Buckthorn is ongoing using two psyllids (sap- sucking lice) and a seed-feeding midge that have shown host- specificity in early trials

Table 20: Invasive Species Management – European Buckthorn (*Rhamnus cathartica*) (Ontario Invasive Plant Council 2016; Anderson 2012b)

Appendix B3 – Agency Correspondence

Southern Region Aurora District Office 50 Bloomington Road West Aurora, ON L4G 0L8

Ministry of Natural Resources and Forestry Ministere des Richesses Naturelles et des Forêts *C*Ontario

October 2, 2014

Eva Lee, Ecologist Savanta Inc. 37 Bellevue Terrace St. Catharines, ON L2S 1P4 Phone 647-530-3660 <u>evalee@savanta.ca</u>

Re: Orlando ROPA 38 Land, Commercial and Industrial Development Milton, ON

Dear Ms. Lee,

In your email dated August 6, 2014 you requested information on natural heritage features and element occurrences occurring on or adjacent to the above mentioned location. There are a number of Species at Risk recorded from your study area and the immediate vicinity. As of the date of this letter, we have records of:

Bobolink THR Eastern Meadowlark THR

These species may receive protection under the *Endangered Species Act 2007* and thus, an approval from MNRF may be required if the work you are proposing could cause harm to these species or their habitat. If the Species at Risk in Ontario List is amended, additional species may be listed and protected under the *ESA 2007* or the status and protection levels of currently listed species may change. Please provide additional information on your proposal to our office, and we will assess it to determine whether an authorization under the *ESA 2007* is required for the works to proceed.

There are no natural heritage features recorded for your area.

Absence of information provided by MNRF for a given geographic area, or lack of current information for a given area or element, does not categorically mean the absence of sensitive species or features. Many areas in Ontario have never been surveyed and new plant and animal species records are still being discovered for many localities. For these reasons, the MNRF cannot provide a definitive statement on the presence, absence or condition of biological elements in any part of Ontario.

This species at risk information is highly sensitive and is not intended for any person or project unrelated to this undertaking. Please do not include any specific information in reports that will be available for public record. As you complete your fieldwork in these areas, please report all information related to any species at risk to our office. This will assist with updating our database and facilitate early consultation regarding your project.

If you have any questions or comments, please do not hesitate to contact me at 905-713-7344 or <u>ESA.Aurora@ontario.ca</u> (Attention: Brittany Ferguson).

Sincerely,

Brittany Ferguson Fish and Wildlife Technical Specialist Ontario Ministry of Natural Resources and Forestry, Aurora District

Ministry of Natural Resources and Forestry Aurora District Office 50 Bloomington Road Aurora, Ontario L4G 0L8 Ministère des Richesses naturelles et des Forets

Telephone: (905) 713-7400 Facsimile: (905) 713-7361

January 15, 2016

Eva Lee, Ecologist Savanta Inc. Email: <u>evalee@savanta.ca</u>

Re: Milton North Porta Southwest corner of 5 Sideroad and Boston Church Road

Dear Ms. Lee,

The Ministry of Natural Resources and Forestry (MNRF) understands that you are requesting species at risk information for the above-noted site in support of an EIS for a proposed commercial and industrial development. MNRF has records of species at risk adjacent to your study area, including:

• EASTERN MEADOWLARK (Threatened), with general habitat protection

Additionally, the species listed below have the potential to occur in or your study and may require further assessment or field studies to determine presence:

- MILKSNAKE (Special Concern)
- BOBOLINK (Threatened), with general habitat protection
- BANK SWALLOW (Threatened), with general habitat protection
- BARN SWALLOW (Threatened), with general habitat protection
- BUTTERNUT (Endangered), with general habitat protection
- LITTLE BROWN MYOTIS (Endangered), with general habitat protection

These species may receive protection under the *Endangered Species Act, 2007* (ESA) and thus, an approval from MNRF may be required if the work you are proposing could cause harm to these species or their habitats. If the Species at Risk in Ontario List is amended, additional species may be listed and protected under the ESA or the status and protection levels of currently listed species may change.

Absence of information provided by MNRF for a given geographic area, or lack of current information for a given area or element, does not categorically mean the absence of sensitive species or features. Many areas in Ontario have never been surveyed and new plant and animal species records are still being discovered for many localities. For these reasons, the MNRF cannot provide a definitive statement on the presence, absence or condition of biological elements in any part of Ontario.

This species at risk information is highly sensitive and is not intended for any person or project unrelated to this undertaking. Please do not include any specific information in reports that will be available for public record. As you complete your fieldwork in these areas, please report all information related to any species at risk to our office. This will assist with updating our database and facilitate early consultation regarding your project.

If you have any questions or comments, please contact me at <u>aurora.mcallister@ontario.ca.</u>

Sincerely,

amcallt

Aurora McAllister Management Biologist, Aurora District Ministry of Natural Resources and Forestry

 From:
 Jessica Bester

 To:
 Robinson, Olivia

 Cc:
 Lisa Jennings; Lee-Yates, Leilani; Boucher, Noel; Karen Bennett; Lesley Matich

 Subject:
 [EXT] RE: Milton North - Fieldwork Requirements and Feature Staking Requests (SAV PN 7537)

 Date:
 Wednesday, May 19, 2021 9:42:51 AM

 Attachments:
 image001.png image002.png image02.png CH EFT FORM.pdf

 7537
 MiltonNorth

EXTERNAL EMAIL

Hi Olivia,

Thank you for your emails, including email received yesterday with attached technical letter. Please see responses below in green.

Thanks, Jessica

Jessica Bester, BES, MCIP, RPP Senior Environmental Planner

Conservation Halton 2596 Britannia Road West, Burlington, ON L7P 0G3 905.336.1158 ext. 2317 | Fax 905.336.6684 | <u>ibester@hrca.on.ca</u> conservationhalton.ca

Green • Resilient • Connected

Click here to learn about Conservation Halton's new strategic plan.

From: Robinson, Olivia <u>orobinson@savanta.ca</u>
Sent: May 18, 2021 2:55 PM
To: Lee-Yates, Leilani Leilani.Lee-Yates@halton.ca; Jessica Bester jbester@hrca.on.ca
Cc: Moores, David mooresd@orlandocorp.com; Kramer, Gary kramerg@orlandocorp.com; malitol@orlandocorp.com; Boucher, Noel nboucher@savanta.ca; Karen Bennett karenb@gsai.ca; Lisa Jennings ljennings@hrca.on.ca; Colin Chung colinc@gsai.ca
Subject: Milton North Conservation Halton Regulation Mapping Wetland Review - Technical Letter (SAV PN 7537)

Hello Leilani and Jessica,

Please find the attached technical letter summarizing our findings of three potential wetland features identified through Conservation Halton's regulation mapper within Parcel 4 of the Milton North lands. As summarized within our letter, we do not expect these features to meet the wetland definition under the Conservation Authorities Act (1990), however we welcome your teams to review these features during the feature staking exercises.

If you have any questions or concerns and would like to discuss this ahead of our Friday afternoon meeting, please let me know!

Thank you very much,

. . . .

Olivia

OLIVIA ROBINSON, CERP Intermediate Ecologist 647.988.2849 75 Tiverton Court | Unit 100 Markham, ON L3R 4M8

From: Robinson, Olivia <orobinson@savanta.ca>
Sent: May 12, 2021 1:48 PM
To: Jessica Bester <jbester@hrca.on.ca>
Cc: Lisa Jennings <ljennings@hrca.on.ca>; Lee-Yates, Leilani <Leilani.Lee-Yates@halton.ca>; Boucher, Noel <nboucher@savanta.ca>; Karen

Bennett <karenb@gsai.ca> Subject: RE: Milton North - Fieldwork Requirements and Feature Staking Requests (SAV PN 7537)

Hello Jessica,

Thank you very much for your email and responses. A few responses provided below related to your comments.

We will be providing the technical memo regarding the regulated wetland features identified by CH mapping within Parcel 4, and not regarding HDF R3S1. I will provide that once it is completed and am in agreement that CH and the Region review these areas during the feature staking exercise in early June.

Thank you for submitting the technical letter (received yesterday). We will review for our reference. However, CH staff would still prefer to visit the site to see the features during the appropriate growing season. See site visit availability below.

With respect to fieldwork requirements, you are correct - we completed round 1 amphibian call count surveys on April 30th under appropriate weather conditions. We recorded no amphibians calling from the wetland off Boston Church Road. I am concerned that if we wait until early June for CH and the Region to comment on whether additional surveys are required for these wetlands that we will have missed the second round amphibian window (which is currently open until the end of May). Does CH/Region require us to complete second round call count surveys at this wetland?

Since the wetlands along Boston Church Road were surveyed in 2016/2017 with no amphibians recorded and the most recent call count surveys in 2021 did not record any calling amphibians, CH is satisfied that no additional surveys are needed. Please reflect this information within the updated study.

Finally, can CH and the Region please provide availability for staff to conduct both dripline and wetland staking + general site visit for the following five dates:

- Tuesday, June 1 all day CH is available.
- Wednesday June 2 all day
- Thursday June 3 all day
- Friday June 4 all day CH is available.
- Monday June 7 all day

We expect it will be a full day with the wetland, dripline and general site visit. I am proposing that we have one staff member from each agency, myself, one surveyor and one of our botanists on site for a total of 5 individuals. If CH/Region would like to have additional staff attend the site visit, we may need to look at conducting two separate site visits. I will reach out to the Region (Leilani) directly to confirm that they are OK with pre-staking the dripline.

As per discussion with Regional staff, CH staff will stake the woodland driplines on behalf of the Region along with the other natural features on-site (including the top of slope of the Middle Sixteen Mile Creek). We are ok with pre-staking, as long it's recognized that stakes may be moved while on-site. From CH, it will be myself and Lesley Matich, Manager of Planning Ecology (copied) on behalf of Lisa Jennings, Senior Planning Ecologist attending the site visit/staking. An Ontario Land Surveyor will also need to be present.

We are available on June 1st and 4th as referenced above. As we have not received a formal application at this time, prior to the site visit we will require payment of our site visit fee (\$1,915) as per "Conservation Halton Fees for Other Services 2021" fee schedule under "Pre-Application Requests": <u>Plan Review Fees — Conservation Halton</u>. This fee could then be deducted from the application fees once received. Payment can be provided using the Electronic Funds Transfer (see form attached) and we kindly ask that you quote MPR 787 when payment is made.

Given the above, please confirm which of the above dates would work for you, your botanist and your surveyor. Please also provide a map outlining where we should meet/park on the day of the site visit.

Thank you very much,

Olivia

From: Jessica Bester <jbester@hrca.on.ca>
Sent: Wednesday, May 12, 2021 11:57 AM
To: Robinson, Olivia <orobinson@savanta.ca>
Cc: Lisa Jennings ljennings@hrca.on.ca>; Lee-Yates, Leilani <Leilani.Lee-Yates@halton.ca>
Subject: [EXT] RE: Milton North - Fieldwork Requirements and Feature Staking Requests (SAV PN 7537)

Hi Olivia,

Thank you for your emails with additional attached photos. Further to the pre-consultation discussion and your meeting with Lisa last week, we provide the following responses in green below. Additional information will be provided in the forthcoming notes as a follow-up from the pre-consultation meeting.

Thanks, Jessica

Jessica Bester, BES, MCIP, RPP Senior Environmental Planner

Conservation Halton

2596 Britannia Road West, Burlington, ON L7P 0G3 905.336.1158 ext. 2317 | Fax 905.336.6684 | jbester@hrca.on.ca conservationhalton.ca

Green • Resilient • Connected

Click here to learn about Conservation Halton's new strategic plan.

From: Robinson, Olivia <<u>orobinson@savanta.ca</u>>
Sent: May 10, 2021 11:17 AM
To: Jessica Bester <<u>ibester@hrca.on.ca</u>>; Lee-Yates, Leilani <<u>Leilani.Lee-Yates@halton.ca</u>>
Cc: Boucher, Noel <<u>nboucher@savanta.ca</u>>; Karen Bennett <<u>karenb@gsai.ca</u>>; Lisa Jennings@hrca.on.ca>
Subject: RE: Milton North - Fieldwork Requirements and Feature Staking Requests (SAV PN 7537)

Hello Jessica and Leilani,

I hope that you both had lovely weekends (and a Happy Mother's Day)!

I wanted to connect regarding my initial email, specifically with respect to additional fieldwork requirements. As you can appreciate, the client is applying some pressure for us to get a response and wrap this comment up quickly. I can offer some additional information as one of our botanists conducted a reconnaissance last week of the candidate wetland areas that Lisa had identified within the pre-con meeting. Our botanist recommends that both features would not qualify as wetlands (map below for your reference).

Last week we had some further dialogue with Lisa regarding the geomorphic assessment requirements for R3S1 – I took some time at the end of our call to summarized our preliminary findings and committed to providing a technical memo with photos from our visit you're your review. As you can appreciate, our field staff are quite busy right now so I cannot commit when we will be able to provide the technical memo, however attached are some photos of the two features in question to help provide some further evidence.

Thank you for sending the attached photos. To clarify, we understand that the technical memo you're referring to is in support of the two mapped wetlands and not the watercourse (R3S1).

Specifically, the southern feature is located within an actively managed field and had last year's corn stalks present. The northern feature was located up on dug mounds and contained several upland weedy species; this feature was located on either side of a dug HDF (HDF R3S1h). Within the dug HDF a few cattail stems were identified near the tree line, however it is our opinion that this would not qualify as a wetland community. We recognize that classification of wetland communities should be completed later in the year (June), however due to the topographic positioning and presence of various upland species within the northern feature, our botanist suggests it is highly unlikely that this feature would be considered a wetland. We still welcome CH and the Region to review these features during the feature staking exercise under appropriate conditions.

CH would still like to visit the site to see the features during the appropriate growing season. We could arrange the site visit/staking of all features at the beginning of June to keep this moving in accordance with the applicable restrictions (no more than 5 people on-site at a time).

I understand that CH and the Region will want to have some further discussions before providing any comment on whether additional fieldwork is required. Is it reasonable to request that we aim to have a response back before the end of the month? It is still our position that no additional fieldwork is warranted given the proposed site plan.

Please let me know if you would like to discuss anything!

Thank you for your time,

Olivia

OLIVIA ROBINSON, CERP Intermediate Ecologist 647.988.2849 75 Tiverton Court | Unit 100 Markham, ON L3R 4M8

From: Robinson, Olivia
Sent: Monday, May 3, 2021 2:03 PM
To: jbester@hrca.on.ca; Lee-Yates, Leilani <<u>Leilani.Lee-Yates@halton.ca</u>>

Cc: Boucher, Noel <<u>nboucher@savanta.ca</u>>

Subject: Milton North - Fieldwork Requirements and Feature Staking Requests (SAV PN 7537)

Hello Jessica and Leilani,

I hope that you both had a lovely weekend! We wanted to connect regarding the Milton North file as we were looking to receive additional clarification/sign-off from both CH and the Region with respect to whether additional fieldwork is still required for this site. Attached is a copy of Table 1 from our EIS to help guide this discussion. We also wanted to take this time to schedule feature staking exercises so that we can get this into our calendars.

1. Additional Fieldwork Requirement

As per our meeting last week, while it is recognized that a bulk of our fieldwork was conducted in 2015/2016, we believe that the conceptual site plan generally is respectful of candidate and confirmed natural heritage features within and adjacent to the Subject Land, with exception to the two smaller wetland communities along Boston Church which are proposed for removal and the two candidate tableland features identified by Lisa Jennings within the agricultural fields on the Parcel 4 property. We believe that no additional fieldwork is warranted at this time as the Subject Lands are still actively managed agricultural fields and all significant features will be retained (or realigned) and protected through the establishment of vegetated buffers to create a more robust and resilient RNHS. We do not expect that the refresh of field studies would change how we characterize the features on the landscape. Moreover, this project has tight timelines and we do not believe that a full fieldwork program would be able to be completed ahead of resubmission of the planning application.

Regarding updated field surveys for the wetlands identified along Boston Church Road: during the April 28, 2021 meeting, Savanta indicated additional seasonal surveys (round one of amphibian call surveys) will be underway to update characterization of the wetlands. Please clarify that these surveys will be completed as mentioned. At the site visit in early June, CH staff would also like to see these features during the appropriate growing season. See response below for CH regulated wetlands located within Parcel 4.

Requirements for any additional fieldwork will be outlined in the forthcoming notes as a follow-up from the pre-consultation meeting.

Since our meeting, I have coordinated one of our botanists to conduct a site reconnaissance (scheduled for tomorrow, Tuesday May 4th) to specifically focus on the two candidate tableland features that are illustrated on CH's mapping. Once we have an idea of whether these features exist within the landscape we will be able to better address them within the EIS, as appropriate. If the features are present within the landscape, based on their size and proximity to actively managed agricultural fields, we would argue that these features would not qualify as significant wildlife habitat nor would they meet the definition of regional significant wetlands.

During the meeting held on May 5, 2021 with CH technical staff and Savanta, it was stated that Savanta would provide a technical memo and photos to describe the tableland wetlands identified as regulated within CH mapping. CH staff have now received the photos and still want to complete a site visit to view the features during the appropriate growing season. If wetlands are confirmed, the study will need to be updated to characterize, assess (amphibian call surveys, and botanical inventory), and confirm current function of the wetlands. Further, the study will need to determine if the wetlands provide important ecological function to the Regional Natural Heritage System (RNHS), ensure that there will be no negative impacts and ensure appropriate mitigation measures are in place post development. Further guidance can be provided following the outcome of that site visit.

Based on the above information, we strongly believe that the intensive fieldwork program that was completed within the Subject Lands should still stand and would not warrant additional efforts given the proposed site plan. If you could please confirm if you are OK with the above noted approach, that would be helpful so we can close the loop on this.

2. Feature Staking Exercise

We are requesting that we schedule all feature staking exercises for the Milton North lands now. Attached is a copy of our ELC mapping (Figure 5 of our EIS) to help inform discussions. It sounds like the client would like us to limit the amount of visits to the site, so we were wondering if CH and the Region would consider one full day of both wetland and dripline staking for this site? If it is helpful, we can have our botanists head out the day before and complete pre-staking so that it is more confirmation of the staked limits once we are on site. If you are agreeable to doing this in one day, please let me know a few dates that will work for you and your team so I can book the surveyors and our botanists in early June.

CH is amenable to pre-staking the wetlands with the understanding that modification to the boundary limits may be required once on site. We recommend confirming with Regional staff as to whether they are amenable to pre staking the Significant woodland dripline.

Please let me know if we need to have further conversations about either topic! Appreciate your help in moving along this project file.

Thank you,

Olivia

۰.

	OLIVIA ROBINSON, CERP
	Intermediate Ecologist
1	647.988.2849
	75 Tiverton Court Unit 100
	Markham, ON L3R 4M8

.

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Appendix B4 - Field Forms

2014-2016 Botanical

CLASSIFICATION	START:	END	60-19	UTMZ:	UTMN:
			S VOR ADIL		
POLYGON DES	SCRIPTION	TOPOCRAPHIC			0011111100
STSTEM	SUBSIRATE	FEATURE	HISTORY	PLANTFORM	COMMONITY
TERRESTRIAL			NATURAL		
WETLAND	DARENT MIN	BOTTOMLAND TERRACE	CULTURAL	GRAMINOID	RIVER
LADUATIC	ACIDIC BEDRK	VALLEY SLOPE			MARSH
1	BASIC BEDRK.	CUFF		BRYOPHYTE	FEN BOG
OITE	CARB. BEDRK.	TALUS	COVER		BARREN
911-5			COVER		PRAIRIE
OPEN WATER	10 al	BEACH / BAR		1	SAVANNAH
SURFICIAL DEP.		BLUFF	C SHRUB	10 A	
		1,	head, TT Visite by		
STAND DESCR	IPTION:	SDECIES			
LAYER	HT CVR	(>> MUCH GREAT	TER THAN; > GRE	ATER THAN; = ABO	OUT EQUAL TO)
1 CANOPY	24		1 190		
2 SUB-CANOPY	3 3	100, #	apre	1.1	
3 UNDERSTOREY	3-43	not a	* My	1007	
4 GRD. LAYER	5-73		0		
HT CODES:	1 =>25 m 2 = 10 <ht 0= NONE 1= 0% < C</ht 	$\leq 25 \text{ m}$ 3 = 2 <ht <math="">\leq 10 \text{ m} VR < 10% 2= 10 < CV</ht>	$4 = 1 < HT \le 2 m = 5 = 0.$ R < 25% = 3 = 25 < CVR	$5 < HT \le 1 \text{ m}$ $6 = 0.2 < HT \le 0.2 < HT \le 0.0\%$:0.5 m 7 = HT<0.2 m
		7			
STAND COMPOSI	TION:			0.	BA:
SIZE CLASS ANA	LYSIS:	A <10	A 10-24	A 25 - 50	> 50
TANDING SNAG	S:	< 10	K 10-24	R 25-50	> 50
STANDING SNAG DEADFALL / LOG	S: S:	< 10 A < 10	R 10-24	R 25 - 50 R 25 - 50	> 50
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES	S: S: 3:	< 10 A < 10 N = NONE R =	RARE 0=00	$\begin{array}{c c} R & 25 - 50 \\ \hline R & 25 - 50 \\ \hline casional & A = A \end{array}$	> 50 > 50 BUNDANT
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES COMM. AGE :	S: S: PIONEER	< 10 A < 10 N = NONE R = YOUNG	RARE 0 = 00 MID-AGE	R 25 - 50 R 25 - 50 CASIONAL A = AI MATURE	> 50 > 50 BUNDANT
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES COMM. AGE :	S: S: PIONEER	< 10 A < 10 N = NONE R = YOUNG	R 10 - 24 0 10 - 24 RARE 0 = 00 MID-AGE	R 25 - 50 R 25 - 50 CASIONAL A = AI MATURE	> 50 > 50 BUNDANT GROWTH
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES COMM. AGE :	S: S: 3: PIONEER	< 10 A < 10 N = NONE R = YOUNG	Rare 0 = 00 MID-AGE	R 25 - 50 R 25 - 50 CASIONAL A = AI MATURE	SO SUNDANT GROWTH
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES COMM. AGE : SOIL ANALYSIS TEXTURE:	S: S: 3: PIONEER	 < 10 < 10 < 10 N = NONE R = YOUNG DEPTH TO MOT	Image: Non-24 10 - 24 Image: Non-24 10 - 24 RARE 0 = 000 Image: Non-AGE Image: Non-AGE TLES / GLEY Image: Non-AGE	25 - 50 26 - 50 CASIONAL A = AI MATURE	SO SUNDANT GROWTH
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES COMM. AGE : SOIL ANALYSIS TEXTURE: MOISTURE: HOMOCENEOUS	S: S: PIONEER	<pre> <10 <10 <10 <10 N=NONE R= </pre>	Image: Non-24 10-24 Image: Non-24 0 = 00 Image: Non-24	g =	> 50 > 50 BUNDANT OLD GROWTH G= (cm)
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES COMM. AGE : SOIL ANALYSIS FEXTURE: MOISTURE: HOMOGENEOUS	S: S: 	< 10	Image: Constraint of the second sec	g =	> 50 > 50 BUNDANT OLD GROWTH G= (cm) (cm)
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES COMM. AGE : SOIL ANALYSIS FEXTURE: MOISTURE: HOMOGENEOUS COMMUNITY CL	S: S: PIONEER : : / VARIABLE ASSIFICATIO	<pre> < 10</pre>	Image: Constraint of the second sec	R 25 - 50 R 25 - 50 CASIONAL A = AI MATURE g =	> 50 > 50 BUNDANT OLD GROWTH G= (cm) (cm)
STANDING SNAG DEADFALL / LOG DBUNDANCE CODES COMM. AGE : SOIL ANALYSIS FEXTURE: MOISTURE: HOMOGENEOUS COMMUNITYCL	S: S: PIONEER : / VARIABLE ASSIFICATIO SS:	<10	Image: Non-24 10-24 Image: Non-24 0 = 000	R 25 - 50 R 25 - 50 CCASIONAL A = AI MATURE g = CODE: CODE:	> 50 > 50 BUNDANT OLD GROWTH GROWTH G= (cm) (cm)
STANDING SNAG DEADFALL / LOG DEADFALL / LOG DEUNDANCE CODES COMM. AGE : SOIL ANALYSIS TEXTURE: NOISTURE: NOISTURE: NOISTURE: NOMOGENEOUS COMMUNITY CLA COMMUNITY SER	S: S: PIONEER VARIABLE ASSIFICATIO SS: IES:	<10	Image: Constraint of the second sec	R 25 - 50 R 25 - 50 CASIONAL A = AI MATURE MATURE g = CODE: CODE: CODE:	> 50 > 50 BUNDANT OLD GROWTH GROWTH G= (cm) (cm)
STANDING SNAG DEADFALL / LOG DBUNDANCE CODES COMM. AGE : SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY SER COSITE:	S: S: PIONEER VARIABLE ASSIFICATIO SS: IES:	<10	Image: Constraint of the second sec	R 25 - 50 25 - 50 25 - 50 CASIONAL A = AI MATURE MATURE g = CODE: CODE: CODE: CODE: CODE:	> 50 > 50 BUNDANT OLD GROWTH G= (cm) (cm)
STANDING SNAG DEADFALL / LOG DBUNDANCE CODES COMM. AGE : SOIL ANALYSIS EXTURE: HOMOGENEOUS COMMUNITYCL COMMUNITY CLA COMMUNITY SER COSITE: EGETATION TYP	S: S: PIONEER VARIABLE ASSIFICATIO SS: IES: F:	<pre>< 10 </pre> < 10 N = NONE R = YOUNG DEPTH TO MOT DEPTH OF ORG DEPTH TO BEDI N:	Image: Constraint of the second sec	R 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE MATURE g = CODE: CODE: CODE: CODE: CODE: CODE: CODE:	> 50 > 50 BUNDANT OLD GROWTH G= (cm) (cm)
STANDING SNAG DEADFALL / LOG DEADFALL / LOG DEUNDANCE CODES COMM. AGE : SOIL ANALYSIS TEXTURE: MOISTURE: MONOGENEOUS COMMUNITY CLA COMMUNITY CLA COMMUNITY SER COSITE: EGETATION TYP Samm	S: S: PIONEER : / VARIABLE ASSIFICATIO SS: IES: E: eple Mit	<pre>< 10 A < 10 N = NONE R = YOUNG DEPTH TO MOT DEPTH OF ORG DEPTH TO BEDI N:</pre>	ANICS: ROCK:	R 25 - 50 25 - 50 25 - 50 CCASIONAL A = AI MATURE MATURE g = CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE:	> 50 > 50 BUNDANT OLD GROWTH GROWTH G= (cm) (cm) (cm) 3 - 3
STANDING SNAG DEADFALL / LOG DEADFALL / LOG DEUNDANCE CODES COMM. AGE : SOIL ANALYSIS TEXTURE: MOISTURE: MOISTURE: MOISTURE: MOMOGENEOUS COMMUNITY CLA COMMUNITY CLA COMMUNITY SER COSITE: EGETATION TYP Sammu INCLUSIO	S: S: PIONEER : / VARIABLE ASSIFICATIO SS: IES: E: gele Mit	<pre>< 10 A < 10 N = NONE R = </pre> I YOUNG DEPTH TO MOT DEPTH OF ORG DEPTH TO BEDI N: 1. Dec. Action	K 10-24 D 10-24 RARE 0=000 V MID-AGE TLES / GLEY ANICS: ROCK:	R 25 - 50 25 - 50 25 - 50 CASIONAL A = AI MATURE MATURE g = CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE:	> 50 > 50 BUNDANT OLD GROWTH GROWTH G= (cm) (cm) (cm) 3 - 3
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES COMM. AGE : SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY CLA COMMUNITY SER COSITE: EGETATION TYP Samm INCLUSIO COMPLED	S: S: PIONEER VARIABLE ASSIFICATIO SS: IES: E: Sple Mit	<pre>< 10 A < 10 N = NONE R = </pre>	K 10-24 0 10-24 RARE 0=00 V MID-AGE TLES / GLEY ANICS: ROCK:	R 25 - 50 25 - 50 25 - 50 CASIONAL A = AI MATURE MATURE g = CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE:	> 50 > 50 BUNDANT OLD GROWTH G= (cm) (cm) (cm) 3 - 3
STANDING SNAG DEADFALL / LOG ABUNDANCE CODES COMM. AGE : SOIL ANALYSIS TEXTURE: MOISTURE: MOISTURE: MONGENEOUS COMMUNITY CLA COMMUNITY SER COSITE: TEGETATION TYP Sammu INCLUSIO COMPLED otes:	S: S: PIONEER VARIABLE ASSIFICATIO SS: IES: E: opte Mit	<pre>< 10 A < 10 N = NONE R = VOUNG DEPTH TO MOT DEPTH OF ORG DEPTH TO BEDI N: </pre>	ANICS: RACK:	R 25 - 50 25 - 50 25 - 50 CASIONAL A = AI MATURE MATURE g = CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE: CODE:	> 50 > 50 BUNDANT OLD GROWTH GE (cm) (cm) 3 - 3

		LA	YER		国际公共 10	di ante a sec			LA	YER		10 the	
SPECIES CODE	1	2	3	4	COLL.	SPECIES C	ODE	1	2	3	4	CC)LL.
Carrye condig	10					Cover the	Picto				0		
Tilia amer.	0	0	-0	3		Imper.	CRA.				A		
Querc, mer.		1	R			Geran, A	2 der	4.	•		0		-
ance orbetre	Ø	0	0			Ans. this	ph.				0		
not renns	0		D			Genno	lepp				0		
Aced serch		R	R			Allience	oel.				D,	R	
Stree vice		0	0			Care. Li	fel.				0		
Adrix Freem	A					Peum. ca	was				0		
tagus grand	0	0			4	Trag. in	das.				0		
Ulun lis am		R				ausin	him		1		0		
						Asterlar	enfl	low	10	5	0		4.
						Conestha	all				O,	2	
						Pedoph. Pe	ell				0		-
						Glyc. St.	nate				0		
Votos ú pome				0		Certifu	rul				0		
Chamn, ceth				R		Aster la	tru	R			D		
Danus faery.				0		Cover to	ireer	le	-		0		
uon, obar				0		Epilob.0	do	A			R		
Lunus virgin				0		/							
hus Ryob.		••		0									
VcDOV. Opecla	!			R									
annin, carol				R									1
gith. Eusert				0									
inder benz				R									
Conic. fat.				R									

14

FIC	SITE:	
<u> </u>	POLYGON:	-
SPECIES	DATE:	· · · · · · · · · · · · · · · · · · ·
LIST	SURVEYOR(S):	

Page of

ELC	Mai	00 Unit	DOM	FULTOUN.	herear.
COMMUNITY DESCRIPTION &	SURVEYOR(S):	olodeski	DATE: 4 Ju	ly 2014	
CLASSIFICATION	START:	END	6 Oct 2014	UTMZ:	UTMN:
POLYGON DES	CRIPTION		2		
SYSTEM	SUBSTRATE	TOPOGRAPHIC	HISTORY	PLANTFORM	COMMUNI
TERRESTRIAL					
WETLAND	MINERAL SOIL	BOTTOMLAND	CULTURAL	FLOATING-LVD.	
AQUATIC	D PARENT MIN.	VALLEY SLOPE			MARSH
	ACIDIC BEDRK.	ROLL, UPLAND			FEN
	CARB. BEDRK.			CONIFEROUS	BARREN
SITE		ALVAR	COVER		
OPEN WATER	10 IV	BEACH / BAR		1.1	
SURFICIAL DEP.	a 8	SAND DUNE		6.0	
		2	TREED		LI PLANTATION
STAND DESCR	IPTION:				
LAYER	HT CVR	SPECIES I (>> MUCH GREA	N ORDER OF DI TER THAN; > GRE	CREASING DO ATER THAN; = AB	MINANCE OUT EQUAL TO
1 CANOPY	1-2 4		1 080	1	
2 SUB-CANOPY	2-3 3	100 A	april	1.A	
3 UNDERSTOREY	43	n a	* My	The t	
4 GRD. LAYER	5-6.4	0.			
HT CODES:	1 = >25 m 2 = 10 <h1 0= NONE 1= 0% < (</h1 	T≤25 m 3 = 2 <ht≤10 m<br="">CVR < 10% 2= 10 < CV</ht≤10>	$4 = 1 < HT \le 2 m 5 = 0$. R < 25% $3 = 25 < CVR$	5 <ht≤1 6="0.2<HT<br" m="">≤ 60% 4= CVR > 60%</ht≤1>	ľ≤0.5 m 7 = HT<0.2 %
		ŕ			
STAND COMPOSI	TION:				PA:
SIZE CLASS ANA	LYSIS:	9 < 10	A 10-24	A 25-50	> 50
STANDING SNAG	S:	< 10	R 10-24	25 - 50	> 50
DEADFALL / LOG	S:	A <10	0 10-24	D 25 - 50	> 50
ABUNDANCE CODES	3:	N = NONE R =	RARE 0=00	CASIONAL A = A	ABUNDANT
COMM. AGE :	PIONEER	YOUNG	MID-AGE	MATURE	OLD
					GROWIN
SOIL ANALYSIS	<u>;</u>	DEDTU TO MOT			6-
IEATURE;		DEPTH TO MOT	ILES / GLET	<u>y –</u>	G- /cn
MOISTURE		IDEPTH OF ORG	ANICS		
MOISTURE: HOMOGENEOUS		DEPTH OF ORG	ANICS: ROCK:		(cm
MOISTURE: HOMOGENEOUS	/ VARIABLE	DEPTH OF ORG	ROCK:		(crr
MOISTURE: HOMOGENEOUS COMMUNITYCL COMMUNITY CLA	/ VARIABLE ASSIFICATIO	DEPTH OF ORG DEPTH TO BED	ANICS: ROCK:	CODE:	(cn
MOISTURE: HOMOGENEOUS COMMUNITYCL COMMUNITY CLA COMMUNITY SER	/ VARIABLE ASSIFICATIO SS: IES:	DEPTH OF ORG DEPTH TO BED	ANICS: ROCK:	CODE:	(crr
MOISTURE: HOMOGENEOUS COMMUNITYCL COMMUNITY CLA COMMUNITY SER	/ VARIABLE ASSIFICATIONSS: IES:	DEPTH OF ORG DEPTH TO BED	ANICS: ROCK:	CODE: CODE:	(crr
MOISTURE: HOMOGENEOUS COMMUNITYCL COMMUNITY CLA COMMUNITY SER ECOSITE:	/ VARIABLE ASSIFICATIO SS: IES:	DEPTH OF ORG DEPTH TO BED	ANICS: ROCK:	CODE: CODE: CODE:	(cr
MOISTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY SER ECOSITE: VEGETATION TYP HULONU	/ VARIABLE ASSIFICATIO SS: IES: 'E: 	DEPTH OF ORG DEPTH TO BED N: Decad	ROCK:	CODE: CODE: CODE: CODE: SW	(crr 0 4-5*
MOISTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY CLA COMMUNITY SER ECOSITE: VEGETATION TYP Michael INCLUSIO	/ VARIABLE ASSIFICATIO SS: IES: 'E: 	DEPTH OF ORG DEPTH TO BED N: Decid	ROCK:	CODE: CODE: CODE: CODE: SW,	(orr 0 4-5*
MOISTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY CLA COMMUNITY SER ECOSITE: VEGETATION TYP JULUSIO INCLUSIO COMPLE:	/ VARIABLE ASSIFICATIC SS: IES: 'E: Man N N	DEPTH OF ORG DEPTH TO BED N: Decid.	ANICS: ROCK:	CODE: CODE: CODE: CODE: SW CODE: CODE:	(en 0 4-5 [%]
MOISTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY CLA COMMUNITY SER ECOSITE: VEGETATION TYP JULUSIO INCLUSIO COMPLE: Notes:	/ VARIABLE ASSIFICATIC SS: IES: 'E: Ulin. 1 N K	DEPTH OF ORG DEPTH TO BED N: Decid. 5	ANICS: ROCK: ROCK:	CODE: CODE: CODE: SW CODE: CODE:	(en 0 4-5*

10

FIC	SITE:
LLY	POLYGON:
SPECIES	DATE:
LIST	SURVEYOR(S):

LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTOREY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE O = OCCASIONAL A = ABUNDANT D = DOMINANT

	LAYER	COLL.	SPECIES CODE	LAYER	- COLL.
	2 3 4		4	1 2 3 4	
Cange Ovota	AD		Impat. cep.	P	r ·
Thos renur R	RO		Geran. Rober	1. 0	1
alicamer O	00	5	lover nodiofe	2 0	
Ostruc vingi	R		Cover gracil	0	1
Whus surence	0		Aster later	A. O	
Quer moor. R			Circ. hitet.	G	4
Querr. rubis R	1		Aus. triply.	0	
Pagus grud	RR		Jeenen Comost	2018 0	
Altersoch	R		Corestribul	oldes A	
			alyc. strate	0	A .
		-	Cases inton	1. 0	
			Frag. Myth	0	
		2	Lysim. ner	n R	
			Caves quecel	time C	>
			Geumalepp.	0	
Porth-insert	0		Ramne, vecus	roter R	7
Rhamn. call.	R				
Prenus vivo	0				
Eugrym.ober	OA				
Rhus Ryob.	. 6				
Constacques	R			•	
Vites againe	0				
Cominus cand.	R	-			
Land and the second	hand and the state	79			·

14

Page of

ELC	SITE: Man	ndo Mil	Dan	POLYGON: 3				
COMMUNITY	SURVEYOR(S)	2 de Arlis	DATE: 4 hu	ly 20ff	UTME:			
CLASSIFICATION &	START:	END	6 O al Brally	UTMZ:	UTMN:			
DOL YOON DE			000-2019	L				
SYSTEM	SUBSTRATE	TOPOGRAPHIC	HISTORY	PLANTFORM	COMMUNIT			
		FEATURE						
TERRESTRIAL	ORGANIC		ANATURAL	D PLANKTON				
	DARENT MINERAL SOIL	BOTTOMLAND	COLTURAL	GRAMINOID	STREAM			
		VALLEY SLOPE			MARSH SWAMP			
	BASIC BEDRK.	ROLL. UPLAND		BRYOPHYTE	FEN			
	CARB. BEDRK.	TALUS	NAME DALLAR	CONIFEROUS	BARREN			
SITE			COVER	LI MIKED	PRAIRIE			
OPEN WATER	12 July 14	BEACH / BAR	OPEN					
SURFICIAL DEP.	5. K	SAND DUNE		~ a	VOODLAND			
BEDROCK			TREED		D PLANTATION			
STAND DESCR	IPTION:	•						
LAYER	HT CVR	SPECIES I	N ORDER OF DE	ECREASING DOM	MINANCE			
1 CANOPY	14		1 10.					
2 SUB-CANOPY	22	100, 1	apre	11				
3 UNDERSTOREY	3-4 3	nec	1 Mg	try				
4 GRD. LAYER	F6 2		A					
HT CODES:	1 = >25 m 2 = 10 <ht< td=""><td>s25 m 3 = 2<hts10 m<="" td=""><td>4=1<ht≤2m 5="0.</td"><td>5<ht≲1 6="0.2<HT≤</td" m=""><td>0.5 m 7 = HT<0.2 r</td></ht≲1></td></ht≤2m></td></hts10></td></ht<>	s25 m 3 = 2 <hts10 m<="" td=""><td>4=1<ht≤2m 5="0.</td"><td>5<ht≲1 6="0.2<HT≤</td" m=""><td>0.5 m 7 = HT<0.2 r</td></ht≲1></td></ht≤2m></td></hts10>	4=1 <ht≤2m 5="0.</td"><td>5<ht≲1 6="0.2<HT≤</td" m=""><td>0.5 m 7 = HT<0.2 r</td></ht≲1></td></ht≤2m>	5 <ht≲1 6="0.2<HT≤</td" m=""><td>0.5 m 7 = HT<0.2 r</td></ht≲1>	0.5 m 7 = HT<0.2 r			
CVRCODES	0= NONE 1= 0% < 0	VR ≤ 10% 2= 10 < CVF	R ≤ 25% 3= 25 < CVR	\$ 60% 4= CVR > 60%				
STAND COMPOS	ITION:	£		88. 	BA:			
SIZE CLASS ANA	LYSIS:	A < 10	A 10-24	25 - 50	R > 50			
STANDING SNAG	iS:	< 10	R 10-24	25 - 50	> 50			
DEADFALL / LOG	S:	0 < 10	R 10-24	25 - 50	> 50			
ABUNDANCE CODE	S:	N=NONE R=	RARE O = OC	CASIONAL A = A	BUNDANT			
COMM. AGE :	PIONEER	YOUNG	MID-AGE	MATURE	OLD			
			· · · ·		GROWIN			
SOIL ANALYSIS	<u>}:</u>	DEDTU TO MOT			<u>C-</u>			
IEATURE:		DEPTH TO MOT	ANICS:	9 -	(am			
HOMOGENEOUS		DEPTH TO BEDI	POCK.		(CIII)			
IONICGENEO03	ADDITION				(cin			
COMMUNITY CL	ASSIFICATIO	N:		CODE				
	0002.							
SUMMUNITY SER	CODE:							
ECOSITE:		the	dwar	CODE:				
EGETATION TYP	E:	M. J. 11	s. Tor	CODE:	Drr			
	DLOND -	-riepie-M	cleary FUL	FR	10-3			
Mais Lo	and the second se		Contracting of Street Street Street Street					
INCLUSIC	N			CODE:				
INCLUSIC COMPLE	X			CODE:				

FIG	SITE:
10	POLYGON:
SPECIES	DATE:
LIST	SURVEYOR(S):

LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTOREY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT

		LA	/ER		COLL		SPECIES CODE	10	LA	YER	
SPECIES CODE	1	2	3	4	COLL.	A AND AND A	OF COLO CODE	1	2	3 4	
Aren Sonh	A	0	0].	Coves quicill			A	
Trex. renus	0		D	5		1	Cores blonda			R	
Dreem	P						Colefattage	ne	O.	0	
Conno condit	A	0	n			1	C. Coordonis and	-		Ŕ	
Labers eround	D		n			1.	Suppt. cep,			A	-
7 agus grad	1		<u> </u>				Austual	•	1	0	1
							acum care		-	0	
						0	Circ. levtol			0	T
	-					1	Could real al			0	
	+						Cluc tick	-		0	
	+				· ·		POIDU Roles	1		10	
							Dandierin, car	4		D	1
	-						Postole poll	1.		D	
Caroin coul			D				All and	1		R	+
The way the			RD				Aufrica 100	-		P	
Ecupier Vin			0				Panino aler	1		R	
Lee ngrus 5000	-		4				Acta Mon	F .		D	
·	-			-			1SIEN Man	-			
						1	Solid- pressic	-			
								-			
			_					-	-		
								-+			
		_		_			7	-			
		_						-			
			_					-			
								-	_		
-								-	-		

Page of
and the second s	ELC	0.112.	Man	20 Milto	u	FOLTGON.	Linker
al an	COMMUNITY SESCRIPTION &	SURV	EYOR(6):	oladeski	DATE: 4 Jul	y 2014	UTME:
C	LASSIFICATION	STAR	r: 0	END	6 Oct 2014	UTMZ:	UTMN:
P	OLYGON DE	SCRIP	PTION	*			
	SYSTEM	SUE	STRATE	TOPOGRAPHIC	HISTORY	PLANT FORM	COMMU
Ø	TERRESTRIAL	O OR	JANIC				
	WETLAND		ERAL SOIL	BOTTOMLAND	CULTURAL	GRAMINOID	
	AQUATIC		RENT MIN.	VALLEY SLOPE			MARSH
		BAS	IC BEDRK.	ROLL UPLAND		BRYOPHYTE	FEN
	OTE		RB. BEDRK.		COVER	CONIFEROUS	BARREN
	SUE				COVER		PRAIRIE
B	OPEN WATER SHALLOW WATER			BEACH / BAR			SAVANNAH
X	SURFICIAL DEP.	1 ×		BLUFF	SHRUB		FOREST
		L			Sealt, 11 Visite be	l	
S	AND DESCR	IPTIO	N:	SPECIES		CREASING DO	MINANCE
	LAYER	НТ	CVR	(>> MUCH GREAT	TER THAN; > GRE	ATER THAN; = AB	OUT EQUAL 1
1	CANOPY	1	4		1 ple	11	
2	SUB-CANOPY	2	2	see *	1	ha	
3	UNDERSTOREY	4	2	B	* my		
4	GRD. LAYER	6		-25 m 3 = 2 <ht-10 m<="" td=""><td>4=1<+T/2 m 5=0</td><td>54HT (1 m 6 = 0.24HT</td><td><0.5 m 7 = HT<0</td></ht-10>	4=1<+T/2 m 5=0	54HT (1 m 6 = 0.24HT	<0.5 m 7 = HT<0
	00010.						
cv	RCODES	0= NON	E 1= 0% < C	VR ≤ 10% 2= 10 < CV	R ≤ 25% 3= 25 < CVR	s 60% 4= CVR > 60%	6
ST	R CODES	ITION:	E 1=0% < C	VR ≤ 10% 2= 10 < CV	R ≤ 25% 3≖ 25 < CVR	≤ 60% 4= CVR > 60%	BA:
ST	R CODES AND COMPOS	ITION:	E 1= 0% < C	VR < 10% 2= 10 < CV	R ≤ 25% 3= 25 < CVR	≤ 60% 4= CVR > 609	ва: <i>R</i> >:
ST	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG	ITION:	E 1= 0% < C	₩R ≤ 10% 2= 10 < CV	R ≤ 25% 3= 25 < CVR	s 60% 4= CVR > 60%	BA:
ST SIZ	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG	ITION:	E 1=0% < C	VR ≤ 10% 2= 10 < CV Image: Rel = 10	R : 25% 3= 25 < CVR	≤ 60% 4= CVR > 60% 25 - 50 R 25 - 50 25 - 50	BA:
ST SIZ ST DE	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE	ALYSIS SS: SS: SS:	E 1=0% < C	VR : 10% 2= 10 < CV	A 10 - 24 I 10 - 24 I 10 - 24 I 10 - 24 I 0 - 24 I 0 - 24	≤ 60% 4= CVR > 60% ∠ 25 - 50 ∠ 25 - 50 ∠ 25 - 50 ∠ 25 - 50 CASIONAL A = A	BA:
ST ST ST DE AB	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DMM. AGE :	ITION: LYSIS SS: SS: S:	E 1=0% < 0	VR = 10% 2= 10 < CV	R s 25% 3= 25 < CVR 10 - 24 10 - 24 10 - 24 RARE 0 = 00 MID-AGE	≤ 60% 4= CVR > 60% 25 - 50 R 25 - 50 25 - 50 CASIONAL A = A V	BA:
ST ST DE AB CC	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DMM. AGE :	ITION: LYSIS SS: SS: S:	E 1= 0% < 0	VR < 10% 2= 10 < CV	R s 25% 3= 25 < CVR 10 - 24 10 - 24 10 - 24 RARE 0 = 0C MID-AGE	≤ 60% 4= CVR > 60% 25 - 50 R 25 - 50 25 - 50 CASIONAL A = A V	BA:
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG (ADFALL / LOG UNDANCE CODE DMM. AGE : DIL ANALYSI: XTURE:	ITION: LYSIS SS: SS: S: S:	E 1= 0% < C	VR < 10%	R s 25% 3= 25 < CVR 10 - 24 10 - 24 10 - 24 RARE 0 = 0C MID-AGE TLES / GLEY	<pre></pre>	BA:
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG (ADFALL / LOG UNDANCE CODE DMM. AGE : DIL ANALYSI XTURE: DISTURE:	ITION: LYSIS SS: SS: S: S:	: PIONEER	VR < 10%	Image: 10 - 24 Image:	<pre></pre>	BA:
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DIL ANALYSI XTURE: DISTURE: DISTURE: DISTURE:	ITION: LYSIS SS: SS: S: S: / VAF	: PIONEER RIABLE	VR < 10%	Image: 10 - 24 Image: 10 - 24	<pre></pre>	BA:
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DMM. AGE : DIL ANALYSI XTURE: DISTURE: MOGENEOUS DMMUNITYCI	0= NONI ITION: ILYSIS 3S: 3S: 5S: 5S: 7 VAF _ASSI	PIONEER RIABLE FICATIO	VR < 10%	Image: 10 - 24 Image: 10 - 24	<pre></pre>	BA: R > BUNDANT G= (0
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DIL ANALYSI XTURE: DIL ANALYSI XTURE: DISTURE: DISTURE: DISTURE: DMOGENEOUS DMMUNITY CLA	ITION: LYSIS SS: SS: SS: / VAF ASSI ASS:	1= 0% < C 	VR < 10%	Image: 10 - 24 Image: 10 - 24	<pre></pre>	BA: R > BUNDANT G= (1)
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DIL ANALYSI: XTURE: DIS	0= NONI ITION: ILYSIS 35: 55: 55: 55: 7 VAF ASSI ASS: RIES:	= 1= 0% < C : PIONEER RIABLE FICATIO	VR < 10%	A 10 - 24 I I <	<pre></pre>	BA:
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DIL ANALYSIS XTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE:	ITION: ITION: ILYSIS IS: SS: SS: SS: SS: SS: SS: SS: SS:	PIONEER RIABLE FICATIO	VR < 10%	A 10 - 24 I I I 10 - 24 I I I <	<pre></pre>	G=
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG (ADFALL / LOG UNDANCE CODE DMM. AGE : DIL ANALYSI: XTURE: DISTURE: DISTURE: MOGENEOUS DMMUNITY CLA MMUNITY SEF OSITE: GETATION,TYI	ITION: ITION: ILYSIS SS: SS: SS: ASS: ASS: RIES: PE:	PIONEER RIABLE FICATIO	VR < 10%	A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = 00 MID-AGE TLES / GLEY ANICS: ROCK:	<pre></pre>	BA:
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DIL ANALYSIS XTURE: DIL ANALYSIS XTURE: DIL ANALYSIS XTURE: DIL ANALYSIS DIL A	ITION: ITION: ILYSIS SS: SS: SS: SS: VAR ASSI ASSS: RIES: RIES:	PIONEER RIABLE FICATIO	VR = 10% 2= 10 < CV R = 10 A = 10 A = 10 A = 10 N = NONE R = VOUNG DEPTH TO MOT DEPTH TO MOT DEPTH TO BED N: Membodic	A 10 - 24 A 10 - 24 I IIII - 24 IIII IIIII - 24 IIIII - 24 IIIII - 24 IIII - 24 IIIIIII - 24 IIII - 24 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	<pre></pre>	G= ((() () () () () () () () () () () () (
	R CODES AND COMPOS ZE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DIL ANALYSIS XTURE: DIL ANALYSIS XTURE: DISTURE: DISTURE: DISTURE: DIMMUNITY CLA MMUNITY SEP OSITE: GETATION TYP - Maple / INCLUSIC	ITION: ITION: ILYSIS SS: SS: SS: SS: I VAR ASSI SS: RIES: RIES: DN	PIONEER RIABLE FICATIO	VR < 10% 2= 10 < CV R < 10 <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre>// < 10</pre> <pre>/ /pre>	A 10 - 24 A 10 - 24 A 10 - 24 RARE 0 = 000 MID-AGE TLES / GLEY ANICS: ROCK:	<pre></pre>	BA: R > BUNDANT BUNDANT G= (1) (1) C C C C C C C C C C C C C
	R CODES AND COMPOS EE CLASS ANA ANDING SNAG ADFALL / LOG UNDANCE CODE DIM. AGE : DIL ANALYSI XTURE: DISTURE: DISTURE: DISTURE: DISTURE: DISTURE: DIMUNITY CLA MMUNITY SEF OSITE: GETATION.TYT MURLINITY CLASSIC COMPLE	ITION: IT	PIONEER RIABLE FICATIO	VR = 10% 2= 10 < CV R = 10 <pre></pre>	A 10 - 24 A 10 - 24 I 10 - 24 I 10 - 24 RARE 0 = 000 MID-AGE TLES / GLEY ANNCS: ROCK:	<pre></pre>	BA: R > BUNDANT BUNDANT G= (c (c
ST S	R CODES AND COMPOS CE CLASS ANA ANDING SNAG (ADFALL / LOG UNDANCE CODE DIL ANALYSI: XTURE: DIL ANALYSI: XTURE: DISTURE:	ITION: ITION: SS: SS: SS: SS: VAF SS: SS: VAF SS: SS: SS: SS: SS: SS: SS: SS: SS: SS	PIONEER RIABLE FICATIO	VR = 10% 2= 10 < CV R = 10 A = 10 A = 10 A = 10 N = NONE R = YOUNG DEPTH TO MOT DEPTH TO MOT DEPTH TO MOT DEPTH TO BED N: Membodic Hembodic	A 10 - 24 A 10 - 24 I 10 - 24 I 10 - 24 RARE 0 = 000 MID-AGE TLES / GLEY ANNCS: ROCK:	<pre></pre>	BA:

2

FIC	SITE:
	POLYGON:
SPECIES	DATE:
LIST	SURVEYOR(S):

LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTOREY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT

	LAYER			COLL	eprov	L				
SPECIES CODE	1	2	3	4	COLL.	SPECI	ESCODE	1 2	3 4	
Acersoonh -	0	Q	0	A	COLUMN ALCONT	Auss	Filah	10000	0	P
Sella Callo	0	0	P	14		Caulo	all Dia		R	1
To proved	m	D	D			All	1 hot		0	-
The lawar	0	0	n			Delos	1 per je		P	
Rex princer.	0	-	6			1 h	/ nadi	$\left - \right $	10	
etulo alla	K	-				Ding	peom/		1	
11/2 amer	0	-				Pryg.	4. may		K	
									+	
		-							+	
lives cerual			R							
reenus Virp			0							
.د										
				-			7. T			1
									+	
									+	
		-								

15

HERE IS IS UP 18	SITE: Man	do Mi	logy	POLYGON: 5	5
COMMUNITY	SURVEYOR(S):	ala desti	DATE: 4 h	el 2014	UTME:
CLASSIFICATION &	START:	END	60-11/11	UTMZ:	UTMN:
POLYGON DE	SCRIPTION		000 0019	Lairennensielennensie	
SYSTEM	SUBSTRATE	TOPOGRAPHIC	HISTORY	PLANTFORM	COMMUNIT
TERRESTRIAL	ORGANIC ORGANIC NINERAL SOIL PARENT MIN. ACIDIC BEDRK. BASIC BEDRK.	LACUSTRINE RIVERINE BOTTOMLAND TERRACE VALLEY SLOPE TABLELAND ROLL. UPLAND CLIFF		PLANKTON SUBMERGED FLOATING-LVD. GRAMINOID FORB LICHEN BRYOPHYTE DECIDUOUS	LAKE POND RIVER STREAM MARSH SWAMP FEN BOG
SITE	CARB. BEDRK.	TALUS CREVICE / CAVE ALVAR ROCKLAND BEACH / BAR SAND DUNE BLUFF	COVER		BARREN MEADOW PRAIRIE THICKET SAVANNAH WOODLAND FOREST PLANTATION
STAND DESCR	IPTION:)			
LAYER	HT CVR	SPECIES (>> MUCH GREA	IN ORDER OF DE TER THAN; > GRE	ECREASING DOI ATER THAN; = ABO	WINANCE (DUT EQUAL TO)
1 CANOPY	24		1 0%.		
2 SUB-CANOPY	32	100, #	apa	1.1	
3 UNDERSTOREY	4-54	200	+ My	00 7	
4 GRD. LAYER	6 4				
HT CODES:	Amazar am todut	0F 0 0 1 40			
	1=>25 m 2=104m	225 m 3 = 24HISTUM	4 = 1 <ht≤2 5="0.1</th" m=""><th>$5 < HT_{\le} 1 \text{ m} = 6 = 0.2 < HT_{\le}$</th><th>0.5 m 7 = HT<0.2 m</th></ht≤2>	$5 < HT_{\le} 1 \text{ m} = 6 = 0.2 < HT_{\le}$	0.5 m 7 = HT<0.2 m
CVR CODES	0= NONE 1= 0% < C	225 m 3 = 2 <h1510 m<br="">VR ≤ 10% 2= 10 < CV</h1510>	4 = 1 <ht≤2 5="0.1<br" m="">R ≤ 25% 3= 25 < CVR</ht≤2>	5 <ht≤1 0.2<ht<br="" 6="" m="" ≈="">≤ 60% 4≈ CVR > 60%</ht≤1>	ε0.5 m 7 = HT<0.2 m γ
CVR CODES	0= NONE 1= 0% < C	S25 m 3 = 2 <h1s10 m<br="">VR ≤ 10% 2= 10 < CV</h1s10>	4 = 1 <ht≤2 5="0.1<br" m="">R ≤ 25% 3= 25 < CVR</ht≤2>	5 <ht≤1 6="0.2<HT<br" m="">≤ 60% 4= CVR > 60%</ht≤1>	:0.5 m 7 = HT<0.2 m
CVR CODES STAND COMPOS SIZE CLASS ANA	1= 225 m 2= 1041 0= NONE 1= 0% < C ITION: LYSIS:	<pre>s25 m 3 = 2<n m<br="" s10="">VR s 10% 2= 10 < CV </n></pre>	4 = 1 <hts2 5="0.1<br" m="">R s 25% 3 = 25 < CVR</hts2>	5 <ht_1 6="0.2<HT<br" m="">\$ 60% 4= CVR > 60% 25 - 50</ht_1>	60.5 m 7 = HT<0.2 m BA: > 50
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG	ITION: LYSIS:	$x_{s} = 2x_{11} x_{10} m$ $x_{rs} = 10 \times 2^{-10} = 10 \times 2^{-10}$ $x_{rs} = 10$	4 = 1 < HT ≤ 2 m 5 = 0. R ≤ 25% 3 = 25 < CVR 10 - 24 10 - 24	5 <ht≤1 6="0.2<HT<br" m="">≤ 60% 4= CVR > 60% 25 - 50 25 - 50</ht≤1>	BA: 50 5 m 7 = HT<0.2 m
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG	1 = 223 m 2 = 104 n D = NONE 1 = 0% < C ITION: LYSIS: SS: SS:	225 m 3 = 241510 m VR s 10% 2= 10 < CV C 10 R < 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SHT≤1 m 6 = 0.2 <ht ≤ 80% 4= CVR > 60% 25 - 50 () 25 - 50 () 25 - 50</ht 	BA: 50 > 50 50 > 50 50 50 50 50 50
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE	1 = 23 in 2 = 100 n 1 = 0% < C ITION: LYSIS: 35: 35: 5:	225 m 3 2 2 4 1 5 1 0 4 0 VR 2 10 4 2 1 0 4 0 VR 2 10 4 2 1 0 4 0 VR 2 1 0 4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	4 = 1 <ht 2="" 8="0.<br" m="" ≤="">R ≤ 25% 3 = 25 < CVR 10 - 24 0 10 - 24 0 10 - 24 ■ RARE 0 = 0C</ht>	SHT ≤1 m 6 = 0.2 <ht ≤ 80% 4= CVR > 60% 25 - 50 25 - 50 25 - 50 CASIONAL A = A</ht 	BA: 50 5 m 7 = HT<0.2 m 50 50 50 50 50 50 BUNDANT
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE :	1 = 2 = 10 < C 1 = 0% < C 1 TION: LYSIS: 28: 5: PIONEER	225 m 3 2 2 4 1 5 1 0 4 CV VR 2 10% 2 = 10 < CV R < 10 A < 10 A < 10 N = NONE R = YOUNG	4 = 1 <ht:2 8="0.<br" m="">R ≤ 25% 3 = 25 < CVR 10 - 24 0 10 - 24 0 10 - 24 RARE 0 = 0C MID-AGE</ht:2>	SHT 1 m 6 = 0.2 <ht< td=""><td>BA: BA: 50 50 50 50 50 50 500 500 BUNDANT 0LD GROWTH</td></ht<>	BA: BA: 50 50 50 50 50 50 500 500 BUNDANT 0LD GROWTH
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE :	1 = 2 = 10 < C 1 = 0% < C 1 TION: LYSIS: 155	225 m 3 2 2 4 1 5 1 0 4 CV VR 2 10% 2 = 10 4 CV R 4 10 A 4 10 N = NONE R = YOUNG	A = 1 <ht≤2 8="0.<br" m="">R ≤ 25% 3= 25 < CVR 10 - 24 0 10 - 24 0 10 - 24 RARE 0 = 0C MID-AGE</ht≤2>	SHT 1 m 6 = 0.2 0 \$ 60% 4= CVR > 60% 0 25 - 50 25 - 50 0 25 - 50 25 - 50 0 CASIONAL A = A MATURE 0	BA:
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE:	1 = 2 = 10 < C 1 = 0% < C 1 TION: LYSIS: 155	225 m 3 2 241 S10 W VR = 10% 2 = 10 < GV VR = 10 < 10 A < 10 N = NONE R = YOUNG DEPTH TO MOT	A = 1 <ht 2="" 8="0.<br" m="" ≤="">R ≤ 25% 3= 25 < CVR 10 - 24 0 10 - 24 0 10 - 24 RARE 0 = 0C MID-AGE TLES / GLEY</ht>	SHT 21 m 6 = 0.2 <ht 2 00% 4 = CVR > 60% 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE g =</ht 	6.5 m 7 = HT<0.2 m BA: 500 500 500 BUNDANT GROWTH G=
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE: MOISTURE:	1 = 2 = 10 < C 1 = 0% < C 1 TION: 1 = 0% < C 1 TION: 1 = 0% < C 1 = 0%	225 m 3 2 241 S10 W VR = 10% 2 = 10 < GV VR = 10% 2 = 10 < GV A = 10 A = 1	A = 1 <ht:2 8="0.<br" m="">R ≤ 25% 3= 25 < CVR 10 - 24 0 10 - 24 0 10 - 24 RARE 0 = 0C MID-AGE TLES / GLEY BANICS:</ht:2>	SHT 21 m 6 = 0.2 <ht 2 00% 4 = CVR > 60% 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE g =</ht 	BA: BA: 50 50 50 50 50 BUNDANT OLD GROWTH G= (cm)
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE: HONGENEOUS	/ VARIABLE	225 m 3 2 241 S10 W 2 10 < CV	4 = 1 <ht:2 8="0.<br" m="">R ≤ 25% 3= 25 < CVR 10 - 24 0 10 - 24 0 10 - 24 RARE 0 = 0C MID-AGE TLES / GLEY BANICS: ROCK:</ht:2>	SHT 21 m 6 = 0.2 <ht 2 00% 4 = CVR > 60% 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE g =</ht 	6.5 m 7 ≈ HT<0.2 m BA: S = 50 S = 50 BUNDANT G= (cm) (cm)
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITYCL	1 = 2 = 10 < 1 1 = 0% < C 1 TION: LYSIS: SS: PIONEER S: / VARIABLE ASSIFICATIO SS:	225 m 3 2 241 510 m VR = 10% 2 = 10 < GV	A = 1 <ht:2 8="0.<br" m="">R ≤ 25% 3= 25 < CVR 10 - 24 10 - 24 10 - 24 R = 24 RARE 0 = 0C MID-AGE TLES / GLEY BANICS: ROCK:</ht:2>	SHT 21 m 6 = 0.24HT \$ 60% 4 = CVR > 60% 25 - 50 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE g =	6.5 m 7 = HT<0.2 m BA: 50 50 50 50 50 50 50 50 50 50
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLA	1 = 23 m 2 = 104 m 1 = 0% < C 1 TION: LYSIS: SS: PIONEER 3: / VARIABLE ASSIFICATIO ISS:	225 m 3 2 241 510 m VR = 10% 2 = 10 < GV	A = 1 <ht:2 8="0.<br" m="">R ≤ 25% 3= 25 < CVR 10 - 24 10 - 24 0 10 - 24 RARE 0 = 0C MID-AGE TLES / GLEY SANICS: ROCK:</ht:2>	SHT 21 m 6 = 0.24HT c 00% 4 = CVR > 60% 25 - 50 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE g = CODE:	0.5 m 7 = HT<0.2 m BA: S 50 S 50
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY SEF	1 = 2 = 10 < 1 = NONE 1 = 0% < C ITION: LYSIS: SS: PIONEER S: / VARIABLE ASSIFICATIO SS: RIES:	225 m 3 2 241 510 m VR 5 10% 2= 10 < GV	A = 1 <ht:2 8="0.<br" m="">R ≤ 25% 3= 25 < CVR 10 - 24 10 - 24 0 10 - 24 RARE 0 = 0C MID-AGE TLES / GLEY SANICS: ROCK:</ht:2>	SHT 21 m 6 = 0.24HT c 00% 4 = CVR > 60% 25 - 50 25 - 50 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE g = CODE: CODE:	0.5 m 7 = HT<0.2 m BA: S 50 S 50
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY SEF ECOSITE:	1 - 2 - 2 - 10 - 1 NONE 1 = 0% < C ITION: LLYSIS: 	225 m 3 = 241 510 m VR = 10% 2 = 10 < GV	A = 1 <ht:2 8="0.<br" m="">R ≤ 25% 3= 25 < CVR 10 - 24 10 - 24 0 10 - 24 RARE 0 = 0C MID-AGE TLES / GLEY SANICS: ROCK: COCK:</ht:2>	SHT 21 m 6 = 0.2 0.4 \$ 60% 4 = CVR > 60% 25 - 50 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE 9 = CODE: CODE: CODE: CODE:	6.5 m 7 = HT<0.2 m BA: 50 50 50 50 50 50 50 50 50 50
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY CLA COMMUNITY SER ECOSITE: //EGETATION TYPE	1 - 2 - 3 - 2 - 10 - 1 	$\frac{220 \text{ m} 3 = 2 \text{ err} \text{ store}}{2 = 10 \text{ cV}}$ $\frac{ 0 }{ 1 } < 10 \text{ cV}$ $\frac{ 0 }{ 1 } < 10 \text{ cV}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 \text{ model}$ $\frac{ 0 }{ 1 } < 10 mode$	A = 1 1<	SHT 21 m 0 = 0.2 0.4 \$ 00% 4 = CVR > 60% 25 - 50 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE 9 = CODE: CODE: CODE: CODE: CODE: SMM	6.5 m 7 = HT<0.2 m BA: 50 50 50 50 50 50 50 50 50 50
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY CLA COMMUNITY SEF ECOSITE: //EGETATION TYP	1 = 20 m 2 = 100 m 1 0 = NONE 1 = 0% < C	0 < 10 0 < 10 0 < 10 0 < 10 0 < 10 0	A = 1 <ht 2="" 8="0.<br" :="" m="">R : 25% 3= 25 < CVR 10 - 24 10 - 24 10 - 24 RARE 0 = 0C MID-AGE TLES / GLEY SANICS: ROCK: </ht>	SHT 21 m 6 = 0.2 \$ 00% 4= CVR > 60% 25 - 50 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE 9 = CODE: CODE: CODE: SUM CODE: SUM CODE: SUM	0.5 m 7 = HT<0.2 m BA: 50 50 50 50 50 50 50 50 50 50
CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE : SOIL ANALYSIS TEXTURE: 40MOGENEOUS 20MMUNITY CLA 20MMUNITY CLA 20MMUNITY CLA 20MMUNITY SEF COSITE: /EGETATION TYP Macue INCLUSIC	1 = 20 m 2 = 100 m 1 0 = NONE 1 = 0% < C		A = 1 <ht 2="" 8="0.<br" :="" m="">R : 25% 3= 25 < CVR 10 - 24 10 - 24 10 - 24 RARE 0 = 0C MID-AGE TLES / GLEY SANICS: ROCK: </ht>	SHT 21 m 6 = 0.2 \$ 60% 4 = CVR > 60% 25 - 50 25 - 50 25 - 50 25 - 50 CASIONAL A = A MATURE 9 = CODE: CODE: CODE: SUM CODE: SUM CODE: SUM	0.5 m 7 = HT<0.2 m BA: S 50 S

FIC	SITE:
LEY	POLYGON:
SPECIES	DATE:
LIST	SURVEYOR(S):

LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTOREY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT

	LAYER		0011	LAYER	COLL		
SPECIES CODE	1	2	3	4	COLL	1 2 3 4	/
Tsuga cour.	0	0	0			Mart. Streth 0	
Befulo aller	0	R	D	8		Equis. QV verso 0	0
Thesendoro.	6		0			Mitellacion 0	
Acerous.	A	0				Aus trob. 0	
Thise orso			Ø			Cive, lides. OR	
Ader Sacch	R					Clamudacinamon D	
alia onner		0	0			Asternuip, R	1
tox penns	R					Suppl. cep. 0	
1						Cyst. baby O	
						Maran. Can. R.O.	·
					-	Actala pople R	4.1
						Geen cares. R	
						Polypon, puber R	1
						Asterber. 0	
Reebus nulesp				A		Alycence standa 0	
Portly- Ewerto				0		Courstipol R	
Acersoicon.				0		Solid-negosa R	
Vib- Onelus				R		Collinsona conso 0	4
/						Procles sent 0.	
						Timelly corder A	
-						Piles remiter 0	
							2
A.							

14

Page of

	STL; EL
SPRING BOTANICAL	JUNE-2-15
SNO 4-5 - SIL DE 2DON	, H2- @ 20cm 7537
SACCUMATIA CAMADENSIS	-MRG +
POPOPULAR PECTATION	MUELLOW AVERS & HESPERIS MARK.
DIER PLATAFOIDES #	FOD 6-5 CONT'D
ERTAIR STORM AMERICATION #	PORGOPTERIS INTERMEDIA
ARISAENA TRIPHYCENA	\$ CARDAMINE DIPHYLLA
CALEY INT MASSEENS	\$SAMBURS RACEMOSA
STRYA SIRGINIANA A	FCORIUS ALTERNIFELIA
CAREX RASOA	RIBES CYNOSBASTI
CARPINUS CALOLINIANA	DRYOPTERIS CANTHUSIANA
TRILLISA GRANDIFLORUSA \$	FOM - SALL - SIL, AUGAL DAWN TO 64CM
RAMUNEUS SABORIOUS	ALER SPILATUM MINI 3. INCL-S
POA PALUSTAIC	*HYDROPHYLLUM UIRGINIANA
FMLARIA VIRKIFIAMA	* DIERVILLA LONICERA
SMILAX HISPIDA	
ELYCOPLIA STMIAM	SWM - SILL@ Soon, 9@ 6000
CAREY GRACILLIMA	\$ JOLANUN DULCAMAN BOCH
MALAYACUM OFFICINALIS	TIARELLA CORDIFOLIA MR=7
CARER of LARFISAN (1) 7	BMIJELLA NUDA
ALLIARIA POTISLASA	MITELLA DISPHILLA ,
· GOLANIAM ROBERTIANIUM	RUBUS PUBESCENSE
CNOCLER SERSIBILIS	I MARSH FERT
CAREX CRIPITA	OSTRICH FERT
CAREY (1)	FTRILLIUM ERECTUM
ERIGERS PHILADERPHICS X	EQUISERUM ARVENSE Collinsonia
VITIS RIPALIA	FRAXIMUS NIGRA Canadensis
CALEY of TOMORA	"FALSE METTLE" - PICS
MYOSONIS LAYA	RAMUNICUUS ACRIS
TARDAMINE DOUGLASSI	\$ ALER MIGRA
CAREX ROSEA	CAREY STIPATA
NEMORE QUITCIERLA D	RALIUM ASPRELL
CLEYTEND VIRGINIASSA &	& CALTHA PALUSTRIS
CAREY LAYIFLORA 7	4 SPOTTOP WATCH HEMIDER
GALINA ABTUSUM	# RIBSS RUBRUM
EUMONOMUS OBOUATUS	# WOOD NETTLE
RANUNCOUS RECURUATUS	MAIAFITHEMOM CARADERISE
POA COMPRESSA	SOLOFIONS SEAL (POLY, RUBE)
FODG-5 - SiC, g@ 32cm	\$ STELLARIA LANGIFOLIA
CAREE (V) MR:5	# HOG PEAN OT 2
VERONICA OFFICITALIS \$	PREUN FRAGARIDIDES

Ario THEN SIC SOIL #2 - ORGANIC TE 300M ge your, Geyarm Souw - LONJ,D - MR : 6 & RIBES AMERICANUM SOIL #3 - OREARIE M >1200M, H20@ EANO @ MITCHELLA REPERS 10cm NBVO MR ZOR 8 OSMUMOR CITY. DEPTH FYELLON INIS & GALINA PALUSME L'ISIMACHIM NUM & RANDNEULUS HISPIDUS LEERSIA ORTZOIDES PANEMONIE CAMADENSIS BULBLET FORT 50103-3 - soil, sic, geisch, MR. 6 \$ GOLANIUM MACULATUM SOLIDATE FLEXICAULY KEYED OUT SPECIMENTS; CAREY STIPATA - SUD 4-5 CAREY LEPTONERVIA - SWQ4-5 FCAREY LAXICULAIS VAR. LAXICULAIS FCAREY BROMOIDES SUPPLIES BCAREY WOODIN - FODE-5 \$04 YORTHIS ERISTATA - SUMS-1 PCARDANINE REPUBSILVANICA - SUMS-1 X

GIANT HOGINEED & BATTERMANT OBS. DURING WINTER WILDLIKE SURVEY, 2015. BATTERMANT AT AND AROUND: IT 589299, 4822956 (~ 8 TREES) - MANY HOGINEED ADATE ESQUESING LIME & RIVER MEAN 589396 4822879 POPULATION KNOWN BY HALTON C.A. I (COMMON EFROMIS UNDERWAY)

BOJANICAL " Le SILESUE FOD 6-5 /SWOY-F SERT 01-16 NORTH PORTA SOLIDATO FLOXICOULIS .7537 SOUNAGO GAMADENSIS AG/HA EURTBIA MACADCARPHYLLA COPTO CARSY IS TENEVER SOLITAGO ACTISSIMA ELAMUS VIRGINICUS SCALLET PIMP. SIMPLE ISTRICHUM LATONIASPA DETERD LINK STRUBT ELDING SOLANUM PTYCHANTANA ACHILLOA MIL. ELYMUS HYSTALK BLOWER KMARWSON VERDICA OFFICINALY SWM 5-1 SETALIA FABERI LOBELIA SIPHILITICA SETARIA PUMICA AMARAMAS PONELLI CICUTA MACULANX COLLINSONIA CANADENSIS KARDON PURSCAINS REPSICATIO NACULOSA 65MUMDA CIMAMIAN DLYDSTORIS CRISTATA ARCAISM LAPPA (PICS) TANACETUM VULCALE PRENAMONS AZBA MAM2-11/ MASZI / CUMI 5.PIKENARD 589236 4822228 SANCHUS ARVENSIS BIDSOLS VILGATA SOLIDAGO PATULA CALEY NULPINDIDEA SCIRISS EMPORINGS CHELONE GLARRA EPILOBIUM PALVIROLUM CARET OF CROSTATELLA SUMPHYOTRICHUM NONA EUPATARION PERFOLIATUM - 589290 EPILOBIUM COLORATVM CAREY SPICATA 4822787 VENDFILK MAGALIS-ADJAMICA ELECAMP APANITUS CAPONSIS CARSK SCABRATA CIRSISM VULGARES INDEX LUPULINA SALIDAGO RUCOSA AG THE ATTURA PATULA ATTURES PATULA PANICUM DICADTOMICORDIN ELMNOCHIOP CRUS-GALI DIGITARIA (SO. PANICUM ENPLUATE JUNCUS OFFUSUS EUTHANIA GRAMINIFOLIA SUMPHOMPHICING LANC Impolicin letoparin 86205-115 SPOLONIFORM

	7577
SOR NU DODANIJAD (-	133T
STRING BOMPIONE LE	SIG) (RUMPINE LIST) MAY 1(-2 1)
5.04-5 -	Sur 5%
	14-1 Sto aven
ACCLARIA PETIONATY	
SALLAGALOUP)	AC
A COLEMAN (A CAMMENT)	
MULLISM GRAMMING LONG	
ENTRANISM AMERICAN	CERCASTION VULLATUR
(ALLES OF ALISUR)(MA	Swp7-7
KANUNCILIS MOSICITUS	
CAREDAMINE DOUGLASSI	Caller Maria
ALLERAD -ALAUMANA	SCIERN SIT PROULED UT
Russician Netholdora	
half or a part much	
HURDARY LING LAR UNANY	
Anagolia (1) Col (1)	
ED Las S	
FRAFADIA MALINIANA	
MILLIA PRECOM	
ANEMONE OUNCEEDLIA	
CARDAMICE DIPHYLLA	
ANEX OF PIECKIL	P C C C C C C C C C C C C C C C C C C C
SWM S-1	
RUBUS PUBESCENCE	
TIARSU A CORDIFOLIA	
MITELLA DIPHYLA	
MAIANDHOMOM CANADENSIS	
CALTHA PALVISTRIS	
MITCHELLA REPERS	
POLY GORATUM PUBESCENS	
LYSIMACHIA CILIADA	
RAMUNCULUS SCELEMATUS	
(ARSK IS BLANDA)	
VIDLA LABRIDORICA	
CALEY of permissingaria	
THALICTION DIDICUN	
SAMBULUS CAMADENSIS	
ACAEA RUBRA	
MARSH FERN	

2015 Breeding Birds

and the rest of the second

Savanta Inc. Incidental Observations - Field Use Only Project 7537 Code: **Administrative Information** Site Name MILTON Date Time Observer(s) Survey Type MAY 28/15 8 HARLTON 5:30-9:30 NORTH PORTA Site Information % Cloud cover 20% Temperature (°C) 10 Beaufort wind speed/direction 3NW Preciptation -O-Mammals Add photo number in brackets beside species name TWUL E. GRAY SQUIRREL (BLK) MORPH, BBCUL (SAME pcz) GCFLI (ORA) NRUSZ AMROZ NO HERPS OR INSECTS **Birds** SOSP 1 TO PC4 TO PCI RWBL 7 CF NRWS: BHCO :: PAIR AMRO: SM INBU SM (Same PR4) + CF GCFL SM (not same fc4) INBY File: S:16005 - SAV Marketing and Support TEMPLATES - FIELD COLLECTION FORMS106 2014_Incidential_Obser TO PC2 CORA: F/O (ZND BIRD) SOSP: SM-AG BBCU: SM (SAME BIRD) AT PCZ

dministrative Inf	ormation	,			-
ode: 7537	BBS Station	Survey Type	Date Time JUN 17/15 5:49	Site visit numl	ber Observer(s) BOHARTON
ite Information	،				
TM (if new) NAD83 ZON 0588991 N 4	E 17 822Ldde	% Cloud Cover	Temp (°C) 15	Precipitation YES NO	Beaufort wind speed/direction
			FIEL	0	
				SOOP	FO
					ANGO "
			SE		
			Cali		~
	5		KCH)		tront
EAW	シ/				xture
					×
		<u> </u>	TOLOGI	Q	2 N M
/	Pul	\rightarrow $^{\prime}$		(FE	
4	ERCHED				
	IN TREE	- AG	6	(AMF	(0)
and the second	SAME TREE	FT	•		
				10.00	(AVTA)
				(BROW	x Vui
					6
AMCK		(DAD D)		/	
		AMRO			
			- 100m-		
	te.		room		
				W000 (LOSE
XAMPLE FOREST		CODES	. في ا		
REVI	SAVS	REVI Observ	ved (unsexed)	EVI Pair	REVI Two different
SWAMP	ACTA	REVI Singing	g male <	EVI> Calling	REVI males singing
BCCH			/ed male R	ĚVI★ Nest	_
*	SAVS	[REVI] Observ	ved temale R	EVI _{Fy} Fledged you	ng
KEVI 100	m				

Administrative Info	ormation		1 Tree	CAR .	Code: 7557	
Site Name MILTON	Survey Type	Date JUN 17/15	Time 5:30-9:35	Berver(s) FRITON	
Site Information						ר
% Cloud cover 60 %	, Temperature (°C	c) 15° Preci	ptation	Beaufort wind s	speed/direction 2NE	
Mammals				Add photo number	in brackets beside species name	Bł
						(Sa R
						P
						1.
						N.
						H
						6
No HERPS	OR INS	ECTS				1
Birds						
PC 3-4			To	PC-2		VI T
HOWR .	SM		R	BCU · E	ъM	ervations.
BLJA.				(same PC:	2)	ntal Obs
VESP .	SM		0			14 Incide
RWBL			TOPC	1		AS\06 20
DILLE				BAOR "	SM	ON FORM
PC 7-3	F	towr . 2W		(sameror)		OFFECTI
NOCH VECO: AD	W RFY	505P · 51	Λ			- FIELD 6
VESI . IN	(F)	NBNU: A	D. FEEDING RE	εγ		IPLATES
BLU H	~.	(PROB	. Same (C4)			port/TEM
PC.5-BACK	FAR PC3) SM	VESP.	- NEW BIR	io SM		ting and Sup
CHSD.	n 11 SM	RB	wO.			AV Marke
CHOT						0

2015 Calling Amphibians

Savanta Inc. Amphi	bian Call Count Da	ta Sheet - Fie	eld Use	Only	Savanta Projec	ct Code: 7537
Administrative Info Project Name MILTON NORM PORCA	ormation Date APR.Q8.Q015	Round 1	Tim Q1ĩ	e Start 25	Time En 2246	d Observer(s) EL, HD
Weather Condition	Temp (°C)	Wind		Pre	ciptation	Humidity

Station Informatio	n				
Station ID	Survey Start Time	Easting	Northing	Photo Number(s)	Yes No

Other comments: - SPPE HEARD Calling > 2000m from EDUISING. - GETR MEARD Calling Near residences.

	Amphibian Call Level Codes:	Beauford Wind Speed Scale:
Species Codes: Code Common Name AMTO American Toad NLFR SPPE Spring Peeper GRFR GHFR Chorus Frog GRTR WOFR Wood Frog BULL MIFR Mink Frog FOTO PIFR Pickerel Frog	 Males can be counted individually without error Calls overlap each other, but numbers can be reliably estimated Calls overlap each other too much to estimate number 	 Calm (<1 km/hr) Light Air (1-5 km/hr) Light Breeze (6-11 km/hr) Gentle Breeze (12-19 km/hr) Moderate Breeze (20-28 km/hr)

	- (1 - m			- Savanta Project o	1031
Project Name	Date	Round	Time Start	Time End	Observer(s)
	APR. 28. 2015	1	2105	2246	EL HD

Weather Condition	15			Humidity
Cloud Cover (%)	Temp (°C)	Wind	Precipitation	64

Station Inform	ation				Water Present
Station ID	Survey Start Time	Easting	Northing 48228146	Photo Number(s)	Yes No
D	2133	001411	WVVC UNI		-De.AP

FOTO Folwers Toad

MIFR Mink Frog

PIFR Pickerel Frog

FIELD COLLECTION FORMS\09_2014_Amphibian_Call Count Data Sheet.cdr SAV Marketing and Support/TEMPLATES S:\6005 -

Page 2 of 6

Savanta Inc. Amphik	oian Call Count Da	ta Sheet - Fie	Id Use Only	Savanta Project C	ode: 7537
Administrative Info Project Name MICLIN NOTCH PORCA	Date Date DAR. 28.2015	Round J-	Time Start 2105	Time End 2246	Observer(s)
Weather Condition	S		Dr	acintation	Humidity
Cloud Cover (%)	Temp (°C)	Wind	FI	W(A	58

Station Informa	tion				Water Present
Station ID C	Survey Start Time	Easting 59 8989	Northing 4822648	Photo Number(s)	Yes No LalepCoffstr

Species IN OU	r Station layout
SPPE CI-3	Indicate direction facing during survey
AMTO CI-2	
	SPPE
ELC or General Veg	AMTO
MAS/OA?	200m
Other comments:	

Species Codes:CodeCommon NameAMTOAmerican ToadNLFRAMTOAmerican ToadNLFRSPPESpring PeeperGRFRGRFRGreen FrogCHFRChorus FrogGRTRGRFRWOFRWood FrogWOFRWood FrogBULLMIFRMink FrogFOTOPIFRPickerel Frog	 Amphibian Call Level Codes: 1 Males can be counted individually without error 2 Calls overlap each other, but numbers can be reliably estimated 3 Calls overlap each other too much to estimate number 	Beauford Wind Speed Scale: 0 Calm (<1 km/hr) 1 Light Air (1-5 km/hr) 2 Light Breeze (6-11 km/hr) 3 Gentle Breeze (6-11 km/hr) 4 Moderate Breeze (20-28 km/hr) Page <u>3</u> of <u>6</u>
---	---	---

Savanta Inc. Amphibi	- Savanta Project C	ode: 7537			
Administrative Inform Project Name MILCON NORTH PIRCA	Date PPR.28,2015	Round	Time Start 2105	Time End 2246	Observer(s) EL, HD

Weather Condition	IS			Humidity
Cloud Cover (%)	Temp (°C)	Wind	N/A	E8

Station Information	on				Mater Present
Station ID	Survey Start Time	Easting 589,603	Northing 48 2272	Photo Number(s)	Ves No

Species	IN	OUT	Station layout
NOAM			Indicate direction facing during survey
ELC or Ge	eneral	Veg:	
(pOND-0	#5176	2)	200m

Species Codes: Code Common Name AMTO American Toad SPPE Spring Peeper CHFR Chorus Frog WOFR Wood Frog	NLFR Northern Leopard Frog GRFR Green Frog GRTR Gray Tree Frog BULL American Bullfrog	 Amphibian Call Level Codes: 1 Males can be counted individually without error 2 Calls overlap each other, but numbers can be reliably estimated 3 Calls overlap each other too much to estimate number 	Beauford Wind Speed Scale:0Calm (<1 km/hr)1Light Air (1-5 km/hr)2Light Breeze (6-11 km/hr)3Gentle Breeze (12-19 km/hr)4Moderate Breeze (20-28 km/hr)
MIFR Mink Frog PIFR Pickerel Frog	FOID Follweis load		Page 4 of 6

S16005 - SAV Marketing and Support/TEMPLATES - FIELD COLLECTION FORMS109_2014_Amphibian_Call Count Data Sheet.cdr

avanta Inc.	Amphil	Jian Call	oount Da				Savanta P	roject C	ode: 7637
Administrat Project Name MILCON PORCE	ive Info Jorty 7	Drmation Dr APR-2	ate 8 2015	Round 1	Tim 21	e Start 05	Time 22	e End 46	Observer(s) EL, HD
Weather Co	ndition	IS							Humidity
Cloud Cover (%	%)	Tem 	o (°C)	Win	d	N/	A		- 61
Station Info Station ID E	rmatio	n Survey S	Start Time	Easting 588.97	Northing 4822144	Photo	Number(s))	Water Present Yes No
			Station la	vout					- Mer Lui
Species NLFR AM70 SPPE	CI-1 CI-2 CI-4		Station in	IMTO		SPÉE	Indicate directi facing during s	ion survey	
			/	AMTO					SPPE
ELC or Ge	neral V	/eg:				NLFR	2.		
077 (0575)	70)		4			200m —			
Other com	ments	:							
Species Cod	les:			Ar	mphibian Ca	all Level Co	odes:	Beaufo	ord Wind Speed Scale
Code Commo AMTO America SPPE Spring CHFR Chorus WOFR Wood F MIFR Mink Fi	on Name an Toad Peeper Frog Frog rog	NLFR GRFR GRTR BULL FOTO	Northern Leopard Green Frog Gray Tree Frog American Bullfro Folwers Toad	I Frog 2 g 3	Males can be without error Calls overlag numbers ca Calls overla estimate nu	e counted indi o each other, t n be reliably e o each other t mber	vidually out stimated oo much to	0 Cali 1 Ligi 2 Ligi 3 Gei 4 Mo	m (<1 km/hr) ht Air (1-5 km/hr) ht Breeze (6-11 km/hr) htle Breeze (12-19 km/hr) derate Breeze (20-28 km/hr) age f of b

Savanta Inc. Amphibi	an Call Count Dat	ta Sheet - Fi	eld Use Only	Savanta Project Co	ode: 7537
Administrative Infor	Date APR 28.2015	Round	Time Start 2105	Time End	Observer(s) EL,HD.

Wind	Preciptation	Humidity
	Wind	Wind Preciptation

Station Informa	ation				Million Descent
Station ID	Survey Start Time	Easting	Northing	Photo Number(s)	Yes No
	de T3	PODUM	400000		EIIM

Species	IN	OUT	Station layout
NOAM			Indicate direction facing during survey
		6	
ELC or Ge	neral	Veg:	
SWD 3-3	>		≪200m>

- SPPE (C2-4) heard NIRTH OF SCUDY AREA - CONSIDERABLE VERNAL POOLING but MOSTLY QUITE SHALLOW.

a i Ordeau		Amphibian Call Level Codes:	Beauford Wind Speed Scale:
Species Codes: Code Common Name AMTO American Toad SPPE Spring Peeper CHFR Chorus Frog WOFR Wood Frog MIFR Mink Frog PIFR Pickerel Frog	NLFR Northern Leopard Frog GRFR Green Frog GRTR Gray Tree Frog BULL American Bullfrog FOTO Folwers Toad	 Males can be counted individually without error Calls overlap each other, but numbers can be reliably estimated Calls overlap each other too much to estimate number 	 Calm (<1 km/hr) Light Air (1-5 km/hr) Light Breeze (6-11 km/hr) Gentle Breeze (12-19 km/hr) Moderate Breeze (20-28 km/hr)

dministrati	ve Infe	ormation						ad	Observer(s)
roject Name	2TH A	Da MAY 20	ate 0,2013	Round 2	Time	Start	2207	na	EL+PB
Veather Co	nditio	าร							Humidity
Cloud Cover (%	ud Cover (%) Temp (°C)		o (°C)	Wind Pre		Preci	Preciptation H		3LD
40		(1	0	1	-				07
Station Info	rmatic	on				Dhata	lumbor(c)		later Present
Station ID		Survey S	Start Time	Easting	Northing	Photo r	number(s)		Yes No
t		213	38						Gdeep; un
Species	IN	OUT	Station la	ayout					OFFST
VOAM							dicate direction	θV	
						Ĩ			
								_	
				/					
				/					
			/						
			/						
		/og:							
ELC or Ge	neral \	/eg:							
ELC or Ge	neral \	/eg:				200m			
ELC or Ge	neral \	/eg:				200m —			*
ELC or Ge	neral \	/eg:				200m —			
ELC or Ge OA Other com	neral	/eg:				200m			
ELC or Ge OA Other com	neral	/eg:				200m			
ELC or Ge OA Other com	neral	/eg:				200m —			
ELC or Ge OA Other com	neral	/eg:				200m			
ELC or Ge OA Other com	neral \ ments	/eg:			Amphibian Cal	200m II Level Co	des: B	reauford	Wind Speed Scale
ELC or Ge OA Other com Species Cod Code Commo	neral \ ments es: on Name	/eg:			Amphibian Cal 1 Males can be	200m — Il Level Co counted indivi	des: B dually 0	eeauford Calm (<	Wind Speed Scale
ELC or Ge OA Other com Species Cod Code Commo AMTO America	neral \ nments es: on Name an Toad	/eg:	Northern Leopar	rd Frog	Amphibian Cal 1 Males can be without error	200m II Level Cor counted indivi	des: B dually 0 1	eauford Calm (< Light Air	Wind Speed Scale :1 km/hr) r (1-5 km/hr) reeze (6-11 km/hr)
ELC or Ge OA Other com Species Cod AMTO America SPPE Spring F	neral \ neral \ nments es: on Name an Toad Peeper	/eg: 	Northern Leopar Green Frog	rd Frog	Amphibian Cal 1 Males can be without error 2 Calls overlap numbers can	200m 200m II Level Coo counted indivi each other, bu be reliably est	des: B dually 0 1 it 2 imated 3	eeauford Calm (< Light Air Light Br Gentle	Wind Speed Scale 1 km/hr) r (1-5 km/hr) reeze (6-11 km/hr) Breeze (12-19 km/hr)
ELC or Ge OA OA Other com Species Cod AMTO America SPPE Spring F CHFR Chorus	neral N ments es: on Name an Toad Deeper Frog	/eg: /eg:	Northern Leopar Green Frog Gray Tree Frog American Bullfro	rd Frog	Amphibian Cal 1 Males can be without error 2 Calls overlap numbers can 3 Calls overlap	200m	des: B dually 0 imated 3 o much to 4	eeauford Calm (< Light Aii Light Br Gentle Modera	Wind Speed Scale :1 km/hr) r (1-5 km/hr) reeze (6-11 km/hr) Breeze (12-19 km/hr) ate Breeze (20-28 km/hr)
ELC or Ge OA OA Other com Species Cod Code Commo AMTO America SPPE Spring F CHFR Chorus WOFR Wood F MIER Mink Fr	neral V ments es: on Name an Toad Deeper Frog frog og	/eg: /eg: : : : : : : : :	Northern Leopar Green Frog Gray Tree Frog American Bullfro Folwers Toad	rd Frog	Amphibian Cal 1 Males can be without error 2 Calls overlap numbers can 3 Calls overlap estimate num	200m II Level Coo counted indivi each other, bu be reliably est each other too ber	des: B dually 0 tt 2 imated 3 o much to 4	Eeauford Calm (< Light Air Gentle Modera	Wind Speed Scale Wind Speed Scale 11 km/hr) r (1-5 km/hr) reeze (6-11 km/hr) Breeze (12-19 km/hr) ate Breeze (20-28 km/h

	ive Inf	ormatio	n				Time End	Observer(s)
roject Name IL TON NI PORTA	ORTH	MAY	Date 20,20 V	Round 2	Time 212	Start	22.03	EL 4 PB
Veather Co	nditio	ns	(10)	Wind		Precipta	tion	Humidity
loud Cover (%)	Te	mp (°C)	VIIId		1100.01		
Station Info	ormatio	on		Facting	Northing	Photo Nun	nber(s)	Water Present
Station ID		Survey 21 9	Start Time	Easting	Northing	1 11010		Yes No
Species	IN	OUT	Station la	ayout				
VOAM						N Indica facing	te direction during survey	
				/				
				/				
			/					
ELC or Go	neral	Veg:						
ELC OF GE								
MAS	10A					200m		
MAS	10A		¢			200m		>
MAS Other con	/0A	s:	e			200m		
MAS Other con	/0A	s:	4			200m		>
MAS Other con	/0A	s:	e			200m		
MAS Other con	/ 0 A	s:	e	Arr	phibian Ca	200m	: Beau	ford Wind Speed Scale
Other con Species Con	/ 0 A	s:		Arr 1	n phibian Ca Males can be	200m II Level Codes counted individua	: Beau ly 0 Ca	ford Wind Speed Scale alm (<1 km/hr)
Other con Species Con AMTO Americ	/ 0 A nment des: on Name	S:	R Northern Leopar	rd Frog	phibian Ca Males can be without error Calls overlap	200m II Level Codes counted individua each other, but	:: Beau ly 0 Ca 1 Li 2 Li	ford Wind Speed Scale alm (<1 km/hr) ght Air (1-5 km/hr) ght Breeze (6-11 km/hr)
Code Comm AMTO America SPPE Spring CHER Character	des: on Name an Toad Peeper	S: NLFF GRFI GRTI	R Northern Leopar Green Frog Gray Tree Frog	rd Frog 2	Aphibian Ca Males can be without error Calls overlap numbers can	200m II Level Codes counted individua each other, but be reliably estima	i: Beau lly 0 Ca 1 Li 2 Li 3 G	ford Wind Speed Scale alm (<1 km/hr) ght Air (1-5 km/hr) ght Breeze (6-11 km/hr) rentle Breeze (12-19 km/hr)
Species Coor AMTO America SPPE Spring CHFR Chorus WOFR Wood	des: on Name an Toad Peeper s Frog Frog	S: NLFF GRFI GRTI BULL	R Northern Leopar R Green Frog R Gray Tree Frog American Bullfro	rd Frog 2 og 3	Aphibian Ca Males can be without error Calls overlap numbers can Calls overlap	200m II Level Codes counted individua each other, but be reliably estima each other too mu	i: Beau Ily 0 Ca 1 Li 2 Li 3 G ich to 4 M	ford Wind Speed Scale alm (<1 km/hr) ght Air (1-5 km/hr) ght Breeze (6-11 km/hr) rentie Breeze (12-19 km/hr) loderate Breeze (20-28 km/hr

PIFR Pickerel Frog

- numbers can be reliably estimated
- 3 Calls overlap each other too much to estimate number
- 3 Gentle Breeze (12-19 km/hr) 4 Moderate Breeze (20-28 km/hr)

Page 3 of 4

avanta Inc. Ampl	hibian Call C	Count Data Sheet	- Field Use	Savanta Project Code: 75		
Administrative Ir Project Name A MORCH POKTA	nformation Date MAY Q	e Round 0,204 2	Time	Start	Time End	Observer(s) EL, PB
Weather Conditi Cloud Cover (%) 40	ons Temp []	(°C)	Vind 2	Precipta	ation	Humidity
Station Informat	ion Survey Sta 22.03	art Time Easting	Northing	Photo Nur	nber(s)	Water Present Yes No
SpeciesINSPPEC3	OUT	Station layout		Indica facing	nte direction n during survey	OTTSIC
ELC or Genera	I Veg:		5	SPPE (C3)		
0.10				200m		
Other commen	ts:					
Species Codes: Code Common Name AMTO American Toad SPPE Spring Peeper CHFR Chorus Frog WOFR Wood Frog	B NLFR No GRFR G GRTR G BULL A FOTO F	orthern Leopard Frog reen Frog ray Tree Frog merican Bullfrog olwers Toad	Amphibian Ca 1 Males can be without error 2 Calls overlap numbers can 3 Calls overlap estimate nur	Il Level Codes counted individua each other, but be reliably estima each other too mu	ted a contract of the second s	ord Wind Speed Scale Im (<1 km/hr) ht Air (1-5 km/hr) ht Breeze (6-11 km/hr) entie Breeze (12-19 km/hr) oderate Breeze (20-28 km/hr)

Savanta Inc. Amph	ibian Call Count Dat	Savanta Project C	ada: 20 - 0		
Administrative Inf	- Savanta Project C	ode. 7537			
Project Name	Date	Round	Time Start	Time End	Observer(s)
PORCA	MAY 20, 2015	2	2128	2207	ELOPB

Weather Conditions									
Cloud Cover (%)	Temp (°C)	Wind	Preciptation	Humidity					

Station Information									
Station ID	Survey Start Time	Easting	Northing	Photo Number(s)	Water Present				
					430CM				

Species	IN	OUT	Station layout
NDAM			S Indicate direction facing during survey
			•
ELC or Ger	neral \	/eg:	
SWMJ-	1.		200m>

· Tappoles (GRER) observed agenin; Z10-15 tadpoles

Species Codes:		Amphibian Call Level Codes:		Be	Beauford Wind Speed Scale:	
Code Co	ommon Name		1	Males can be counted individually	0	Calm (<1 km/hr)
AMTO An	merican Toad NLFR	Northern Leopard Frog		without error	1	Light Air (1-5 km/hr)
SPPE Sp	oring Peeper GRFR	Green Frog	2	Calls overlap each other, but	2	Light Breeze (6-11 km/hr)
CHFR Ch	norus Frog GRTR	Gray Tree Frog		numbers can be reliably estimated	3	Gentle Breeze (12-19 km/hr)
WOFR Wo	ood Frog BULL	American Bullfrog	3	Calls overlap each other too much to	4	Moderate Breeze (20-28 km/hr)
MIFR Mi	ink Frog FOTO	Folwers Toad		estimate number		
PIFR Pic	ckerel Frog					Page 2 of 4

Savanta Inc. Amphil Administrative Info	Savanta Project C	ode: 7537			
Project Name MILTON NORTH PORTA	Date JUNE 9,2015	Round 3	Time Start	Time End	Observer(s) El, RL

Weather Condition	ons			
Cloud Cover (%)	Temp (°C)	Wind	Preciptation	Humidity
5	18	2		79

Station Information									
Station ID	Survey Start Time	Easting	Northing	Photo Number(s)	Water Present				
					-NO access				

Other comments: , Last rainfall Less dran 24 hrs earlier.

Species Codes:		A	nphibian Call Level Codes:	Be	Beauford Wind Speed Scale:		
Code	Common Name			1	Males can be counted individually	0	Calm (<1 km/hr)
AMTO	American Toad	NLFR	Northern Leopard Frog		without error	1	Light Air (1-5 km/hr)
SPPE	Spring Peeper	GRFR	Green Frog	2	Calls overlap each other, but	2	Light Breeze (6-11 km/hr)
CHFR	Chorus Frog	GRTR	Gray Tree Frog		numbers can be reliably estimated	3	Gentle Breeze (12-19 km/hr)
WOFR	Wood Frog	BULL	American Bullfrog	3	Calls overlap each other too much to	4	Moderate Breeze (20-28 km/hr)
MIFR	Mink Frog	FOTO	Folwers Toad		estimate number		
PIFR	Pickerel Frog						Page of 4

Savanta Inc. Amphik	oian Call Count Da	ta Sheet - F	ield Use Only	Savanta Project C	ode: 7537
Project Name MILTON NORTH PORTA	Date JUNP 9,2015	Round	Time Start	Time End	Observer(s) El, KL

Weather Conditions								
Cloud Cover (%)	Temp (°C)	Wind	Preciptation	Humidity				

Station Inform	nation				
Station ID B	Survey Start Time 2141	Easting	Northing	Photo Number(s)	Water Present
					E 22 CM

Species	IN	OUT	Station layout	
GRTR	CI-4			S Indicate direction facing during survey
			GRTR	GKZR (XI)
			GARTR (KI)	
ELC or Ge	neral V	/eg:	6,17R (x1)	
swind	- 2		k	200m

Speci	ies Codes:		A	mphibian Call Level Codes:	Be	Beauford Wind Speed Scale:	
Code AMTO	Common Name American Toad	NLFR Northern Leopard Frog	1	Males can be counted individually without error	0	Calm (<1 km/hr) Light Air (1-5 km/hr)	
SPPE CHFR	Spring Peeper Chorus Frog	GRFR Green Frog GRTR Gray Tree Frog	2	Calls overlap each other, but numbers can be reliably estimated	2 3	Light Breeze (6-11 km/hr) Gentle Breeze (12-19 km/hr)	
WOFR MIFR PIFR	Wood Frog Mink Frog Pickerel Frog	BULLAmerican BullfrogFOTOFolwers Toad	3	Calls overlap each other too much to estimate number	4	Moderate Breeze (20-28 km/hr) Page 2 of 4	

Savanta Inc. Amphi	Savanta Project C				
Administrative Info		1/724			
Project Name	Date	Round	Time Start	Time End	Observer(s)
MILLON NORTH PORTA	JYNP 8,2015	3	2135	2151	er. RL

Weather Conditions							
Cloud Cover (%)	Temp (°C)	Wind	Preciptation	Humidity			

Station Inform	nation				
Station ID	Survey Start Time	Easting	Northing	Photo Number(s)	Water Present
					LNDACCES

Species	IN	OUT	Station layout	unable to
AMTO	C1-2		Indicate direction	Confirm
1 SPPE	CI-2		facing during surv	ey
			SPPE (x) SP	PE
				ala Sheet cofr
ELC or Ge	neral V	/eg:	AMTO	bian Call Count I
MAG/01	4		200m	14 Amohii

Species Codes:		Amphibian Call Level Codes:	Beauford Wind Speed Scale:		
Code Common Name	NI ED Northern Leanard Frag	1 Males can be counted individually without error	0 Calm (<1 km/hr)		
SPPE Spring Peeper	GRFR Green Frog	2 Calls overlap each other, but	2 Light Breeze (6-11 km/hr)		
CHFR Chorus Frog	GRTR Gray Tree Frog	numbers can be reliably estimated	3 Gentle Breeze (12-19 km/hr)		
WOFR Wood Frog	BULL American Bullfrog	3 Calls overlap each other too much to	4 Moderate Breeze (20-28 km/hr)		
MIFR Mink Frog	FOTO Folwers Toad	estimate number			
PIFR Pickerel Frog			Page $\frac{3}{100}$ of $\frac{1}{100}$		

Administrative Infr	Savanta Project Code: 737				
Project Name MILTON MORTH PORTH	Date JUMP 9,2015	Round 3	Time Start	Time End 2151	Observer(s)
Weather Condition	S				
Cloud Cover (%)	Temp (°C)	Wind	Pre	eciptation	Humidity

Station Inform	nation				
Station ID	Survey Start Time	Easting	Northing	Photo Number(s)	Water Present
E	2151	1.1655			(Yes) No

Species	IN	OUT	Station layout	unable to
GRTR	C1-2		NN Indicate d	irection ing survey
			E	7B-TR
			GIETR	
ELC or Ge DA	neral V	eg:		>
Otherseem	ments:			

Species Codes:			Amphibian Call Level Codes:			Beauford Wind Speed Scale:		
Code Com	nmon Name	Northern Leonard Frog	1	Males can be counted individually without error	0	Calm (<1 km/hr) Light Air (1-5 km/hr)		
SPPE Sprin	ng Peeper GRFR	Green Frog	2	Calls overlap each other, but	2	Light Breeze (6-11 km/hr)		
CHFR Chor WOFR Wood	rus Frog GRTR nd Frog BULL	Gray Tree Frog American Bullfrog	3	Calls overlap each other too much to	3	Gentle Breeze (12-19 km/hr) Moderate Breeze (20-28 km/hr)		
MIFR Mink	Frog FOTO	Folwers Toad		estimate number				
PIFR Picke	erel Frog					Page 4 of 4		

2015-2016 Winter Wildlife and Incidental

Savanta Inc. V	Vinter Wild	Savanta Projoc	+ Codo: 7577			
Administrativ	ve Informa	Savanta Projec	7 5 5 T			
Site Name	Date	Time Start	Time End	Surveyor Lead	Assistant	Dage 1 of 2
ORLANDO	-15 -15	9:00AM	12:00PM	EVA LEE	J. LESLIE	raye or

Neather Conditions			
Cloud Cover (%)	Temp (°C)	Wind	Preciptation
0	-12	~ 1	Ø
Humidity	Snow Depth Level 1 (cm)	Snow Depth Level 2 (cm)	# Hours since snow even
	10	50	NERMIGHT

Survey I	nformatio	n				
Transect Number	Species Observation (4-letter code)	Number Tracks Observed	Number Trails Observed	Direction of Trail (if applicable)	Evidence Observed (scat, tracks, browse, etc.)	
T2	REFO	(٥	/	TK	
72	MEVO	. (.	٥	/	TK	
73	REFO	1111	Q		TK	
0	GRSQ	(())	0	/	TK, DEN	
١٢	MENO	111		(TK	
74	REFO	-++++ 111	0	r	TK	
ĸ	6090	. (0	/	TK	
	GRSQ	6	0	1	TIK	
75	REFO	1111	D	1	TIC	
Tb	REFO	-++++- 11	0	1	TK, OB	
TIO	(040	((0	1	TK	
~~~	GRSQ	1.03	0	/	TK	
ч	REFO	+++++ (	0	1	TK	
TI	REFO	111		1	TK	
15	BEAN	NO TRACKS BUT MULTIPLE TREE CUTS	0	Æ	TREE	
T7	REFO	-++++ (	0		TK	
T8	REFO	1111	0	/	TK	
15	GRSQ	1	0	1	TK	
Tq	DEMO	1(	0	1	TK	
Savanta Inc.	Winter Wild	life Survey I	Data Sheet -	Field Use Only	Sevente Ducie	Cada 7577
--------------	-------------	---------------	--------------	----------------	-------------------	--------------
Administrat	ive Informa	tion			- Savanta Project	code: TSST
Site Name	Date	Time Start	Time End	Surveyor Lead	Assistant	Bago 7 of 7-
OKLANDO	FEB 515	9 Am	1200	EVA LOS	5.LESUE	Page 2 of 2

<b>Weather Conditions</b>			
Cloud Cover (%)	Temp (°C)	Wind	Preciptation
0	- 12	(	R
Humidity	Snow Depth Level 1 (cm)	Snow Depth Level 2 (cm)	# Hours since snow event
	10	50	LIGHT SNAV OVERNIGHT

Survey	Informatio	n			
Transect Number	Species Observation (4-letter code)	Number Tracks Observed	Number Trails Observed	Direction of Trail (if applicable)	Evidence Observed (scat, tracks, browse, etc.)
Tq	REFO	111	- 0	/	TK
~	1040	l	0	/	TK
TI	DEMO	( )	0	1	TK
لع	MEVO	11+1+	D	/	TK
c <b>t</b>	REFO		0	/	TK
		1			

avanta Inc. Incid	ental Obse	ervations	- Field Use	e Only			
Administrative I	nformation					Savanta Project Code	- 7537
Site Name NUTON NOTCH P	orea Surve	еу Туре Ю	Date Feb.17, '	16 093	0-1150	Observer EL CL	
Site Information							
% Cloud cover	Temperati	ure (°C)	Precip	otation	Be	aufort wind speed/dire	ction
Mammals						photo number in brackets b	eside species nar
EGLD VO							
the at							
Birds							
RTHA ×2							
CHIGO X2							
NOCH × 2							
DOWD y 1							
RBWDX 2							
BUAX8							
AMCR × 3							

Savanta Inc.	Winter Wild	life Survey [	Data Sheet -	Field Use Only	Savanta Proje	ect Code: D.C.27
Administrat	ive Informat	ion			Javanta Troje	1001
Site Name MILTON NOFTH	Date Feb.17.'16	Time Start 0930	Time End	Surveyor Lead	Assistant CC	Page 1 of 2
POLTA						

Weather Conditions			
Cloud Cover (%)	Temp (°C)	Wind	Preciptation
75	-3	0-2	NIA
Humidity	Snow Depth Level 1 (cm)	Snow Depth Level 2 (cm)	# Hours since snow event
87	10	0	12
61	10		

Survey	Informatio	n		Diss line of Tapil	Evidence Observed
Transect Number	Species Observation (4-letter code)	Number Tracks Observed	Number Trails Observed	(if applicable)	(scat, tracks, browse, etc.)
T1	REFO	U			Tracks
	COYO	11			Tracks
	MENO	+++-1111			Tracks
T2	MEVO	u			Tracks
	KEFO				tracks
тЗ	EGSR	44+-			TRKS, NEST
	MEND	[]			tracks
T4	REFO	11		2	Tracks
	EGER	1101			Tracks
	EACO	1			tracks
	MEND	++++ 111			Tracks
75	EGSR	HH			
	REFO	HIT			
	EACO	u			
76	GACO	44+1	1	Past; Th residence	e tracks
	REED	ttt	1	TWD Cre	ek Tracks
	EGOR	TNTC			Tracks
	MENO	1(11			evack
T	CIAGO	TNTC			Tracks

Administ	rative Info	orma	tion		3		ant	
Site Name	e Dat	e	Time Start	Time End	Surveyor Lead	Assist	ant Pa	ge <u>2</u> of <u>2</u>
North	teb.1	7:16	0930	(ISD	EL	u		
AJAN	Condition							
Cloud	Cover (%)	5	Temp	(°C)	Wind		Pre	eciptation
7	J		-3		0-1	0 (am)	# Hours s	ince snow event
Н	umidity		Snow Depth	Level 1 (cm)	Snow Depth Level	Z (CIII)	12	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 1		10		×			
Survey I	nformatio	n					institution of Trail	Evidence Observed
Transect Number	Species Observation (4-letter code)		Number Track Observed	(S	Number Trails Observed		(if applicable)	(scat, tracks, browse, etc
TZ	REFO	ttt	-					Tracks
	MEVO	HH	-11					Tracks
	010	11						tracks
78	MEVD	Htt	TIL					tracks
	EGSD	111						Tracks
	REFO	M						TTACKS
79	REFO	HH	.					Tracks
	MEND	11						tracks
710	EGSD	HH	+1					Tacks
	REFO	111	1					Tracks
TII	EGSU	HH	FII					Tracks
	REFO	111						tracks
712	EGSQ	111						TTack
					A MARKEN			
			1. 1.					
	1							

S:\6005 - SAV Marketing and Support/TEMPLATES - FIELD COLLECTION FORMS\11_2015_Winter_Wildlife_Survey_Form.cdr

2016 Bats

North Porta - 45:5+

MAR 22,2016

Art	5 CC	-, IVI 16-		1	ndividual Tr	ee			Individu	al Cavities	(list top 3)			
Plot #	Tree ID	UTM	Tree Species (3/4 Species Code)	DBH (cm)	Height (m)	Decay Class (1-6)	Canopy Cover (%)	# of Cavities	Cavity 1 Height (m)	Cavity 2 Height (m)	Cavity 3 Height (m)	Photo #	Additional Notes]
1				er answernersen			our might station descarate	and the second sec	unu maan turqua ay kiitiin	n futilitarest to entitie the	a an adamata a segurata (a)) magnalassanan as s	No constant	
2	T1	588910-96	hiddony	29,0	32	1/2	70	2	2	4	N/A	GAS	NU Shaepjeanite	ervees
3	mage	486.00	Regard and a second contract of the second contract of the second contract of the second contract of the second	adecement restance on other			a fatilitati mana	n manustrajevajeja	CONTRACTOR DUCK	E (Messes) 779 Strategie	an a	a na fa	Nasnaastcout	ituooc
4	TI	4822713	Uchead.	35	6.2	5	0	4	6	5.9	5.9	615	snag, net actives but topped and	seme e
4	T2	584037, 4822725	Red Out	29	207	2	60	5	1.3	1.6	7	GPS		peering
4	TS	4882749	sigeir manale	26.5	24.6	1	100	4	11.8	-	~	9.5	1 compty	
1	and the	589066, 4822751	Recloak confirm"	35	32.5	2	40	1	14.5	Billo	-Contemporation	GPS 121	le damage to	14.2
4	75	589654 4822737	CI Ach 7 h?	34.0	34.5	1	90	2	14.5	15.5		GPS Vit	*	-
4	TQ	589075 4822743	SigarMap	022	13.6	2	80	2	.75	1.2		GRS		
4	TÀ	589069	Ash	32	23.5	- 2	50	1	1.10	_		GPS	canopysobici leader Lost.	ceclamo
4	T8	589 065, 4822926	Red mauple	385	29	2	60	2	11.5	12.5		GAS	Friendlagk	-5
5				an a				100	2			KAL-		
6	T_{1}	589058. 4822860	UNKNOWM	69	14.8	6	0	4	11.8	8.0	NTA	GPS	large goon and decchyld from gra	hes, yen
6	T2	689 064, 4822873	White Pine	38.5	17.5	Ţ	0	17	2	3	4	GRS		
7	ТΙ	589231, 4822869	Jellaw.	25	3,8	4	0	2	12	11	1	GRS		
7	T2	589 242, 482286	yellars	35.5	14.0	2	85	1	11		-	OPS VII		
7	TB	589232	yellow Broh	33.5	15.4	2	60	1	10	_	-	GAS		
7	Γ4	589234, 4822884	yellars Birch	40	16	2	40	3	15	15	15	GPS		
8	T1	589287, 4822816	white	46	12	5	0	3	1.6	A	9	GPS	one long caviti	1!
9	TI	589322	unknown	37.5	22	6	0	4	74	6	67	GPS		

Plot 5: 589055, 4822804 (Phototaken) Plot 6: 539 067, 4822856 Grskit Plot 7: 589228, 4822876

Decay Class (Watt and Caceres 1999) numbers are 1 through 6 from left to right

- 1 Healthy, Live tree
- 2 Declining live tree, part of canopy lost
- 3 Very recently dead, no canopy, bark intact, branches intact
- 4 Recently dead, bark peeling, only large branches intact
- 5 Older dead tree, 90 percent of bark lost, few branch stubs, broken top
- 6 Very old dead tree, advanced decay, no branches, parts of the stem have rotted away

Notes: Classes 1-3 are preferred bat habitat

Plot 1: 588966, 982254) (Photo taken) Plot 2: 588930, 4822600 (Photo taken) Plot 3: 589001, 48 22653 (Photo taken GPS UNIT) Plot 4: 589000, 482274) (Photo taken GPS UNIT)

Individual Cavilies (int top 3)	
Individual Tree Individual Tree Decay Decay Cavity 2 Cavity 2 Cavity 3 Height Height Height Height (m) Photo # Additional Notes DBH Height (1-6) (%) Cavity 6 (m) Cavity 6 (m) Cavity 2 Cavity 3 Height Height Height Cavity 6 Ca	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
12 4820 859 Rec1 mayle 37 22 60 2 13 1 539139 Rec1 mayle 37 22.5 2 60 2 13 1 51 4822932 000	be
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ the re
TI 48219772 Oak 40 27 2 50 4 1.3 1.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	below
TS 482204 Freemony 112 297 4 100 1 20 - GPSA4	trees
14 538524 Maple/strate Dire 290 1 22 - 024 4822036 Maple 31 365 290 1 22 - 024 588512 Maple 31 365 290 1 0 5 9 10 of	VD3-3
T5 4322035 Remain 98,535 2 60 13 2 01	S S
T74322074 Freeman 12332 1 10 1 125 Cavities throad	
To 588534, marican 254605	
T9 4822089 American 25585 3 0 10 5 6 7 8	
TII 4812134 UNEROW 36 16.8 2 60 20 .75 7.5 8 Storm damage	
$\frac{1}{4822153} + \frac{1}{253562} + \frac{1}{16} + \frac{1}{25} + \frac{1}{16} + \frac{1}{25} + $	
TI4 583573, Beech 31.88.96 5 1.32.53 Storm domage	
T15 4822086 Freeman 36 2 2 60 2 7 9 -	
Tile R Pressmen 37 23 4 0 10 </td <td></td>	
1 Healthy. Live tree 2 Declining live tree, part of canopy lost 	
3 Very recently dead, bark peeling, only large branches intect 4 Recently dead, bark peeling, only large branches intect 0 Very recently dead, bark peeling, only large branches intect 0 Very recently dead, bark peeling, only large branches intect	
5 Older dead 5 Older dead 6 Very old dead tree, advanced decay, no branches, parts of the Notes: Classes 1-3 are preferred bat habitat	
the additional ha add 1 plot, up to a mx of 35 plots	
Number of Plots per site: 10ha minimum of 10 plots; each addition and the solution of the solu	
If Snag Density if greater than 10 snags per hectare of New >10 snags/ha? YES NO	

Tall

	UTM	Tree Species (3/4 Species Code)	DBH (cm)	Height (m)	Decay Class (1-6)	Canopy Cover (%)	# of Cavities	Cavity 1 Height (m)	Cavity 2 Height (m)	Cavity 3 Helght (m)	Photo #	Additional Notes
18	588 584	Freman	38,5	30	1	70	1	1.2	-	-		
9	588587 4822055	Freewan	48	30	2_	80	2	ľ	10	-		
žo	483 589	UNKNONM	29	9	5	0	B	1	7	9		
21	588595 4822046	Freeman	70	25	2	50	5	.5	1.2	5		
22	58853872	Unknow	31:5	-3	6	0	7	.5	1.5	2		
	1.											
_					1							
		17										
							1					
_					-							
			1									
				-	-							
	2 2 2 2 2 2 2 2	B UNM 8 588584, 4822055 20 588533 20 588533 20 588533 20 588533 21 588533 22 588533 21 588533 22 588533 23 588533 24825046 2 588533 2 588533 4821972 4821972 4821972	ID UTW (14 appression) 8 588 58 4, 4822055 Freeman 20 588 5337 Freeman 20 588 5337 UN KNONM 21 4822046 Freeman 2 588 5337 UN KNONM 21 588 5337 UN KNONM 2 588 537 UN KNONM 2 588 537	10 UN (14 speces code) (11) 2 588 58 (4) Freeman 38.5 3 4822055 Freeman 48 20 583 53 (13) UN KNOWM 29 21 4822055 Freeman 70 2 583 53 (13) UN KNOWM 29 70 3 583 53 (13) UN KNOWM 29 70 3 583 53 (13) 100 100 4 8 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 1 100 100 100 100 <tr< td=""><td>ID UTM Las pression Um Um 8 588 58 58 Freeman 38.5 30 9 4822055 Freeman 48 30 20 538 53 43 UN KNOW 29 9 21 4822055 Freeman 70 25 2 538 53 30 UN KNOW 29 9 21 4822055 Freeman 70 25 2 538 53 30 UN KNOW 29 9 2 538 53 30 UN KNOW 29 9 2 538 53 30 UN KNOW 29 31.5 3 2 538 53 30 UN KNOW 31.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>10 UM (JA spece cou) Unit (U) (U) (U) 2 588 553 Freeman 38.5 30 1 3 482005 Freeman 48 30 2 20 583 533 UNKNOW 29 9 5 20 583 533 UNKNOW 29 9 5 21 583 538 Freeman 70 25 2 2 583 538 UNKNOW 29 9 5 21 583 538 UNKNOW 29 9 5 2 583 538 UNKNOW 29 9 5 2 583 538 UNKNOW 29 9 5 2 583 538 UNKNOW 29 9 5 3 6 - - - - 2 583 538 2 UNKNOW 31:5 3 6 3 - - - - - - - 3 - - - - <td< td=""><td>10 UM UM Spens coord UM UM UM UM 2 58 58 The mon 38.5 30 1 70 3 4822055 Freeman 48 30 2 80 20 58 3037 Freeman 48 30 2 80 20 58 537 Freeman 48 30 2 80 20 58 537 Freeman 70 25 0 21 48 5043 UN know 29 9 5 0 21 58 53 53 53 53 53 6 0 2 53 53 53 53 53 53 6 0 2 53 53 53 53 53 53 6 0 2 53 53 53 53 53 53 6 0 3 6 0 1 1 1 1 1 4 <t< td=""><td>10 UM (mapping conv mapping conv (mapping conv (mapping</td><td>10 Um <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<></td></t<></td></td<></td></tr<>	ID UTM Las pression Um Um 8 588 58 58 Freeman 38.5 30 9 4822055 Freeman 48 30 20 538 53 43 UN KNOW 29 9 21 4822055 Freeman 70 25 2 538 53 30 UN KNOW 29 9 21 4822055 Freeman 70 25 2 538 53 30 UN KNOW 29 9 2 538 53 30 UN KNOW 29 9 2 538 53 30 UN KNOW 29 31.5 3 2 538 53 30 UN KNOW 31.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10 UM (JA spece cou) Unit (U) (U) (U) 2 588 553 Freeman 38.5 30 1 3 482005 Freeman 48 30 2 20 583 533 UNKNOW 29 9 5 20 583 533 UNKNOW 29 9 5 21 583 538 Freeman 70 25 2 2 583 538 UNKNOW 29 9 5 21 583 538 UNKNOW 29 9 5 2 583 538 UNKNOW 29 9 5 2 583 538 UNKNOW 29 9 5 2 583 538 UNKNOW 29 9 5 3 6 - - - - 2 583 538 2 UNKNOW 31:5 3 6 3 - - - - - - - 3 - - - - <td< td=""><td>10 UM UM Spens coord UM UM UM UM 2 58 58 The mon 38.5 30 1 70 3 4822055 Freeman 48 30 2 80 20 58 3037 Freeman 48 30 2 80 20 58 537 Freeman 48 30 2 80 20 58 537 Freeman 70 25 0 21 48 5043 UN know 29 9 5 0 21 58 53 53 53 53 53 6 0 2 53 53 53 53 53 53 6 0 2 53 53 53 53 53 53 6 0 2 53 53 53 53 53 53 6 0 3 6 0 1 1 1 1 1 4 <t< td=""><td>10 UM (mapping conv mapping conv (mapping conv (mapping</td><td>10 Um <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<></td></t<></td></td<>	10 UM UM Spens coord UM UM UM UM 2 58 58 The mon 38.5 30 1 70 3 4822055 Freeman 48 30 2 80 20 58 3037 Freeman 48 30 2 80 20 58 537 Freeman 48 30 2 80 20 58 537 Freeman 70 25 0 21 48 5043 UN know 29 9 5 0 21 58 53 53 53 53 53 6 0 2 53 53 53 53 53 53 6 0 2 53 53 53 53 53 53 6 0 2 53 53 53 53 53 53 6 0 3 6 0 1 1 1 1 1 4 <t< td=""><td>10 UM (mapping conv mapping conv (mapping conv (mapping</td><td>10 Um <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<></td></t<>	10 UM (mapping conv mapping conv (mapping conv (mapping	10 Um Um <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

1 Healthy, Live tree

2 Declining live tree, part of canopy lost

3 Very recently dead, no canopy, bark intact, branches intact

4 Recently dead, bark peeling, only large branches intact

5 Older dead tree, 90 percent of bark lost, few branch stubs, broken top

6 Very old dead tree, advanced decay, no branches, parts of the stem have rotted away

Notes: Classes 1-3 are preferred bat habitat

Number of Plots per site: 10ha minimum of 10 plots; each additional ha add 1 plot, up to a mx of 35 plots Formula for determining Candidate Matemity Colonies: Total # of Suitable Cavity Trees/ (#of Plots*0,05ha) If Snag Density if greater than 10 snags per hectare of trees >25cm then site is a candidate for Matemity Colonies

>10 snags/ha?

YES NO

11 Mitton North Pora - Evening Batsurvey OPILW June 8, 2016 Start: 22:01 Eng: 23:04. Weatler: Precip: none Temperature: 12°C Wind: Bokm/hW Humidity: 44 % cloud cover: 10% Point Count L' 5:22:10 E:22:21 - Boos detected: none - Boos observed: hone. 4822071 UTM: 5881033 Point caunt 2: 5: 22:26 E: 22:30 UTM: 588751 4822348 - Bars detected: none - Bats absorved. none. Rite in the Rain .

12 Transect 1: (5:10:42pm E:10:51pm) UTM: 588872 4822557 -Bats ditected: nore -Bats observed: none

2016 Insects

Administrativ	ve Info	ormation		A	ALE Y	Code:	F557
ite Name VMh Port	ā	Survey Type Msets I	Date 29 JUN/16	Time VS()	Obse	erver(s) PSB	*
Site Informat	ion						
6 Cloud cover	50	Temperature	(°C) [9-26 Precipt	ation 6	Beaufort w	vind speed/dire	ection NWZ
lammals					Add photo n	number in brackets l	beside species name
EACH							
unsa							
WIDE							
irds					10.00		
TUVU >	x I		HOCA	SM	1	NOCA	A 1
TUVH > WITH S	× 1 +1 1		Hoca BARES	sm sit) //(NO CA SANS	A I SM I
WITH S KILL S	x 1 H 1 514	1	Hoca BARS BLJA	SM SH SH) //()	MOCA Satus VESP	A 1 SM 1 T 11
TUVU S WITH S KILL S RBGU	× 1 ++ 1 51+ X	1	Hoca BARS BLJA WBNU	SM SH SH SH) //()	MOCA SANS VESP SUSP	A 1 sm 1 T 11 CF 11/K
TUVU > WITU > KILL > RBGU ,	x 1 H 1 SiH X Sam	1 [1]/	Hoca BARS BIJA WBNU (towk	SM SH SH SH SH) //() !	MOCA SANS VESP SNSP BHCO	A 1 SM 1 T 11 CIE 11/H FV 1
TUVU > WITU S KILL S RBGU . MODO	x 1 H 1 fit X SM	1 [/]/	Hoca BARS BIJA WBNU (towk	SM SH SH SH SH SM SM) /() } ())	MOCA SANS VESP SUSP BHCO MMGO	A 1 SM 1 T 11 CF 11M FV 1 PV 1 P 1MT1
TUVU S WITU S KILL S RBGU J MODO ROPI	x 1 H 1 Sit X SWN SH	1 [/ 	Hoca BIDA BIDA WBNU (towk MMR	SM SH SH SH SH SM SM) /() { 	MOCA SANS VESP SUSP BHCO MMGO	A I SM I T II CE IJH FV I P IJHTI O SH I
TUVU > WITU > KILL S RBGU , MODO ROPI BETLI	x 1 H 1 SiH X SM SH SH	1 [']/ (Hoca BARS BIJA WBNU (HONK AMMR BIZT	SM SH SH SH SM SM H A) /(() } ()//)	MOCA SANS VESP SUSP BHCO AMGO AMMGO	A 1 SM 1 T 11 CE 11/H FV 1 P 1/HT1 O SH 1
TVIVA >> WITA >> KILL >> RBGU >> NODO ROPI BETLI DOWO	x 1 H 1 Tit X SWN SH SH SH	[[/ / (Hoca BARS BIJA WBNU (towk MMR BRT GRC	SM SH SH SH SM SM A A SM) /() } () / /	NOCA SANS VESP SUSP BHCO AMGO AMGO	A 1 SM 1 T 11 CI= 11/H FV 1 P 1/HT1 O SH 1
TUVU S WITU S KILL S RBGU J NODO ROPI BETLI DOWO NOTZ	x 1 H 1 Fit X SWN SH SH SH SIT		Hoca BAR2S BIJA WBNU (HOWK AMMR BIZT GRC QUOL	SM SH SH SH SH SM SM M A SM SM SM SM SM SM SM SM SM SM) /() / / / /	MOCA SANS VESP SUSP BHCO AMGO AMMW	A 1 SM 1 T 11 CF 11/H FV 1 P 1/HT1 O SH 1
TUVU S WITU S KILL S RBGU S RBGU S ROPI BETLI DOWO NOIZ EWPE	x 1 H 1 Sift X SM SH SH SH SIf SM		Hoca BARS BIJA WBNU (towik MMR BIZT GRC GRC GRC GRC	SM SH SH SH SM SM SM A SM A SM SM SM SM SM SM SM SM SM SM) /(() / ()//() / / / / /	MOCA SANS VESP SUSP BHCO AMGO AMMGO	A 1 SM 1 T 11 CE 11/H FV 1 P 1/HT1 O SH 1
TUVU S WITU S KILL S RBGU S RBGU S RBGU S RODO RODO RODO ROPI BETLI DOWO NOIZ EWPE GUA	x 1 H 1 Sift X SM SH SH SIf SIf SN SH		Hoca BARS BIJA WBNU (towk MMR BRT GRC GRC GRC WAN	SM SH SH SH SM SM SM M A SM A SM SM SM SM SM SM SM SM SM SM) /() / () / / / / / / / / / /	NOCA SANS VESP SUSP BHCO AMGO AMMW	A 1 SM 1 T 11 CF 11/H FV 1 P 1/HT1 O SH 1

Administrative Inf	ormation		A	AN CO	Code: +53+
Site Name Nov/harovta	Survey Type Msects	Date 14 JUN / 16	Time 730	Obs	server(s) PSB
Site Information	Tomporature (°C)	0 - Drocint	ation of	Paqufart	wind anood/direction N/
	remperature (C)	5 Precipia	auon y	Beaulon	wind speed/direction in 1-
Mammals				Add photo	o number in brackets beside species name
Eas Chi	l				
Gra Squ	1				
stri sku	1				
WIDE	trachs				
COYO	III · pups				
Race	tradis				
porte					
Diada					
	11	C14.18	Cana	1)1	NIPINS V 1
IUSBU X	in mer INKI	12, 04/1	SM	int att UHT /	CREA DD II
		IWAL	CF	INT CHT CHT II	RANZE D III
NUMBER A	1	WUK	Sit	1	LLOSP SIL 1
HARVO A	DIII	BHEO	Р	1417 111	Trul a
EWPE SIN		Ambo	P	iar 1	IVVU SH /
644 F	n nf	bTHA	A	1	RBWO SH I
HMCK SI4	h				PIWO SH LOS
HOWR STOP		Hold	SM		NOFL SH I
AMRO LI	e un i	VESP	SM	1	TRES SIT 1
EUST F	y pril i	INBU	sm	1	PUMA SIt (
BRT14 SI	n 11	BLJA	F SH	1	WONU A 11
GRCA SI	n 11	CEDOM	1 p	Idt I	WAVI SM I
REVIS	m 11	k And	CM		RBGR SM I
Sosp	7 411	II VINA	C SI	8 71	NOCA SH (
		IWAR	SW	l	KILL M

Savanta Inc. Incidental Observations - Field Use Only

				-
nsects			1	
Butterflies		A reasonant of the		
Closul		Eur Slai	utt (iil	
Cab Whi	utt 1411	Gra Com	1	
Ban Hari	un an an an an all	Tig Swa	lt	
Hic Hai	1	Stvi flai	1.	
NºP Cive	1()1	Red Adm	1	
Whi Adm	1	Hob Sla	1	
4 Woo Nyn	H	Draw Ski	1	
N.P. Expre	im the li	TE (Li	1 6	
LW Nappa]](re Su	14	
donata				110 8
Ena car	1	Cal mae	1. ITH HTI 11	
Ene civ	. 111	Ana um	11	
lsc ver	HAT I		î	
Lib pul	(1))	thy sim		
Dha Lud	11	kib luc		
Ela iga	1			
Paie long				
Sym int	04			as interior

Herps			
E mille Snake	- DOR across from - ca.12"-15"	8449	Esque
Insects			
Butterflies			
Com Rin		JUV!	lus
Hob Slei	14 HAT IIII	W Pe	Cvc
AP Lad	l		
sil Blu	11/1		
RSPUN	1		
Fur Ski	[[]		
E B Swa	1		
(IN Sat			
Lea Ski	1.HT HAT 11		
Odonata			- ive
les dry	1	Ena	annexa
Ena ebr	LUT 1	Lib 1	ne 1
Ena civ	1111	Pla	lud
Com exi	18	Pri	Sim
	11	Ľy	5(11
Lib qua	1		
Leu int	1		
Isc ver			
Cal mac	144 UN UN		
Other			
Vir Gte	11		1.01.8

Esquessing Rd. Dus Crc annexam 13" lue IIII i lyd 111 Sim Y

Administrative	nformatio	n				Code:	7573
Site Name	Survey T	ype Date	f Ti	me	Observer(s	5)	
North Bota	Insco	str 29 J	iny/16 0:	730-1030	VSB		
Site Information	l 40 Tompora	turo (°C) 01-71	Brocinto	tion Ø	Requirer twind a	nood/directic	on Stat (
	10 Tempera					peed/dilectic	
Mammals					Add photo number	in brackets besid	le species name
Eas Chi	1						
P	11						
Como	11						
	ø						
		and a second					
Birds							
MODO	Sim	11	505	p SM	þ		
RISON	×	1	0.00				
PDPI	~	111	ND.	CA SM	1		
POPI	~	1111	EU P	tol sm	١		
RBWO	SH	1	m	160 54	1		
BL JA	SIT	1	MIN	/00)[[
AM CR	Sit	[]]	R	THA SH	T (
BARS	SH	1					
BLCU	514	11		The Car			
HOWR	A	(
Ampo	Sim	١					
CIEDW	FY	111					
VIED	T	11					

Savanta Inc. Incidental Observations - Field Use Only

Herps Insects Butterflies Mona utt 11 5+ Blu Lea Ski Cas Whi Clo Sul 1(11 1447 11 Odonata Ena civ 1441 WH II Ane jun (111 les rec Ares con Aes spp. 111 les con 1 Pla lyd 111 isc ver G6 luc Pan fla 11 44 11 Sym vic Tra lae CHAR TAAL THE II Sym rub Other

2016 Salamanders

Savanta Inc.	Project Code: 1521					
Administra	tive Informa	110ject 000c. 7537				
Project Name	Date	Time Start	Time End	Site visit number	Observ	er(s)
North Porta	apr 14/16	10:30	11:30	1	R.L	le l'Espladist

Weather Conditions									
% Cloud cover	Temperature (°C)	Precipitation	Beaufort wspd/drctn	Humidity					
0	T			21					

Survey In	formation					
Coverboard # (as shown on field map)	Observation Time	UTM Easting / Northing	Species	# Individuals	Photo Description	Photo #
sb12			none obser	wed_		
sb13			none obser	wed-		
sb14			-none obs	enved-		
sbl			None observ	ved -		
Sb2			none observ	ved -		
563			none obse	aved_		
sb-4		a caracteristica and a cara 2	none ob.	served		
sb7	Biological and the problem of the second sec		none obs	servel		
56 11	Kydenson ac finlanden bet folker of a sector and a sector and a		noneo	served		สารสอากของสารออกเรื่องการสองสารสองสารสองสารอากอากอากอากจากสารการของสารสาร
Sb 10	 March State And Internet Antiparty and the state of the s	en la constant anna an anna anna anna anna anna	- none obs	erved_	nenne de la contesta a la contesta e la tre que da la que de la contesta de la contesta de la contesta de la co	en reformentant zon unterland frankrigen eine einder sich eine Sterken der Sterken der Sterken der Sterken der
Sb 9			-none ob	served	defendentischen son under sinder sinder sinder sinder ander de sinder sinder einer de sinder sinder werden.	าหรายรูปเป็นรูปแก่ง เป็นหรือเป็นหมายการให้
800			- none obs	enved -		
Sb5			noze obs	enved-		ng ng balan sa
506			nore obs	end-		
				2		
Incidenta	al Observat	tions		N. Contraction of the second sec		
red-be	ellied w	oolpeeken bi	J Sb 1/2/3	,		
Sprine	g perpe	as by sbe	s, to the w	est.		
	0					

Savanta Inc.	Brojost Code:						
Administra	Project Code: 7537						
Project Name Date Time Start Time End Site visit number Observer(s)							
North Ponta	apr. 20/16	11:00	11:55	2	R.U	u, C. Zoladiski	

Weather Conditions										
% Cloud cover	Temperature (°C)	Precipitation	Beaufort wspd/drctn	Humidity 37						

Coverboard # O (as shown on field map)			1			
	Observation Time	UTM Easting / Northing	Species	# Individuals	Photo Description	Photo #
sbl2			none obse	wed -		
5613			-none obs	courd_		
5614 -		L	none ob.	served	Accesses and a constraint and a	กรากการการการการการการการการการการการการ
sbl			- nore o	pserved	6	
sb ²			none obs	enved	500-111-11-11-11-11-11-11-11-11-11-11-11-	
563	We are a subserve that the providence of the second s	na a tanàn amin'ny faritr'o amin'ny faritr'o amin'ny amin'ny amin'ny faritr'o amin'ny faritr'o amin'ny faritr'	home	observed	(
567			noneobsee	wied -		analise ekseta aya ka para da yana aya aya aya aya aya aya aya aya a
SPII -			nome obse	nued-		Minaralianan ini Padanahan na kata dari k
sb10			none ob	served		10. namet juri su timu namet na mana na danje du tu na timu sa na tanja ka mana na na na na na na na
sb9 -			none obs	ienv-col	Mangang dan kanang k	na n
sb 8			rone ob	served		
sb5			none ob	served		-
564 -			none ob:	served.		
6			none o	bsegine	d	and a stand of the stand of t
Incidental (Observat	ions				

Incidental Observations

Savanta Inc.	Project Code:							
Administra	Froject code. 753+							
Project Name	Project Name Date Time Start Time End Site visit number Observer(s)							
Nouth Porta may 4/6 10:00 14:00 3 R.Lee, E.Lee								

Weather Conditions									
% Cloud cover	Temperature (°C)	Precipitation	Beaufort wspd/drctn	Humidity					
60	13	none	6	64					

Survey In	formation					
Coverboard # (as shown on field map)	Observation Time	UTM Easting / Northing	Species	# Individuals	Photo Description	Photo #
Sb 12	Name and the state of the state		-no observ	ations	nan ana ar an	กระระสารแรงการการการการการการสารสารสารสารสารการการการการการการการการการการการการกา
Sb 13			no observ	rations		an an a' fa fa fan an stân de fan fan skrien fan fan fan skrien fan skrien fan skrien fan skrien fan skrien fan
sb 14			no obse	wation	l	
sb 1			no observa	tions -		
Sb 2			no observe	ations	- Kapatanemis anakasana sisakasana ana santa anta anta anta anta anta	al Churrent Mc Churge ann an Santhann an Anna Anna Anna Anna Anna Anna An
sto 3			no observe	ations	NA TALAN ARA STATISTICA MERINA STATISTICA ARA ARA STATISTICA STATISTICA STATISTICA STATISTICA STATISTICA STATIS	anna stanain ean ann a bhaiteactaran e companya an Sanain an Bartana.
sb 4			no obser	ration	า ^{าา} ชาวิสารณาราชมากระบบของการการและการและการการการการการการการการการการการการการก	กระการสารแหน่งและเหมือสารสารสารสารสารสารสารสารสารสารสารสารสารส
sb 7			no obser	rations	n te en antida de la fanta de la constante de La constante de la constante de	nah dan Badan sa kata da ya dan sang dagonaka Rasari ang Tan A
s/o 11			no oblervo	ctions	na constanta da fanta de la constanta da constanta da constanta da constanta da constanta da constanta da const	und werden eine der Sterne kollen der Generalisten Sterne und der Sterne der Sterne Sterne Sterne Sterne Sterne
5610			no observ	ations	Richen als som som ander som	unitaria nundria por constante a provinsi a provinsi con a que a provinsi de la constante de la constante de la
sb 9	Non-an-an-an-an-an-an-an-an-an-an-an-an-an	ng z zółnacznie odki powiestie obcz na wszaków w wszaków wyskazanie z tworostowego specia z min	nooblen	vations	and the weight of the state of the second state of the state of the second state of th	ners Sectoremental parameterial molecular solar Sectoremental Sectoremental parameters provide a sectoremental
z de	Summer and a state of the second second	elanga menganakan darangka perangkan di pengan di p	-no obten	ration	and the second se	n genere in a an une charyoffer wit waterschalt all general digen manofes in terms in general
266		na (je na klasti na stali na s	no observ	ations	##13799772867894558773496734987639937996679666982975994428768499 ##13799772867894558773496734987639987999679966796679929759944287678499	creation and mission and an an address of the and address of the address of the address of the address of the a

S:6005 - SAV Marketing and Support\TEMPLATES - Field Data Collection Forms\17_2015_Snake_Cover_Board_Survey.cdr

2016 Turtles

Savanta Inc. Tu	rtle Nesti	ng Survey - I	Field Use On	ly		P	roject Code: 7977	
Administrative	e Informa	tion					7301	
Project Name	Date	Time Start	Time End	Site	#	Surveyor(s	3)	
North Ponta MC	¥31/16	11:55	12:15	TI		R.Lee,	E.lee	
Weather Cond	litions							
% Cloud cover	Ter	nperature (°C)	Precipita	ation	Bea	aufort Wind	Humidity	
5		27	none			0	35	
Potential Nest	ting Habit	at Examinati	on					
Soil type (aug	ger sample)	S	urrounding ELC			UTM Ea	asting / Northing	
selty clay	loan		AGT/FOD/SWM 58			19120 4822757		
Sun Exposure)			~				
Canopy cov	ver	Percent Slo	ope (%)	South	facing sl	ope l	Photo # of area investigated	
5		Ó			Y (N)		TI-1	
Evidence of T	urtle Nest	ing Describe evic	dence observed (i.	e., test digs, c	claw mark	s, egg shells)	and provide Photo # of evidence	
Overall Suitab	oility of Ne	esting Habita	t					
Room								

Savanta Inc.	Turtle	Nesting	Survey - F	ield Use On	ly			Project Cod	a.
Administra	tive Inf	ormatior	ו						
Project Name	Dat	e T	ïme Start	Time End	Site	#	Surveyo	or(s)	
Weather Co	ondition	าร							
% Cloud co	over	Temper	ature (°C)	Precipita	ition	Bea	aufort Wi	nd	Humidity
Potential N	esting	Habitat E	Examinatio	on					
Soil type (auger sa	imple)	SI	urrounding ELC			UTN	I Easting / No	rthing
Sun Exposi	ure						<u> </u>		
Canopy	cover		Percent Slo	pe (%)	South	facing sl Y N	ope	Photo # of	area investigated
Evidence of	f Turtle	Nesting	Describe evide	ence observed (i.e	., test digs, o	claw mark	s, egg she	ells) and provide	Photo # of evidence.
Overall Suit	tability	of Nesti	ng Habitat						
					· · · · · · · · · · · · · · · · · · ·				

2016-2017 Road Mortality

Savanta Inc. Road	Transect Su	urvey - Fiel	d Use Only		Project Code: 7537
Project Name North Ponta	Date afri 14/16	Time Start	Time End	Site visit #	Observer(s) R.Lu, C. zoladuski

Weather Conditions				
% Cloud cover	Air temp (°C)	Precipitation (mm)	Beaufort wspd/drctn	Humidity (%)

Survey I	nformation			1
Transect # (as shown on field map)	UTM Easting / Northing	Species	Alive/Dead	Photo #
RI	589316 482301,5	quound hog	Dead.	TI-A
RII	589 600 482277b	mammal spp	Dead.	TI-B
R2		no observations		

S:6005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Forms/corel/21_2015_Snake_Transect_Survey.cdr

Savanta Inc. Road	Transect S	urvey - Fiel	d Use Only			Project Code
Administrative In	formation					Project Code. 7537
Project Name	Date	Time Start	Time End	Site visit #	Observe	er(s)
Nouth Panta	apr. 20/16	10:00	(1:00)	2	R.U	u, C. Zoladeski

Weather Conditions	S			
% Cloud cover	Air temp (°C)	Precipitation (mm)	Beaufort wspd/drctn	Humidity (%)
0	12		0	41

Survey I	nformation			
Transect # (as shown on field map)	UTM Easting / Northing	Species	Alive/Dead	Photo #
RI		- no observations		
R2	588483 4821952	East gartersnake	ame	R2-1
RZ	588408 4822026	american todd	dead	R2-2
R2	5883614822076	mourning dove	dead	R2-3
R2	588207 4822230	barn swallow	alive	none
-				
		\sim		
			-	
		·		

÷

S:16005 - SAV Marketing and Support\TEMPLATES - Field Data Collection Forms\corell21_2015_Shake_Transect_Survey.cdr

Savanta Inc. Roa	d Transect S	Survey - Fiel	d Use Only				
Administrative I	nformation					Project Code	7537
Project Name	Date	Time Start	Time End	Site visit #	Observe	er(s)	
North Porta	may 4/16	10:00	11:00	3	R.L	el, Elec	-

Weather Conditions	S			
% Cloud cover	Air temp (°C)	Precipitation (mm)	Beaufort wspd/drctn	Humidity (%)
60	13	nore	Re O	64

Transect # (as shown on field map)	UTM Easting / Northing	Species	Alive/Dead	Photo #
RI		- no observations -		
R2	588332 482211b	eastern cottontail	dead	R2-1
RZ	586410 4822043	american toad	dead	R2-2
R2	588419 4822027	american toad	dead	R2-3

S:6005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Formstore1/21_2015_Snake_T

Savanta Inc. Roa	ad Transect S	urvey - Fiel	d Use Only			Decise Codes
Administrative	Project Code: 7537					
Project Name	Date	Time Start	Time End	Site visit #	Observ	er(s)
North Porta	may 31/16	11:15	11:46	4	R.L	4, G. let
	0	1		t	1	/

Weather Conditions										
% Cloud cover	Air temp (°C)	Precipitation (mm)	Beaufort wspd/drctn	Humidity (%)						
5	26	abre	0	310						

Transect # (as shown on field map)	UTM Easting / Northing	Species	Alive/Dead	Photo #
RI	589649 4822669	EAStern MUKSNAICE	diad	RI-1
RI	589389 4822946	deer nouse	dead	R1-2
St.	589347 4822940	eastern gartersnake	diad	R1-3
RI	589357 4822952	grang Squirrel	dead	R1-4
RI	589358 4822955	red sawred	dead	RI-5
RI	189358 4822961	chipmink	dead	R1-6
RI	589348 4822967	11 //	dead	R1-7
RI	\$ 346 4822967	N //	dead	R1-8
RI	589293 4823040	N. 11	diad	K1-9
RI	589292 482-3031	u //	dead.	R1-10
RI	889271 (BZZ050	* american robin	dead	R1-11
RI	589 342 4822 985	downy woodpecken	dead	R1-12
RI	589459 4822860	red ung plackburd	diad	R1-13
R2		- none observed		

S:6005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Forms/core/21_2015_Snake_Transect_Survey.cdr

Savanta Inc. Roa	d Transect S	urvey - Fiel	d Use Only			Project Code:	-1527
Administrative Information							7301
project Name	Sept 21/1-	9:00	12:00		R	LjMTM	

Weather Conditions	5			1
% Cloud cover	Air temp (°C)	Precipitation (mm)	Beaufort wspd/drctn	Humidity (%) 73

Survey I	nformation			
Transect # (as shown on field map)	UTM _ Easting / Northing	Species	Alive/Dead	Photo #
RI	589 574 48 22 736	und mammal	D	R1-1
RI	589 573 48 22733	und mammal	D'	R1-2
121	589 563 48 22753	EAGIA	D	R1-3
RI	589562 4822763	unid mammal	D	R1-4
RI.	589363 4822965	unid mammal	D	R1-5
RI	5893374822979	am. hobin	D	R1-b
RI	589303 4823015	chipmunk	D	P1-7
RI	589306 4823014	ilaga	D	R1-8
RI	589308 4823019	laga	D	R1-9
RI	5893034823020	eage	D	R1-10
RI	589348 4822973	laga	D	R1-11
RI.	589389 4822940	lagu	D	R1-12
RI	589437 4822871	lage	D	P1-13
RI	589481 4822838	dekay's brown	\mathbb{D}	R1-14.
R2	588 312 4822 118	lager	D	R2-1

S/6005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Forms/corei/21_2015_Snake_Transect_Survey.cdr

Savanta Inc. Road	Project Code: 7537					
Administrative In Project Name north ponta	Date Date	Time Start 9:00	Time End	Site visit #	Observ ₂₁	er(s) -, MTM

Weather Conditions				1
% Cloud cover	Air temp (°C)	Precipitation (mm)	Beaufort wspd/drctn	Humidity (%) 45

Survey I	nformation			
Transect #	UTM Easting / Northing	Species	Alive/Dead	Photo #
R2	588433 4822018	und mammal	D	R2-2
R2	588434 4822010	unid. Juog	D	R2-3
R2	588326 4822103	laga	D	R2-4
R2	588313 4822126	laga	D	R2-5
R2	588309 4822129	laga		R2-6
		V		
		•		
•				

ncidental Observatio	ons		

Savanta Inc. Road	Desired Codes					
Administrative In	Project Code:557					
Project Name	Date	Time Start	Time End	Site visit #	Observ	er(s)
NOAMDBAA	510128/17	940	245	2	Of	MTM

Weather Conditions										
% Cloud cover	Air temp (°C)	Precipitation (mm)	Beaufort wspd/drctn	Humidity (%)						

Transect # (as shown on field map)	UTM Easting / Northing	Species	Alive/Dead	Photo #
R2	588312 48221	1 MAR	Dead	GRShit
£2	588408 482202	4 NLFP	Dead	Geslart
22	588490 4820	5 ANTO	Dead	GRANT
K2	588425 450 191	7 Eastern Chaesnake	Dead	GBLIT
RI	589513 4822 13	Raccos	Dead	GRSG'+
RL	589589 48777	B Eastern Garterson	Pead	QBLI+
4	589600482270	chipmunic	Plad	GBLA
P1	589585 48221	2 AMTO	Read	6BUT
RI	589578 4822	51 forceson	Dead	GIPSU+
P_\	569.510A 4800	50 faichash	Dead	GBLit
RI	589526 4822791	SKUNK	Dead	GPSki-
12	549383 480PB	A Eastern Eggerstalle	Dead	CIBLI-L
KA	589324 480298	Robin	Dead	spsic+
41	589308 482301	PMTO	Dead	BEH .
RI I	289303 4823017	Chipmynic	Dealar	GBKIT
Incidenta	al Observations			
Incip	lemal RTH	A on Phase Z from N W	30(Lot	

Savanta Inc. Ro	Project Code:					
Administrative	Project Code:					
Project Name	Date	Time Start	Time End	Site visit #	Observe	er(s)
NOAMPOAG	yd78117	940	245	2.	0(> HTM

Weather Conditions											
% Cloud cover	Air temp (°C)	Precipitation (mm)	Beaufort wspd/drctn	Humidity (%)							
001	15	hine	2	03							

Survey I Transect # (as shown on field map)	UTM Easting / Northing	Species	Alive/Dead	Photo #
RI	589250 4823008	GaAersnake	Dead	GBKut
RI	589227 4822088	chipmunk	L.	6/4
	589224 482307	Bade Grace	61	UN .
RU	589142 4823168	NLAR	54	0
RI	589023 4 82329	Karcoom	~	54
RI	558967 4873367	NLIPE	5	24
RI	558871 4523442	Gazersnake	Sec.	5-1
RI	589215 483343	Clartershake	~	in.
R	54211 4823119	2 Gardershallos	Sec. 12	1~
RI	6892164823113	Claptersport	5	6~
RI	589216 4823115	GARLSMALL	2	5
121	589236 4873699	Gadeshard	5	~
R	589234 4823010	Small mammal (toninua	2 "	100
RI	589249 9823-56	CIO. Aersnaks-	~	\$1-5-
RI	689299 9823026	chipmunic	54	5

S:6005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Forms/corel/21_2015_Snake_Transect_Survey.cdr

Savanta Inc. Roa	d Transect S	urvey - Fiel	d Use Only		1	1
Administrative I	Project Code: 7831					
Project Name	Date	Time Start	Time End	Site visit #	Observe	er(s)
NOANPOAR	1202011	940	245	2	80	MTM

Weather Conditions				
% Cloud cover	Air temp (°C)	Precipitation (mm)	Beaufort wspd/drctn	Humidity (%)

Transect # (as shown on field map)	UTM Easting / Northing	Species	Alive/Dead	Photo #
RI	589340 482298	mog sp. (too nunverldrai	Dead	GROWH
RI	589442 4872886	Gatershall	ы	64
RI	589508 482286	Reabellied water	64	624 ₆
RI	589512 4822814	Gatelshold	\$2.	i.e.

×

S:6005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Formstcoreh21_2015_Snake_Transed_Survey.cdr

dministr	ative Information		Time End	Site visit #	Observer(s)		
oject Name	Bate	Dime Start	200	3	OPC	2	
DAULA	and loacin	11610					
Veather	Conditions			mma) Be	aufort wspd/dr	ctn Hu	midity (%)
% Cloud	d cover Air	temp (°C)	Precipitation		2	~	18
0							
Survey li	nformation					Alive/Dead	Photo #
ransect #	UTM Easting / Northing		Spe			~	ATT + Z+
a o	C -2610 10210	51 9	TUNK			Vod	9501
V2	0502184800	07	Sk ITTI	Lunica	5	Dead	GPSKitt
RY	1769061 4823	241	ANIA	C. Dra	1 223	Travi	683GH
1.5	5895P 482	52-41	DIGO	Maring) ~2.5m		
111	Emar	N blott	15 19 22 ML	ral au	gard U	LINDON.	No.
		3	Q				4
							-
		1					
						-	
Incid	ental Observations	5			- (in in Erric	o Culve
more	ALL . AND CAN TOSSIA	a Fact	55 E39	Maruel -	7.10UN0	SCORNEL AL ON	
DN	I VE LOCK						G. 300
	, , A	1.1.1	Amain	ne SCET	which	n lack.	s orifo
1100	indiatal F	NVUT (Cepurun	N SP C	-12 		

S/6005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Formiscore/121_2015_Snake_Transed_Survey.cdr

2016-2017 Snakes

Savanta Inc.	Project Code: 1-2-1							
Administra	Administrative Information							
Project Name	Date	Time Start	Time End	Site visit number	Observe	er(s)		
North Ponta	apr 14/16.	11:30	13:00	1	R. Le	e, C. Zeladiski		

Weather Conditions												
% Cloud cover	Temperature (°C)	Precipitation	Beaufort wspd/drctn	Humidity 5 1								

Survey Ir	formation					
Coverboard # (as shown on field map)	Observation Time	UTM Easting / Northing	Species	# Individuals	Photo Description	Photo #
сь4			none obser	wed_		
Cb5			nore obser	red _		
001			none observ	red		
Cb2		antana selana na katana kat	nore obser	wed_		
Cb3		negation in the second seco	-none obser	ved-		ann an ann an Ann an Ann ann an An
					1	
		*				
Incidenta	l Observat	ions				

Savanta Inc.	Device 4 October 1							
Administra	Administrative Information							
Project Name	er(s)							
North Ponta	apr. 20/16	11:30	13:00	2	Rile	c, C-Zoladeski		

Weather Conditions								
% Cloud cover	Temperature (°C)	Precipitation	Beaufort wspd/drctn	Humidity				
6	15		0	38				

Survey Ir	formation					
Coverboard # (as shown on field map)	Observation Time	UTM Easting / Northing	Species	# Individuals	Photo Description	Photo #
6			noneobser	ved-		
0,52		anne chette en anna esta an tra anno an anna anna an tra anna a	hone obsi	enved.	n David z za znazujacji kon grana krana na navena storenica internetik metiken	
C\$3	12:19.	589808 4822234	short failed	١	- none -	- nore -
064 -		ana dia kaominina dia kaomi	none obse	eved-	an managana sa kana kana kana kana kana kana kan	allen mal mega turning ang mengangka pangang pangangka pangangka pangangka pangangka pangangka pangangka panga
cþ5		na solandista on her	- none of	seen	C.S. and and and a second and a second and a second and a second a second a second a second a second a second a	all non an Linnen in the Constant all and the Constant in a solution of the constant of the co
Incidenta	l Observat	ions				
		4				

Savanta Inc. Snake Cover Board Survey - Field Use Only						Project Code: 10-1
Administra	tive Informat	tion				+70500 00001 +357
Project Name	Date	Time Start	Time End	Site visit number	Surveyo	or(s)
North Porta	may 4/16	10:00	14:00	3	R.L	u, Elu

Weather Conditions						
% Cloud cover	Temperature (°C)	Precipitation	Beaufort Wind	Humidity		
60	13	none	0	64		

Coverboard # as shown on field map)	Observation Time	UTM Easting / Northing	Species	# Individuals	Photo #	
Cbl	Alterational sector of the Property and the sector of the	no observal	int .	nan zanah Malanan da yang mangalakan na kata ang mangalakan da yang mangalakan sa ka	n magna an an tha ann an an ann an an ann an an ann an a	
062		no observat	rond	energi kan serina kan kan kan kan kan kan kan kan kan k	nan an tao ao amin'ny faritr'o amin'ny taona amin'ny taona 2014. No amin' a	
Cb3		no observat	ins-	mar and the entering and an alternative electron of the electron o	ann a chairtean ann an thatairtean ann an thanairtean an tha tha ann an th	
C64	National Procession and a strategy of the second	no observas	12 MArrowson	#N/IND#12675795225556589587979787658894684596887958882	18 10.0004.cm/min.cl/s.24.cm/cb/s/cm/cs4/u4408/cm/dr3	
(105	Branchen Seinerum Breinisweisehnet der ein brond statissenschnet	ne observa	how	5 constantine particular spectra spectr	ann an air an an an ann an ann an ann ann ann ann	
Incidenta	I Observatio	ns				
BARSX	3 at baan	ky Cb 1/2/3				
		. 1				
Savanta Inc.	Project Code: -1537					
--------------	---------------------	------------	----------	-------------------	---------	-----------------
Administrat	Date	Time Start	Time End	Site visit number	Surveyo	pr(s) L, MTM

		T	
emperature (°C)	Precipitation	Beaufort Wind	Humidity 73
	emperature (°C) 20	emperature (°C) Precipitation	emperature (°C) Precipitation Beaufort Wind 20 Manl 0

Survey In	formation					
Coverboard # (as shown on field map)	Observation Time	UTM Easting / Northing	Species	# Individuals	Photo #	
Ch		pone obse	wed-			-
Ch2		rone obs	enved-			
Cb3		none observ	ed			
			• •			
						iney.cdr
						Board Su
						e Cover
						15 Snak
						ms/17 2(
						action For
						Coto Colle

Incidental Observations

S:(6005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Forms/17_2015_Snak

Savanta Inc. Snake	Project Code: 7537				
Administrative im Project Name Marth Joarta	Date Sept21/17	Time Start	Time End	Site visit #	Observer(s) RL, MTM

Weather Condi	itions			- C. Lundidroto	Humidity (%)
% Cloud cover	Air Temp (°C)	Water Temp (°C)	Precipitation (mm)		73
-50		Required for Ribbonsnake Surveys	5	I Constant Street Street Street Street	

Survey Int	UTM	Species	# Indiv.	Photo #
as shown on field map)	Easting / Northing			:
nc-1		hone observede		
HS 1				
				-
			,	

S:6005 - SAV Markeling and Support/TEMPLATES - Field Data Collection Formstcoreft21_2015_Snake_Transect_Survey.cdr

Incidental Observations

Administ	rative Inforn		Time End	Rito visit number	Suprovor(a)	
	AGE Date	1 10 21	1063		OP MT	M
fotor i vilo	- Program		10.70			
Weather	Conditions		1	1		ľ
% Cloud	cover	ſemperature (°C)	Precipitati	ion Bea	aufort Wind	Humidity
IQ.)		YNY	I,	1	
Survey In	formation					r.
Coverboard # (as shown on field map)	Observation Time	U Easting	TM / Northing	Specie	s Individua	als Photo #
CBI	1042			M05n	1	a mandation of the survey of the state of th
CB2	1045			Nosin		
CRB	1048			Mosh		
9						
A						
<u>X.</u>		1				
	1					
	N					
	g .					
	1					
Incidenta	Observatio	ns	1			
5 Mo	naichs (see Gpst	cit) one vitraveco	or asters	se 2 tre	eline
0.4				L i		
* 1511	RS nests 1	nbam (a Area sec	1(ch = 1 +		

Savanta Inc.	Project Code: 1.171					
Administra	1631					
Project Name	Date	Time Start	Time End	Site visit number	Surveyo	or(s)
NoAnBaa	Oct2117	1210	200	3	0	PCZ

Weather Conditions									
% Cloud cover	Temperature (°C)	Precipitation	Beaufort Wind	Humidity 4 K					

Survey Information									
Observation Time	UTM Easting / Northing	Species	# Individuals	Photo #					
1230		nosm	Sector - and a sector - and a sector - and a sector - a	and the long of the second second second second					
1231		nosh	استسمعتنی	(a). Manufacture and a standard					
1233		nush	and a second	n vijenský kýminnalisens jske vezdělěk					
	formation Observation Time 1220 1230 1233	Image: formation Time UTM Easting / Northing 1230	formation UTM Easting / Northing Species 12.30 MOSD 12.31 MOSD 12.33 MOSD 12.34 MOSD 12.35 MOSD 12.31 MOSD 12.33 MOSD 12.34 MOSD 12.35 MOSD 12.36 MOSD 12.37 MOSD 12.38 MOSD 12.39 MOSD 12.30 MOSD 12.31 MOSD 12.33 MOSD 12.34 MOSD 12.35 MOSD 12.36 MOSD 12.37 MOSD 12.38 MOSD 12.39 MOSD 12.30 MOSD 12.31 MOSD 12.33 MOSD 12.34 MOSD 12.35 MOSD 12.36 MOSD 12.37 MOSD 12.38 MOSD 12.39 MOSD 13.30 MOSD	Image: formation UTM Easting / Northing Species Individuals 1230 MOSD — 1231 MOSD — 1233 MOSD — 1234 MOSD — 1235 MOSD — 1236 MOSD —					

Incidental Observations

* Prived search = nosn

2018 HDFA

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	10:21 am		ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE	REACH CODE R1S1	WAT 1	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 2	PRECIPITATION
UTM UPSTREAM 588581.0 E 4821968.	0 N	\diamond	0	UTM DOWNSTREAM 589342.7 E 4821950	9.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 60	FLOW CONDITION Surface flow mini	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
1.78	0.69	One Crossover - if	Type the information	

Hydraulio	c Head (mn	n)	Water De	pth (mm)		Distance	(m)		Time (s)		
1	2	3	1	2	3	1	2	3	1	2	3
2	2		6	6							

Sediment Transport

ADJACENT VALLEY Instream bank erosion Sheet erosion -▼

Sediment Deposit

Substantial - 31-50 mm average deposits of new sediment in high...

▼

-

Feature Roughness

Moderate (10 - 40%)

Clay

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES		QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 💿	Blocked Culvert	debris jam 💿
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM 589174.1 E 4821972.5 N
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

wetland SWD

DOWNSTREAM OF THIS REACH?

off property defined feature

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE Unknown	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

Bf 2.82 Depth 24 cm Ww 54

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	10:49 am	11:04 am	ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r1s1A	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 2	PRECIPITATION
UTM UPSTREAM 588918.8 E 4822026.	0 N	\diamond	0	UTM DOWNSTREAM 589004.6 E 4821958	8.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 10	FLOW CONDITION Surface flow mini	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
1.7	32	One Crossover - if	Type the information	

Hydrauli	c Head (mn	n)	Water De	pth (mm)		Distance	(m)		Time (s)		
1	2	3	1 2	2 2	3	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT Sheet erosion Sheet erosion

Sediment Deposit

Extensive >80mm average deposits of new sediment in high flow c...

▼

Feature Roughness

Extreme (>60%)

Clay

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\diamond	SPECIES		QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

r1s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	ag
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	ag
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

Bf 1.27 Bf d 19 Ww 42 Wd 2 cm

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	03:56 pm	04:04 pm	ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r1s2	WATI 1	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 5	PRECIPITATION
UTM UPSTREAM 588511.7 E 4822076.	0 N	\odot	Ō	UTM DOWNSTREAM 588596.4 E 4822029	9.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Wetland	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM) 30	WETTED WIDTH (MM) 30	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1 8	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT None None

Sediment Deposit

Minimal (thin deposits (<5mm) on point bar and vegetation

-

Feature Roughness

Moderate (10 - 40%)

Bed Substrate

Other (specify)

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

-

VEGETATION TYPE No discernible difference		FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE Unknown	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	11:31 am		ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE R2S1	WAT 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 3	PRECIPITATION
UTM UPSTREAM 589373.2 E 4822219.	5 N	\diamond	0	UTM DOWNSTREAM 589551.9 E 4822037	7.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE	FLOW INFLUENCE	BANKFULL DEPTH (MM)	FLOW CONDITION Surface flow mini	WIDTH MT FOR FW
Channelized (hist	Fresher	36		One Crossover - if
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
3.4	77	One Crossover - if	Type the information	

Hydraulic Head (mm)		Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1 9	2	3	1	2	3	1	2	3

Sediment Transport

ADJACENT VALLEY Sheet erosion None • •

Sediment Deposit

Extensive >80mm average deposits of new sediment in high flow c...

▼

Feature Roughness

Moderate (10 - 40%)

Bed Substrate

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	۵	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

Same reach off property

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	ag
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	ag
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE Historical Evidence	previously straightened now beginning to meander
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

Starting to meander in channelized

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	11:51 am	12:00 pm	ор

Site Location Information

SUBWATERSHED smc	STREAM CODE smc	REACH CODE r2s1A	WAT 1	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 3	PRECIPITATION
UTM UPSTREAM 589383.0 E 4822137.	0 N	\diamond	0	UTM DOWNSTREAM 589476.1 E 4822105	.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 13	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
1	39	One Crossover - if	Type the information	

Hydraulio	lic Head (mm) Water Depth (mm)			Distance (m)		Time (s)						
1	2	3	1 3	2	3	1		2	3	1	2	3

Sediment Transport

VALLEY ADJACENT Instream bank erosion Sheet erosion

Sediment Deposit

Bed Substrate

Extensive >80mm average deposits of new sediment in high flow c...

▼

-

Feature Roughness

Extreme (>60%)

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible difference	۵	FISH VISUAL OBSERVATION Yes No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

r2s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	ag
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	ag
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	12:01 pm	12:09 pm	ор

Site Location Information

SUBWATERSHED	STREAM CODE	REACH CODE	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C)	PRECIPITATION
sixteen mile	smc	r2s1b	2		3	yes
UTM UPSTREAM 589537.4 E 4822195.	5 N	\diamond	0	UTM DOWNSTREAM 589478.4 E 4822111	.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 12	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
1.04	44	One Crossover - if	Type the information	

Hydraulic Head (mm)		Water De	Water Depth (mm)			Distance (m)			Time (s)		
1	2	3	1 25	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
None 🗸	,	Sheet erosion	•

Sediment Deposit

Substantial - 31-50 mm average deposits of new sediment in high...

▼

-

Feature Roughness

Bed Substrate

Minimal (<10%)

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE FISH VISUAL **FISH HABITAT** 0 Riffles Yes No Runs OBSERVATION Bare Soil (Over 75% of soi... PRESENT -UTM PATCH SIZE (MM) SPECIES QTY Undercut Banks Pools \odot

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

r2s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	12:17 pm	12:21 pm	ор

Site Location Information

SUBWATERSHED	STREAM CODE	REACH CODE	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C)	PRECIPITATION
sixteen mile	smc	r2s1d	2		3	yes
UTM UPSTREAM 589448.7 E 4822246.	5 N	\odot	0	UTM DOWNSTREAM 589413.9 E 4822210	0.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE No defined featur	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
13	13	One Crossover - if	Type the information	

Hydraulic Head (mm)		Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1 14	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
None	•	Sheet erosion	•

Sediment Deposit

Minimal (thin deposits (<5mm) on point bar and vegetation

•

-

Feature Roughness

Moderate (10 - 40%)

Bed Substrate

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diffe	erence 💂	۵	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

r2s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	ag and geese
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	12:22 pm	12:26 pm	ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r2s1c	WATI 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 3	PRECIPITATION
UTM UPSTREAM 589415.4 E 4822209.	5 N	\diamond	0	UTM DOWNSTREAM 589403.4 E 4822193	9.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 41	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
3.92	100	One Crossover - if	Type the information	

Hydraulic	ydraulic Head (mm) Water Depth (mm)		Distance (m)			Time (s)					
1	2	3	1 7	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
None	•	Sheet erosion	•

Sediment Deposit

Minimal (thin deposits (<5mm) on point bar and vegetation

-

-

Feature Roughness

Bed Substrate

High (40 - 60%)

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES		QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

.

DOWNSTREAM OF THIS REACH?

r2s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME QTY Canada Goose (Branta canadensis) 2

Other Comments

Type comments for future reference

Add Row

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	02:01 pm		ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r3s1	WATI 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 5	PRECIPITATION
UTM UPSTREAM 588742.9 E 4822368.	0 N	\diamond	0	UTM DOWNSTREAM 589779.7 E 4822530).0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Defined Natural C	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 15	FLOW CONDITION Surface flow mini	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 5	WETTED WIDTH (MM) 1.2	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3
			100	150	230	1	1		9.38	5.46	

Sediment Transport

Sediment Deposit

VALLEY	ADJACENT	м
Instream bank erosion 🛛 💂	Sheet erosion 🗸	

Iinimal (thin deposits (<5mm) on point bar and vegetation

•

•

Feature Roughness

Moderate (10 - 40%)

Bed Substrate

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

•

VEGETATION TYPE Hydrophilic emergent veg		۵	FISH VISUAL OBSERVATIO	N Yes	No No	FISH HABITAT PRESENT	Riffles Runs
PATCH SIZE (MM)	UTM	\diamond	SPECIES		QTY 0	Pools	Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 💿	Blocked Culvert	debris block 💿
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

offsite feature

Site Feature Categories	Comments
CATEGORY VALUE Ongoing and Active	ag and road
CATEGORY VALUE Ongoing and Active	ag and road
CATEGORY VALUE No Evidence	Type comments for future reference
CATEGORY VALUE No Evidence	Type comments for future reference
CATEGORY VALUE No Evidence	Type comments for future reference
CATEGORY VALUE No Evidence	Type comments for future reference
CATEGORY VALUE Unknown	Type comments for future reference
CATEGORY VALUE Ongoing and Active	more defined upstream
CATEGORY VALUE No Evidence	Type comments for future reference
	Site Feature Categories CATEGORY VALUE Ongoing and Active CATEGORY VALUE Ongoing and Active CATEGORY VALUE No Evidence CATEGORY VALUE No Evidence CATEGORY VALUE No Evidence CATEGORY VALUE No Evidence

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

QTY

QTY

2

3

COMMON OR LATIN NAME	
Mallard (Anas platyrhynchos)	

through

Gravel Pool is 29 cm deep COMMON OR LATIN NAME

Black-capped Chickadee (Poecile atricapillus)

Add Row

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	02:39 pm		ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r3s1a-yes	WAT 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 5	PRECIPITATION
UTM UPSTREAM 589152.6 E 4822606.	0 N	\diamond	0	UTM DOWNSTREAM 589277.0 E 4822533	8.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 15	FLOW CONDITION Surface flow mini	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
0.78	40	One Crossover - if	Type the information	

Hydraulic Head (mm)		Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1 2	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT Sheet erosion

Sediment Deposit

Extensive >80mm average deposits of new sediment in high flow c...

▼

-

Feature Roughness

High (40 - 60%)

Gravel

Bed Substrate

-

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL OBSERVATION Yes	s 💽 No	FISH HABITAT PRESENT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 💿	Blocked Culvert	debris dam 💿
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

r3s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

Valley = rill, I stream erosion

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	03:08 pm	03:12 pm	ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r3s1b	WATI 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 5	PRECIPITATION
UTM UPSTREAM 588894.8 E 4822388.	0 N	\diamond	Ō	UTM DOWNSTREAM 588901.5 E 4822390	0.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Baseflow	BANKFULL DEPTH (MM) 9	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
0.75	0.44	One Crossover - if	Type the information	

Hydraulio	Hydraulic Head (mm)		Water De	Water Depth (mm)		Distance (m)		Time (s)			
1	2	3	1 3	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
None	•	Sheet erosion	•

Sediment Deposit

Minimal (thin deposits (<5mm) on point bar and vegetation

•

-

Feature Roughness

Bed Substrate

Extreme (>60%)

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

.

DOWNSTREAM OF THIS REACH?

r3s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	03:17 pm	ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r3s1c	WATI 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 5	PRECIPITATION
UTM UPSTREAM 588893.7 E 4822387.	5 N	\odot	Ō	UTM DOWNSTREAM 588815.4 E 4822381	5 N	<u>ن</u>

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 11	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 94	WETTED WIDTH (MM) 31	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic	: Head (mn	n)	Water Depth (mm)			Distance (m)			Time (s)		
1	2	3	1 4	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
None	•	Sheet erosion	•

Sediment Deposit

Minimal (thin deposits (<5mm) on point bar and vegetation

-

-

Feature Roughness

Extreme (>60%)

Bed Substrate

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

.

DOWNSTREAM OF THIS REACH?

r3s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	03:26 pm	03:33 pm	ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r3s1d	WAT 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 5	PRECIPITATION
UTM UPSTREAM 588647.2 E 4822264.	0 N	\odot	0	UTM DOWNSTREAM 588726.6 E 4822362	2.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 12	FLOW CONDITION Surface flow mini	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 1.3	WETTED WIDTH (MM) 25	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water Depth (mm)		Distance	Distance (m)		Time (s)			
1	2	3	1 2	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT Instream bank erosion - Sheet erosion -

Sediment Deposit

Bed Substrate

Substantial - 31-50 mm average deposits of new sediment in high...

▼

-

Feature Roughness

Minimal (<10%)

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE Bare Soil (Over 75	% of soi 💂	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES		QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

r3s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE Ongoing and Active	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

0

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	03:34 pm	03:38 pm	ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r3s1e	WATI 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 5	PRECIPITATION
UTM UPSTREAM 588640.2 E 4822255.	5 N	\odot	Ō	UTM DOWNSTREAM 588648.1 E 4822264	5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 10	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 60	WETTED WIDTH (MM) 20	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic	: Head (mn	ead (mm) Water Depth (mm) Dist		Distance	Distance (m)		Time (s)				
1	2	3	1 2	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT None Sheet erosion

Sediment Deposit

Extensive >80mm average deposits of new sediment in high flow c...

▼

-

Feature Roughness

Moderate (10 - 40%)

Bed Substrate

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE Bare Soil (Over 75% of soi	۵	FISH VISUAL OBSERVATION Yes N	PRESENT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

r3s1d

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	03:43 pm	ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE r3s1f	WAT 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 5	PRECIPITATION
UTM UPSTREAM 588651.6 E 4822243.	0 N	\odot	Ō	UTM DOWNSTREAM 588647.2 E 4822264	4.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 10	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 80	WETTED WIDTH (MM) 12	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic	Ilic Head (mm) Water Depth (mm)		Distance (m)			Time (s)					
1	2	3	1 4	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
None	•	Sheet erosion	•

Sediment Deposit

Minimal (thin deposits (<5mm) on point bar and vegetation

-

-

Feature Roughness

Extreme (>60%)

Clay

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible difference		۵	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 🧿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

.

DOWNSTREAM OF THIS REACH?

r3s1d

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	04:31 pm	04:36 pm	ор

Site Location Information

SUBWATERSHED sixteen mile	STREAM CODE smc	REACH CODE s3r1g	WATE 2	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 5	PRECIPITATION
UTM UPSTREAM 589569.2 E 4822572.	0 N	Ó	Ō	UTM DOWNSTREAM 589592.8 E 4822589	9.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE No defined featur	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM) 10	WETTED WIDTH (MM) 10	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic	ulic Head (mm) Water Depth (mm)			Distance (m)			Time (s)				
1	2	3	1 3	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
Sheet erosion	•	Sheet erosion	•

Sediment Deposit

Moderate (average deposits of 5 to 30 mm) of new sediment on flo...

▼

-

Feature Roughness

Extreme (>60%)

Clay

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL OBSERVATION Yes	🔵 No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	$\textcircled{\bullet}$	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

r3s1h

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

r3s1

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 13, 2018	1 🗸	04:37 pm	04:49 pm	ор

Site Location Information

SUBWATERSHED	STREAM CODE	REACH CODE	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C)	PRECIPITATION
sixteen mile	smc	r3s1h	2		4	yes
UTM UPSTREAM 589383.9 E 4822274.	0 N	\odot	0	UTM DOWNSTREAM 589569.1 E 4822572	2.5 N	

Hydrology Classification (Step 1)

Channelized (hist	Fresher -	12 WIDTH MT FOR WW	Standing Water (N	One Crossover - if
3.7	20	One Crossover - if	0.67	One Crossover - if

Hydraulio	Iydraulic Head (mm) Water Depth (mm)		Distance (m)			Time (s)					
1	2	3	1 3	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
None	•	Sheet erosion	•

Sediment Deposit

Bed Substrate

Moderate (average deposits of 5 to 30 mm) of new sediment on flo...

▼

-

Feature Roughness

Extreme (>60%)

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 🧿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

r3s1g r

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 27, 2018	1 🗸	10:22 am	12:46 pm	OP

Site Location Information

SUBWATERSHED SMC	STREAM R4	CODE	REACH CODE R4S1	WAT 14	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 17	PRECIPITATION
UTM UPSTREAM 587902.4 E 4822326.	5 N		\odot	0	UTM DOWNSTREAM 588189.5 E 4822241	0 N	

Hydrology Classification (Step 1)

FEATURE TYPE No defined featur	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 9	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 0.77	WETTED WIDTH (MM) 0.48	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic	Hydraulic Head (mm) Water Depth (mm)		Distance (m)			Time (s)					
1	2	3	1 3	2 5	3	1	2	3	1	2	3

Sediment Transport

ADJACENT VALLEY Rills (multiple channel of... 🖕 Sheet erosion ▼

Sediment Deposit

Substantial - 31-50 mm average deposits of new sediment in high...

▼

Feature Roughness

Bed Substrate

Extreme (>60%)

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES		QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert	Log Jam 💿	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

culvert from campbellville

DOWNSTREAM OF THIS REACH?

roadside ditch

_	_	 _	-	_	_	 _	_	-	-	

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE Ongoing and Active	most us extent where increased topi relief
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME QTY Black-capped Chickadee (Poecile atricapillus) Т

Other Comments

Us measurements

Ww 3.64m

Fw 3.64 m

Add Row

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 27, 2018	1 🗸	11:41 am	11:50 am	Ор

Site Location Information

SUBWATERSHED SMC	STREAM CODE R5	REACH COD R5S0A	E	WATE 16	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 17	PRECIPITATION
UTM UPSTREAM 587566.2 E 4821443.	5 N		\odot	Ō	UTM DOWNSTREAM 588137.9 E 4821844	.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE No defined featur	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 9	FLOW CONDITION Surface flow mini	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 8.0	WETTED WIDTH (MM) 8.0	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water De	pth (mm)		Distance	(m)		Time (s)		
1	2	3	1 9	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT Rills (multiple channel of... - Sheet erosion -

Sediment Deposit

Extensive >80mm average deposits of new sediment in high flow c...

▼

Feature Roughness

High (40 - 60%)

Clay

Bed Substrate

_ . . .

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	٢	SPECIES		QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

QTY

υ

Other Comments

Ponded area at ds extent at culvert is 41 cm Small culvert 0.36 cm

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 27, 2018	1 🗸	11:51 am	12:03 pm	ор

Site Location Information

SUBWATERSHED SMC	STREAM CODE R5	REACH CODE R5S0	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 11	PRECIPITATION
UTM UPSTREAM 587987.1 E 4821900.	0 N	\diamond	0	UTM DOWNSTREAM 588225.4 E 4821756	5.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Channelized (hist	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 24	FLOW CONDITION Surface flow subst	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 2.2	WETTED WIDTH (MM) 1.5	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1 10	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT Rills (multiple channel of... - Sheet erosion -

Sediment Deposit

Extensive >80mm average deposits of new sediment in high flow c...

▼

Feature Roughness

Moderate (10 - 40%)

Bed Substrate

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH \ OBSEI	/ISUAL RVATION	O Yes	No No	FISH HABITAT PRESENT	Riffles Runs
PATCH SIZE (MM)	UTM	\diamond	SPECI	ES		QTY 0	Pools	Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

R5S1

DOWNSTREAM OF THIS REACH?

offsite feature

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE Historical Evidence	some meander starting at ds extent
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

Algae growth

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 27, 2018	1 🗸	11:01 am	11:50 am 🙁	OP

Site Location Information

SUBWATERSHED SMC	STREAM CODE R5	REACH CODE R5S1	WATI 13	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 17	PRECIPITATION	
UTM UPSTREAM 587682.9 E 4822045.	0 N	\odot	0	UTM DOWNSTREAM 590821.1 E 4816923	.0 N	()	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 18	FLOW CONDITION Surface flow subst	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 0.69	WETTED WIDTH (MM) 0.49	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3
			7	11		0.55			8.6		

Sediment Transport

VALLEYADJACENTRills (multiple channel of...Sheet erosion

Sediment Deposit

Extensive >80mm average deposits of new sediment in high flow c...

▼

Feature Roughness

High (40 - 60%)

Clay

Bed Substrate

-

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES		QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 🧿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE Unknown	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

QTY

υ

Other Comments

Standing us of inputs from train track ditch Flows parallel to train track ditch - still receiving inputs from train track ditch ms

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 27, 2018	1 🗸	10:50 am	11:00 am	OP

Site Location Information

SUBWATERSHED SMC	STREAM CODE R5	REACH COD R5S2	E	WATE 13	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 17	PRECIPITATION
UTM UPSTREAM 587749.1 E 4822136.0	0 N		\diamond	Ō	UTM DOWNSTREAM 587684.2 E 4822044	4.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE	FLOW INFLUENCE	BANKFULL DEPTH (MM)	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
Roadside ditch (c	Fresher	26		One Crossover - if
FEATURE WIDTH (MM) 1.75	WETTED WIDTH (MM) 0.74	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic	draulic Head (mm) Water Depth (mm)		Distance (m)			Time (s)					
1	2	3	1 6	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT None None

Sediment Deposit

Substantial - 31-50 mm average deposits of new sediment in high...

▼

-

Feature Roughness

Bed Substrate

Moderate (10 - 40%)

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE Bare Soil (Over 75	% of soi 💂	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES		QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 🧿	Log Jam 💿	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

dry patch then roadside ditch flowing towards Boston church road

.

DOWNSTREAM OF THIS REACH?

R5S1

_	

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE Ongoing and Active	greenhouse road and aga
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

Edit

COMMON OR LATIN NAME

υ

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 27, 2018	1 🗸	12:11 pm	12:27 pm	OP

Site Location Information

SUBWATERSHED SMC	STREAM CODE R6	REACH CODE R6S1	WATI 15	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 17	PRECIPITATION
UTM UPSTREAM 588037.4 E 4821967.	5 N	\diamond	0	UTM DOWNSTREAM 588217.8 E 4822221	5 N	

Hydrology Classification (Step 1)

FEATURE TYPE	FLOW INFLUENCE	BANKFULL DEPTH (MM)	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
Channelized (hist	Fresher	25		One Crossover - if
FEATURE WIDTH (MM) 1.23	WETTED WIDTH (MM) 1.23	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	Head (mm) W		Water Depth (mm)		Di	Distance (m)			Time (s)		
1	2	3	1 15	2	3	1		2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
None	•	Sheet erosion	•

Sediment Deposit

Minimal (thin deposits (<5mm) on point bar and vegetation

-

-

Feature Roughness

Moderate (10 - 40%)

Bed Substrate

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE No discernible diff	erence 💂	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES		QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert	Log Jam 💿	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

offsite reach

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE Historical Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

QTY

2

COMMON OR LATIN NAME

Other Comments

Culverted undertrack

Unsure if culvert is blocked

I stream veg some cattails at us extent

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Apr 27, 2018	1 🕌	12:35 pm	12:42 pm	Ор

Site Location Information

SUBWATERSHED SMC	STREAM CODE R6	REACH CODE R6S0	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 17	PRECIPITATION
UTM UPSTREAM 588237.0 E 4822101.	0 N	\diamond	Ō	UTM DOWNSTREAM 588269.6 E 4822149	9.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) 10	FLOW CONDITION Surface flow mini	WIDTH MT FOR FW One Crossover - if
FEATURE WIDTH (MM) 0.35	WETTED WIDTH (MM) 0.17	WIDTH MT FOR WW One Crossover - if	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water De	pth (mm)		Distance (m)		Time (s)			
1	2	3	1 5	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY		ADJACENT	
None	•	Sheet erosion	•

Sediment Deposit

Minimal (thin deposits (<5mm) on point bar and vegetation

Feature Roughness

Extreme (>60%)

Bed Substrate

Clay

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

•

VEGETATION TYPE No discernible difference.		FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 🧿	Log Jam 💿	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

DOWNSTREAM OF THIS REACH?

R6S1	roadside ditch

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE Ongoing and Active	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE Historical Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE No Evidence	Type comments for future reference

Terrestrial Habitat Comments

Some milkweed in meadow

Species Alerts/Incidentals

Add incidental

Edit

QTY

1

COMMON OR LATIN NAME QTY Red-winged Blackbird (Agelaius phoeniceus) 2

Other Comments

Some cattails st ds extent

COMMON OR LATIN NAME

Eastern Cottontail (Sylvilagus floridanus)

Add Row

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	10:30 am	10:35 am	OP RR

Site Location Information

SUBWATERSHED	STREAM CODE	REACH CODE offsitedsofR1S1	WATER TEMPERATURE (°C)		AIR TEMPERATURE (°C) 22	PRECIPITATION	
UTM UPSTREAM 589339.6 E 4821946.	5 N			M DOWNSTREAM			

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)		Distance (m)			Time (s)				
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT

Sediment Deposit

-

Feature Roughness

Clay

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE FISH VISUAL **FISH HABITAT** 0 Riffles No Runs Yes OBSERVATION PRESENT ▼ UTM PATCH SIZE (MM) SPECIES QTY Undercut Banks Pools \odot

Barriers to Fish

Perched Culvert 🖸	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

Some gravel substrate More defined banks on right

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	10:10 am	10:29 am 🙁	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R1	REACH CODE R1S1	WATI 26	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 22	PRECIPITATION
UTM UPSTREAM 588584.9 E 4822032.	5 N	\odot	Ō	UTM DOWNSTREAM 589337.1 E 4821945	5.0 N	<u>ن</u>

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) 79	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)		Distance (m)			Time (s)				
1	2	3	1 0	2 3	3 0	1	2	3	1	2	3

Sediment Transport

▼	VALLEY	ADJACENT
	•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	•	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

Mostly dry

One isolated pool midstream under vegetation

Dry ds connection

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	10:17 am	10:19 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE	REACH CODE R1S1A	WATI	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 22	PRECIPITATION
UTM UPSTREAM 588980.3 E 4821966.	5 N	\odot	0	UTM DOWNSTREAM 589004.2 E 4821960	9.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water De	Water Depth (mm)		Distance (m)		Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	10:00 am	10:06 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R1	REACH CODE R1S2	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 21	PRECIPITATION
UTM UPSTREAM 588502.3 E 4822037.	0 N	\odot	0	UTM DOWNSTREAM 588594.2 E 4822028	9.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Wetland	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water De	Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1	2	3		1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	10:38 am	10:54 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R2	REACH CODE R2S1	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 23	PRECIPITATION
UTM UPSTREAM 589394.8 E 4822200.	5 N	\diamond	0	UTM DOWNSTREAM 589560.4 E 4822020).0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Channelized (hist 🚽	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
Type the information	28	One Crossover - if	Type the information	

Hydraulic Head (mm)		Water De	Water Depth (mm)			Distance (m)			Time (s)		
1	2	3	1 2	2 4	3	1	2	3	1	2	3

Sediment Transport

Feature Roughness

VALLEY	ADJACENT	

Sediment Deposit

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	•	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

Isolated pool in cattails Few small isolated pools No downstream connection

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	10:41 am	10:45 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R2	REACH CODE R2S1A	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 22	PRECIPITATION
UTM UPSTREAM 589363.1 E 4822161.5	5 N	Ó	0	UTM DOWNSTREAM 589484.2 E 4822104	.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water De	Water Depth (mm)		Distance (m)		Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

▼	VALLEY	ADJACENT	
	▼	•	

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Major Nutrient Sources UpstreamCATEGORY VALUEType comments for future referencePotential Contamination Sources UpstreamCATEGORY VALUEType comments for future referenceChannel HardeningCATEGORY VALUEType comments for future referenceDredging or StraighteningCATEGORY VALUEType comments for future referenceBarriers and/or Dams in proximityCATEGORY VALUEType comments for future referenceOn-line ponds upstreamCATEGORY VALUEType comments for future reference	Site Feature(s)	Site Feature Categories	Comments
Potential Contamination Sources UpstreamCATEGORY VALUEType comments for future referenceChannel HardeningCATEGORY VALUEType comments for future referenceDredging or StraighteningCATEGORY VALUEType comments for future referenceBarriers and/or Dams in proximityCATEGORY VALUEType comments for future referenceOn-line ponds upstreamCATEGORY VALUEType comments for future reference	Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening CATEGORY VALUE Type comments for future reference Dredging or Straightening CATEGORY VALUE Type comments for future reference Barriers and/or Dams in proximity CATEGORY VALUE Type comments for future reference On-line ponds upstream CATEGORY VALUE Type comments for future reference	Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening CATEGORY VALUE Type comments for future reference Barriers and/or Dams in proximity CATEGORY VALUE Type comments for future reference On-line ponds upstream CATEGORY VALUE Type comments for future reference	Channel Hardening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity CATEGORY VALUE Type comments for future reference On-line ponds upstream CATEGORY VALUE Type comments for future reference	Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream CATEGORY VALUE Type comments for future reference	Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
	On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Т

Other Comments

Type comments for future reference

Add Row

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 💂	10:49 am	10:49 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE	REACH CODE R2S1B	WATI	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 22	PRECIPITATIO	N
UTM UPSTREAM 589493.0 E 4822124.	5 N	\odot	Ō	UTM DOWNSTREAM 589477.9 E 4822111	.5 N	\diamond	٥

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water Depth (mm)		Distance	Distance (m)		Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT	
•	•	,

Sediment Deposit		
		•

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	10:58 am	11:00 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R2	REACH CODE R2S1C	WATI	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 23	PRECIPITATION
UTM UPSTREAM 589411.1 E 4822213.0	D N	\odot	0	UTM DOWNSTREAM 589399.8 E 4822197	2.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water De	Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1	2	3		1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Bed Substrate

Feature Roughness

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	11:00 am	11:04 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM C R2	CODE	REACH CODE R2S1D	WAT 27	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 23	PRECIPITATION
UTM UPSTREAM 589430.9 E 4822239.	.0 N		\diamond	٥	UTM DOWNSTREAM 589411.1 E 4822215	.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE No defined featur	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
Type the information	178	One Crossover - if	Type the information	

Hydraulic Head (mm) Water Depth (m		pth (mm)	n) Distance (m)		(m)						
1	2	3	1	2	3	1	2	3	1	2	3
			1	6	ð						

Sediment Transport

VALLEY	ADJACENT	
•	•	

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

No ds connection

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	11:39 am	12:21 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R3	REACH CODE R3S1	WATI 26	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 25	PRECIPITATIO	N
UTM UPSTREAM 588755.2 E 4822375.	0 N	\odot	0	UTM DOWNSTREAM 589780.8 E 4822526	5.5 N	\odot	٥

Hydrology Classification (Step 1)

FEATURE TYPE Defined Natural C	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
Type the information	165	One Crossover - if	Type the information	

Hydraulio	: Head (mn	n)	Water De	pth (mm)		Distance	(m)		Time (s)		
1	2	3	1 14	2 16	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT	
•	•	

Sediment Deposit

-

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE Hydrophilic emerg	gent veg 💂	٥	FISH VISUAL Yes	No No	FISH HABITAT PRESENT Riffles Runs
PATCH SIZE (MM)	UTM	\odot	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 🧿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

AMTO tadpoles in pool TNTC

Species Alerts/Incidentals

Add incidental

Edit

American Toad (Anaxyrus americanus)	100
COMMON OR LATIN NAME	QTY

Other Comments

Bluet dragonfly sp. observed

Terrestrial crayfish chimney - see gps kit

American Toad (Anaxyrus americanus)	100
COMMON OR LATIN NAME Northern Green Frog (Lithobates clamitans)	QTY 1
COMMON OR LATIN NAME Digger Crayfish (Fallicambarus fodiens)	QTY 0
COMMON OR LATIN NAME Northern Raccoon (Procyon lotor)	QTY 1
COMMON OR LATIN NAME Coyote (Canis latrans)	QTY 1

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	11:49 am	11:52 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R3	REACH CODE R3S1A	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 24	PRECIPITATION
UTM UPSTREAM 589156.0 E 4822598.	5 N	Ó	0	UTM DOWNSTREAM 589270.6 E 4822532	2.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)		Distance (m)			Time (s)				
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	12:17 pm	12:18 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R3	REACH CODE R3S1B	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 25	PRECIPITATION
UTM UPSTREAM 588898.6 E 4822387.	0 N	Ó	0	UTM DOWNSTREAM 588905.8 E 4822397	7.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water Depth (mm)		Distance (m)			Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	12:22 pm	12:24 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R3	REACH COD R3S1C	E	WATI	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 25	PRECIPITATION
UTM UPSTREAM 588772.4 E 4822369.	0 N		\diamond	Ō	UTM DOWNSTREAM 588789.1 E 4822375	5.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	Hydraulic Head (mm) Water Depth (mm)		Distance (m)			Time (s)					
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2	12:25 pm	12:29 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R3	REACH CODE R3S1D	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 25	PRECIPITATION
UTM UPSTREAM 588648.4 E 4822267.	0 N	\odot	0	UTM DOWNSTREAM 588730.1 E 4822367	.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm) Water D		Water De	pth (mm) Di		Distance	Distance (m)		Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

•	VALLEY	ADJACENT	
	•		•

Feature Roughness

Bed Substrate

•

Sediment Deposit

	D	
101		un.
		_

Riparian Classification (Step 2)

▼

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

VEGETATION TYPE	•	٥	FISH VISUAL OBSERVATION	O Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	\diamond	SPECIES		QTY 0	Pools Undercut Banks No Direct Fish Habitat

Barriers to Fish

Perched Culvert	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Channel Hardening	CATEGORY VALUE No Evidence	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE No Evidence	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE No Evidence	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE No Evidence	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE No Evidence	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE No Evidence	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE Unknown	Type comments for future reference

Species Alerts/Incidentals Add incidental	
COMMON OR LATIN NAME	QTY 0
Add Row	
Other Comments	
Type comments for future reference	

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	12:30 pm	12:30 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R3	REACH CODE R3S1E	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 25	PRECIPITATION
UTM UPSTREAM 588636.8 E 4822258.	5 N	Ó	0	UTM DOWNSTREAM 588648.0 E 4822266	5.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water De	Water Depth (mm)		Distance	Distance (m)			Time (s)		
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	12:31 pm	12:32 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R3	REACH CODE R3S1F	WATI	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 25	PRECIPITATION
UTM UPSTREAM 588645.8 E 4822224.	0 N	\odot	0	UTM DOWNSTREAM 588645.2 E 4822264	4.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water De	Water Depth (mm)		Distance	Distance (m)			Time (s)		
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
▼	•

Sediment Deposit

Bed Substrate

Feature Roughness

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	11:27 am	11:29 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R3	REACH CODE R3S1G	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 23	PRECIPITATION
UTM UPSTREAM 589571.8 E 4822578.	0 N	\odot	0	UTM DOWNSTREAM 589596.7 E 4822592	5 N	

Hydrology Classification (Step 1)

FEATURE TYPE No defined featur	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water Depth (mm)		Distance (m)		Time (s)				
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT	
•		•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

Ploughed through

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	11:15 am	11:26 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM R3	CODE	REACH CODE R3S1H	WAT 26	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 23	PRECIPITATION
UTM UPSTREAM 589381.9 E 4822278.	0 N		\diamond	0	UTM DOWNSTREAM 589570.8 E 4822577	7.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Channelized (hist 🚽	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
Type the information	43	One Crossover - if	Type the information	

Hydraulic Head (mm)		Water De	Water Depth (mm)			Distance (m)			Time (s)		
1	2	3	1 3	2 4	3 4	1	2	3	1	2	3

Sediment Transport

VALLEY ADJACENT

Sediment Deposit		
		•

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE Hydrophilic emergent veg		٥	FISH VISUAL OBSERVATION	Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM)	UTM	٢	SPECIES		QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

.

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

Dry upstream - standing water ms isolated pool with no downstream connection

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	11:16 am	11:17 am	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R3	REACH CODE R3S1I	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 23	PRECIPITATION
UTM UPSTREAM 589375.0 E 4822308.	5 N	\odot	0	UTM DOWNSTREAM 589394.8 E 4822295	5.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water De	pth (mm)		Distance	(m)		Time (s)	Time (s)	
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit		
		•

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	12:58 pm	01:05 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R4	REACH CODE R4S1	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 25	PRECIPITATION
UTM UPSTREAM 587907.4 E 4822334.	5 N	\odot	0	UTM DOWNSTREAM 588192.1 E 4822239	.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE No defined featur	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	ydraulic Head (mm) Water Depth (mm)			Distance (m)			Time (s)					
1	2	3	1	2	3		1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Bed Substrate

Feature Roughness

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME Monarch (Danaus plexippus) QTY

Т

Other Comments

Overgrown with meadow No milkweed in meadow observed

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	01:22 pm	1:34 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R5	REACH CODE R5S0	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 26	PRECIPITATION
UTM UPSTREAM 587981.5 E 4821903.	0 N	\odot	0	UTM DOWNSTREAM 588222.8 E 4821762	5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Channelized (hist	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)		Distance (m)		Time (s)					
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	•	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Т

Other Comments

Swallow tail sp. observed Milkweed along feature

Coyote (Canis latrans)

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	01:23 pm	1:31 pm 🛛 🔊	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R5	REACH CODE R5S0A	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 26	PRECIPITATION
UTM UPSTREAM 587998.4 E 4821889.	0 N	Ó	0	UTM DOWNSTREAM 588136.7 E 4821846	.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	•	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME QTY Northern Green Frog (Lithobates clamitans) Т

Other Comments

Pooling at ds end of culvert. No ds connection

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	01:15 pm	01:21 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R5	REACH CODE R5S1	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 26	PRECIPITATION
UTM UPSTREAM 587682.6 E 4822045.	0 N	Ó	0	UTM DOWNSTREAM 587983.1 E 4821904	.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulic Head (mm)		Water Depth (mm)			Distance (m)			Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT	
•		•

Sediment Deposit		
		•

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	01:09 pm	01:14 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R5	REACH CODE R5S2	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 25	PRECIPITATION
UTM UPSTREAM 587751.4 E 4822140.	5 N	Ó	0	UTM DOWNSTREAM 587681.2 E 4822043	.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Roadside ditch (c	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	draulic Head (mm) Water Depth (mm)		Distance (m)			Time (s)					
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

Phragmites

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME	QTY
Meadow Vole (Microtus pennsylvanicus)	1

Other Comments

Type comments for future reference

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	01:44 pm	01:48 pm	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R6	REACH CODE R6S0	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 27	PRECIPITATION
UTM UPSTREAM 588229.2 E 4822091.	5 N	Ó	0	UTM DOWNSTREAM 588269.3 E 4822143	.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water Depth (mm)		Distance (m)			Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
▼	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	٥	FISH VISUAL Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	\odot	SPECIES	QTY	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam 🖸	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)	JUMPING HEIGHT (MM)
PERCHED HEIGHT (MM)	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	May 30, 2	2 🗸	01:25 pm	1:42 pm 🛛 🔊	OP RR

Site Location Information

SUBWATERSHED SMC	STREAM CODE R6	REACH CODE R6S1	WAT 30	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 27	PRECIPITATION
UTM UPSTREAM 588035.2 E 4821961.	5 N	\diamond	0	UTM DOWNSTREAM 588223.1 E 4822086	5.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Channelized (hist 🚽	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION Standing Water (N	WIDTH MT FOR FW
FEATURE WIDTH (MM)	WETTED WIDTH (MM)	WIDTH MT FOR WW	BANKFULL WIDTH (MM)	WIDTH MT FOR BW
Type the information	62	One Crossover - if	Type the information	

Hydraulio	: Head (mn	n)	Water Depth (mm)		Distance (m)			Time (s)			
1	2	3	1	2	3	1	2	3	1	2	3
			6	6	5						

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE Hydrophilic emergent veg		٥	FISH VISUAL OBSERVATION Yes No		No No	FISH HABITAT Riffles Runs		
PATCH SIZE (MM)	UTM	٢	SPECIES		QTY 0	Pools Undercut Banks		

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

Wet in typha Dry at ds connection Dry in culvert on us side of R5S0

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Aug 15, 2018	3 💂	09:41 am	10:30	ZOP

Site Location Information

SUBWATERSHED	STREAM CODE	REACH CODE R1S1	WATI	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 29	PRECIPITATION
UTM UPSTREAM 588405.3 E 4822082.	5 N	\odot	0	UTM DOWNSTREAM 589475.5 E 4822110	.0 N	

Hydrology Classification (Step 1)

FEATURE TYPE Swale	FLOW INFLUENCE Fresher	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	/draulic Head (mm)		Water De	Water Depth (mm)			Distance (m)			Time (s)		
1	2	3	1	2	3	1	2	3	1	2	3	

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Bed Substrate

-

Feature Roughness

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	•	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Aug 15, 2018	3 💂	10:23 am	10:25 am	ор

Site Location Information

SUBWATERSHED	STREAM CODE	REACH CODE R2S1	WATE	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 29	PRECIPITATION
UTM UPSTREAM 589401.1 E 4822192.0	0 N	\diamond	0	UTM DOWNSTREAM 589476.8 E 4822109	9.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Channelized (hist	FLOW INFLUENCE	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water De	pth (mm)		Distance	(m)		Time (s)		
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT	
•		•

Sediment Deposit		
		-

-

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	•	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Aug 15, 2018	3 💂	10:20 am	10:21 am	ор

Site Location Information

SUBWATERSHED	STREAM CODE	REACH CODE R2S1D	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 29	PRECIPITATION
UTM UPSTREAM 589421.6 E 4822236.	0 N	\odot	0	UTM DOWNSTREAM 589411.8 E 4822209	.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE No defined featur	FLOW INFLUENCE	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water De	pth (mm)		Distance	(m)		Time (s)		
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
▼	•

Sediment Deposit

-

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	•	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Aug 15, 2018	3 💂	09:49 am	10:59	OP

Site Location Information

SUBWATERSHED	STREAM CODE	REACH CODE R3S1	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 29	PRECIPITATION
UTM UPSTREAM 588394.9 E 4822090.	0 N	\odot	0	UTM DOWNSTREAM 589775.1 E 4822535	5.5 N	

Hydrology Classification (Step 1)

FEATURE TYPE Defined Natural C	FLOW INFLUENCE	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	ulic Head (mm) Water Depth (mm) Distance (m)		Distance (m) Time (s)								
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

Bed Substrate

-

Feature Roughness	
-------------------	--

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	•	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

PROJECT NAME	DATE	ROUND	START TIME	END TIME	OBSERVER(S)
Milton North Porta	Aug 15, 2018	3 💂	10:11 am	10:19 am	ор

Site Location Information

SUBWATERSHED	STREAM CODE	REACH CODE R3S1H	WAT	ER TEMPERATURE (°C)	AIR TEMPERATURE (°C) 29	PRECIPITATION
UTM UPSTREAM 589384.0 E 4822275.	0 N	\odot	Ō	UTM DOWNSTREAM 589561.1 E 4822564	.0 N	<u>ن</u>

Hydrology Classification (Step 1)

FEATURE TYPE Channelized (hist	FLOW INFLUENCE	BANKFULL DEPTH (MM) Type the information	FLOW CONDITION No Surface Water	WIDTH MT FOR FW
FEATURE WIDTH (MM) Type the information	WETTED WIDTH (MM) Type the information	WIDTH MT FOR WW	BANKFULL WIDTH (MM) Type the information	WIDTH MT FOR BW

Hydraulio	: Head (mn	n)	Water De	pth (mm)		Distance	(m)		Time (s)		
1	2	3	1	2	3	1	2	3	1	2	3

Sediment Transport

VALLEY	ADJACENT
•	•

Sediment Deposit

-

Feature Roughness

Bed Substrate

Riparian Classification (Step 2)

Fish and Fish Habitat Classification (Step 3)

Banks Assigned Looking Upstream

Instream Vegetation

Fish Habitat & Observations

▼

VEGETATION TYPE	•	FISH VISUAL OBSERVATION Yes	No No	FISH HABITAT Riffles Runs
PATCH SIZE (MM) UTM	Ó	SPECIES	QTY 0	Pools Undercut Banks

Barriers to Fish

Perched Culvert 💿	Log Jam	Blocked Culvert	Type other barriers
JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O	JUMPING HEIGHT (MM) O
PERCHED HEIGHT (MM) O	UTM	UTM	UTM
UTM			

Linkage

WHAT IS UPSTREAM OF THIS REACH?

Site Feature(s)	Site Feature Categories	Comments
Major Nutrient Sources Upstream	CATEGORY VALUE	Type comments for future reference
Potential Contamination Sources Upstream	CATEGORY VALUE	Type comments for future reference
Channel Hardening	CATEGORY VALUE	Type comments for future reference
Dredging or Straightening	CATEGORY VALUE	Type comments for future reference
Barriers and/or Dams in proximity	CATEGORY VALUE	Type comments for future reference
On-line ponds upstream	CATEGORY VALUE	Type comments for future reference
Springs or Seeps at the Site	CATEGORY VALUE	Type comments for future reference
Evidence of Channel Scouring/Erosion	CATEGORY VALUE	Type comments for future reference
BMPs or Restoration Activities	CATEGORY VALUE	Type comments for future reference

Terrestrial Habitat Comments

e.g. amphibian breeding habitat, amphibian observation

Species Alerts/Incidentals

Add incidental

COMMON OR LATIN NAME

0

Other Comments

Watercourse Habitat Assessment

Figure 5 Ecological Land Classification

SAVANTA 0 200 m A GEI Company 1:12,500 Subject Lands

- Ecological Land Classification (Confirmed)
- Ecological Land Classification (Interpreted)

Any information shown on Parcels 2, 3 and 5 should be considered preliminary and is subject to further investigations.

-	
CUM1	Mineral Cultural Meadow
CUM1-1	Dry-Moist Cultural Meadow
CUT1	Mineral Cultural Thicket
CUW1	Mineral Cultural Woodland
FOD6-5	Fresh-Moist Sugar Maple-Hardwood Deciduous Forest
FOM3-1	Dry- Fresh HardWood-Hemlock Mixed Forest
MAM2-11*	Mixed Mineral Meadow Marsh
MAS2	Bedrock Shallow Marsh
MAS2-1	Cattail Mineral Shallow Marsh
SWD3-3	Swamp Maple Mineral Deciduous Swamp
SWD4-5*	Hickory Mineral Deciduous Swamp
SWM5-1	Red Maple- Conifer Organic Mixed Swamp
AG	Agricultural
DEV	Development
DIST	Disturbed
OA	Open Aquatic
RES	Residential
Not listed in .	Southern Ontario FIC Guide

Path: C:\Savanta\7537 - Milton North Porta\gis\mxd\2020 07 22 report figures\Figure 5 Ecological Land Classification.mxd Date Saved: July 22, 2020

Savanta Inc. Watercourse Aquatic Habitat Assessment - Field Use Only

Administrative Information Project Number Date Observer(s) Project Code: 11no 4/21 **Sampling Location and Water Chemistry** Upstream UTM (easting/northing) Downstream UTM (easting/northing) Surrounding Land Use Within 50m (check all that apply): GPSrit GPSKIT Agricultural Site Length (m) pН General Site Location Map (include closest road intersection) Residential 40 □ Forest Rain within last 48 hrs □ Meadow 🖾 Yes 🗆 No Wetland □ Livestock Dissolved O₂ (mg/l) □ Other (describe) and Turbidity (NTU) Water Colour dur Colourless Water Temp (°C) □ Yellow/Brown Blue/Green an Waterbody Name: Watershed Name: Hydraulic Head (mm) □ Turbid □ Other (describe) Input(s) into the stream (e.g. tile drainage, seepages, overland flow) Location of input(s) (UTM) brottern 2N offste alrahage Stream Morphology and Habitat If any part of watercourse is underground (i.e. piped, tiled) or different than available mapping, mark Type of Waterbody (check all that apply) Flow Condition Permanent Intermittent Ephemeral Lake 🖾 Stream/River Dond DWetland Channelized Associated Wetland (PSW, unevaluated, etc.) Flow Influence NO FLOW Base Flow Freshet Spate Wetlands U.S. (reg. Sub-Section(s) Run Pool Riffle Flats Inside Culvert Other ø \Box \Box Percentage 10P of Area Mean depth \bigcirc wetted (m) Mean width wetted (m) Mean bankfull depth (m) Mean bankfull width (m) Flow Velocity \sim (mk) Hydraulic Head \bigcirc (mm) Substrate Bedrock Gravel Sahd Silt Detritus Boulder Muck Cobble Clay Sà Br Bo Gr Si D CI Mu Co

Sv6005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Forms/corel/21_2016_Aquatic_Habitat_Assessment.cdr

Page 1 of 3

Savanta Inc. Watercourse Aquatic Habitat Assessment - Field Use Only

Page 2 of 3

Bank Stabilit	y .			4				
Left Upstream E	Bank			Right Upstrea	am Bank			
対 Stable 🗆 Sligh	ntly Unstable 🛛	Moderately Unstable	e 🗆 Unstable	🖾 Stable 🗆 Slightly Unstable 🗆 Moderately Unstable 🗆 Unstable				
Bank Substrate	Type: Include e	vidence of channel harden	ing, bank alteration.	Bank Substra	ite Type:			
		day	duminat	roti any	oped he	MA to es	top .	
Habitat								
Instream Cover (% surface area)	Undercut Banks	Boulders	Cobble	Woody Debris	Organic Deb	rris Vascul Macroph ⊠Instrea	ar None ytes am 20 (BC Cths) 60 anging	
Vegetation						form	pronp 80%.	
Riparian Classif 1=none, 2=lawn, 3=c	ication* (from pped, 4=meado	D/S looking U/S	S) rest, 7=wetland)	Dominant Rip	arian Vegeta	ation Type (list s	species)	
Distance (r	n) Left E	Bank Right	t Bank	o Abte	201 (f)	rmer con	n) torus	
0 - 1.5	3	<u>></u> <u>3</u>	si" WS'S	MS = ms	oduce	w/ mars	+19511	
1.5 - 10	3)	Ma - Made w of Britz, ask				
10 - 30	3	ئى مەرى	<u>S</u>	Quel Anes lace				
Instream Vegeta	edominant Spec	ies)	Instream Patch Size Watercress Present					
Submergent	Floating	Emergent	None	(III2) (III applicatore)				
(%)	(%)	20 (%)	SPC			If yes, patch	size (m²)	
Shore Co (% stream sl	over haded)	100 - 90 °	90 - 60 □) 60 - C	- 30 ⊐	30 - 1 □	None	
Additional N	otes							
Migratory Obstr	uctions If ye	es, describe> D	S & AHSI	🛛 🗆 Iron Staini	ng 🗆 Wate	ercress 🗆 She	een 🗆 Bubb	
None [Seasonal	Perman	entos alivar	Evidence	of Groundwa	ater		
UTM (Easting/N	lorthing) wha	t location is this	is for?	UTM (Easting	g/Northing) v	vhat location is	this is for?	
Potential Enhan	cement Oppo	ortunities		Fish Observe	ed 🗆 Yes	Ø No	1	
a noturo	el costr	· · · ·		lf yes, describe	e (species/far	nilies; spawning;	nursery habitat)	
of hab	dast dive	SAX		Dr	Ч.			
7 npon	anvio	X						
Incidental Wi	Idlife Obse	ervations						
TUALX	:							
10001~	1							
		•		,		4		
General Com	mente							
Contra Con							<u>1</u>	

Savanta Inc. Watercourse Aquatic Habitat Assessment - Field Use Only

Page 3 of 3

\$16005 - SAV Marketing and Support/TEMPLATES - Field Data Collection Formstcore/21_2016_Aquatic_Habitat_Assessment.cdr

Appendix B5 – CVs

Peter Burke

Ornithologist, Senior Ecologist

Peter experience has broad experience working with Species at Risk (SAR) in many regards; their biology, habitat, management, threats, regulations, policies and programs. He is familiar with the *Endangered Species Act (2007)* and has become immersed in working towards the recovery, conservation and management of species ranging from Special Concern to Endangered across Ontario. Peter evaluates issues pertaining to SAR in relation to his underrating of the needs of the his clients. He is an effective communicator, facilitator and presenter, and is able to share his knowledge with those who may have limited understanding of the topic.

Peter has a solid naturalist-driven knowledge of virtually all components of Ontario's flora and fauna communities. He possesses expert knowledge of birds, mammals, reptiles, fish, amphibians and a wide variety of insect groups, including Odonata and Lepidoptera. He is frequently consulted on identifications and biology from across Ontario and internationally. He has a long interest in botany with a well-rounded knowledge of Ontario's plants and vegetation communities.

PROJECT EXPERIENCE

Viability Assessment for Species at Risk. Ring of Fire. Environment and Climate Change Canada. Downsview ON. Performed backgound review of species biology from the scientific literature, determined risk potentially associated with development and constructed a viability assessment tool to potentially measure and assess risk associated with future scenarios of human activity in the area.

PAR033 Fire Impacts Henvey Inlet First Nation Reserve #2. Henvey Inlet First Nations, ON. Co-author of Special Report. Prepared and reviewed sections of report describing historical, ecological and SAR specific impacts due to fire, citing scientific literature and solicited expert opinion. Conducted field surveys to assess fire impact on SAR habitat on PAR033, and documented the results.

Species at Risk Loggerhead Shrike Mitigation. Solar Flow-Through, Napanee, ON. Conducted breeding bird and SAR monitoring protocols for endangered Loggerhead Shrike (LOSH) and threatened Eastern Whip-poor-will (EWPW) in 2017 on the Napanee Plain. Assessed habitat and consulted with Wildlife Preservation Canada (WPC) and a Federal SAR biologist regarding LOSH breeding site suitability history of client lands. Participated as part of a team in discussions with MNRF, WPC and the client to navigate policies and procedures to avoid and/or minimize adverse effects for LOSH and EWPW. Helped map protected Category 1, 2 and 3 habitats in order to determine possible options for development based on known nests/territories.

Kirtland's Warbler Recovery Monitoring. Environment and Climate Change Canada, Downsview, ON. Used Land Information Ontario (LIO) mapping and ground-truthing to identify sites with EDUCATION B.S., Biology, Guelph University

EXPERIENCE IN THE INDUSTRY 20 years

EXPERIENCE WITH SAVANTA 5 years

REGISTRATIONS/CERTIFICATIONS Wilderness First Aid Training Wilderness Bear Safety Courses First Aid and CPR

some habitat characteristics in proximity to a known breeding location of Kirtland's Warbler (a federally and provincially Endangered Species) in southern Ontario. Acoustic recording devices (SM4 songmeters) were deployed in the breeding season, data cards were downloaded and files analyzed using Wildlife Acoustics Kaleidoscope Pro licensed software. Over 300,000 song samples were identified and analyzed by the recognition software, which were then filtered using a constructed algorithm to identify breeding song of Kirtland Warber, and other species associated with the same habitat. Some 3,100 hits were analyzed visually and auditorily to confirm presence or absence.

Kirtland's Warbler Habitat Restoration. Simcoe County, ON. Conceptualized, coordinated and helped to lead restoration of habitat for endangered Kirtland's Warbler on 50 ha of County land over a three-year project term. Provided guidance into restoration and adaptive management plans for the area, helped coordinate site restoration works, completed site inventory works, participated in the collection of 85 species of native, local seed to be used during restoration, and coordinated and co-authored the final Restoration Plan document. Provided assistance with ongoing communications efforts, and delivered presentations to numerous interested groups across southern Ontario. and coordinated, co-authored Restoration Plan document.

PREVIOUS PROJECT EXPERIENCE

Species at Risk Management Plans and constructed Annotated SAR Bibliography. Ontario Ministry of Natural Resources, Peterborough. Constructed annotated bibliography on all Ontario SAR bird species through collection of large amounts of information from a diverse array of sources to complete the over 1200-page document. Additionally, prepared Ontario Ministry of Natural Resources and Forestry Management Plans for Special Concern Species the West Virginia White and Black Tern, which included an extensive literature search and analysis of large data sets to extract important information related to current distribution.

Wildlife Inventory. Ring of Fire. Golder Associates, Sudbury Office, ON. Field surveys along two proposed transportation corridors, including river crossings, to service Ring of Fire mining camps in Hudson Bay Lowlands. Sites accessed by helicopter, transects surveyed by foot. Wilderness First Aid and Bear Safety training. Seven weeks remote work with data collection and entry.

Surveying Odonate populations across Ontario. Ontario Ministry of Natural Resources, Peterborough. ON. Surveying Odonate (Dragonfly and Damselfly) populations on several large rivers in the Timmins/Cochrane/Hearst area, and south-west Ontario Counties Grey, Huron, Lambton, Essex, Middlesex, Oxford, Elgin and Norfolk. Extensive work with adult and aquatic stages of surveying for species diversity and abundance.

PROFESSIONAL AFFILIATIONS

Served as Chair of the Ontario Bird Records Committee: 2001

World-renowned illustrator for bird and insect identification guides for North, Central and South American countries. Published with Houghton-Mifflin, National Geographic and Princeton University.

Barbara Charlton

Ornithologist

bcharlton@savanta.ca

Barbara Charlton has been an avid birder and naturalist for over 30 years. She has volunteered countless weeks of fieldwork, conducting bird population censuses, and band re-sighting with the Western James Bay Shorebird Project, banding birds, and migration monitoring at the Long Point Bird Observatory, as well as surveying breeding birds with both of the Ontario Breeding Bird Atlas projects. She has extensive field experience identifying and inventorying birds, performing point counts, breeding bird, and nesting surveys.

Ornithology

During her three years with Savanta, Barbara has conducted Breeding Bird Surveys based on the protocol set forth by the Ontario Breeding Bird Atlas (OBBA, 2001), the Forest Bird Monitoring Program (CWS, 2005) and the Marsh Monitoring Program (BSC, 2003), which include point counts and area searches. Emphasis was placed on breeding evi-dence of Species at Risk, including Bobolink, Eastern Meadowlark and Barn Swallow. Additional work included Species at Risk habitat as-sessment and incidental wildlife observations.

Barbara currently serves as Assistant Secretary for the Ontario Bird Records Committee and has been a reviewer since 2011, for Hamilton and Halton regions, for Ebird Ontario. Barbara has served on several Boards of Directors, including Bird Studies Canada and for 2 years she coordinated Ontario volunteers for the Breeding Bird Survey.

Although Barbara did some bird banding in James Bay at the Hannah Bay field camp in 2013, the majority of her bird banding experience comes from spending many vacation weeks volunteering at the Long Point Bird Observatory. During this time she became experienced at banding birds, extracting birds from mist nets, ageing, sexing and weighing.

Barbara participated in both Breeding Birds Atlas Projects, working in her local area as well as assisting with squares requiring additional cov-erage, including the Bruce Peninsula. She continues to participate in various Christmas Bird Counts and NABA Butterfly Counts, as she has for decades.

In her leisure time Barbara has birded Canada from British Columbia to the Maritimes, many states in the U.S. including California, Arizona, Colorado, Florida and Texas, as well as the Caribbean.

Select Project Experience

- Ontario Bird Records Committee Assistant Secretary
- Ebird Ontario Reviewer, Hamilton and Halton

- Western James Bay Shorebird Project Volunteer, Shorebird census and band re-sighting: Hannah Bay, Londridge Point, Little Piskwamish, North Bluff Point
- Ontario Breeding Bird Atlas Participant
- Ontairo Breeding Bird Survey, Ontario Coordinator of BBS Volunteer Surveyors
- Christmas Bird Counts, Long Point, St. Catharines, Hamilton, Niagara, Kitchener, Cambridge
- NABA Butterfly Counts, Hamilton, Long Point, Point Pelee
- Bird Banding, Long Point Observatory: The Tip, Breakwater, Old Cut, Clear Creek Raptor Station
- Ottawa Banding Group: Andros Island, Bahamas
- Thunder Cape Bird Observatory: Sleeping Giant Provincial Park, Thunder Bay

Education

• B.A., Trent University

Certification and Training

- Wilderness First Aid
- Basic Life Support CPR Provider A

Board of Directors

- Bird Studies Canada (1988 1993)
- Ontario Bird Banding Association (1988 1993)
- Kitchener Waterloo Field Naturalists Board of Directors (1987 1992), Membership Director (1987 – 1989), President (1989 – 1990)

Employment History

- Savanta, Inc., 2011 Present
- 604688 Ontario Inc., 2009 Present
- Ontario Ministry of Transportation, 1984 2009

Eva Lee, B.Sc. Intermediate Ecologist

Eva is an Intermediate Ecologist who specializes in terrestrial ecology and conservation biology. Eva has experience reviewing, assessing and applying academic research to natural heritage planning and impact assessments. Eva has developed extensive ecological inventory skills, including conducting anuran surveys, reptile surveys, bat habitat and acoustic monitoring (passive/active) surveys, wildlife sweeps, small mammal surveys, benthic sampling, headwater drainage feature assessments (HDFA), aquatic habitat assessments, and unmanned aerial vehicle (UAV) imagery capture. She is also experienced in conducting pre/post construction monitoring, abatement monitoring, and erosion and sediment control monitoring surveys.

PROJECT EXPERIENCE

Henvey Inlet Wind Energy Centre Environmental Commissioner, Henvey Inlet, Reserve #2. Abatement Supervisor and Community Liaison overseeing pre-construction, construction, and operation works to ensure compliance with Henvey Inlet's Land Permit and Environmental Laws.

Milton Phase 4 Lands, Milton Phase 4 Landowners Group Inc., Milton, ON. Terrestrial Ecologist investigating and analyzing observation data and habitat use of birds, bats, reptiles and amphibians across the Milton Phase 4 Lands to support the Landowners input to the Subwatershed Study and Master Environmental Servicing Plans. Responsibilities have also included applying for wildlife collection permits under the Endangered Species Act, 2007 and the Fish and Wildlife Conservation Act and preparing collection reports to address permit conditions.

Revised Natural Heritage Impact Study (NHIS) – 4050 Yonge Street, Yonge Park Plaza Inc., Toronto, Ontario (ON). Project Manager overseeing ecological constraints and environmental impact assessment of a proposed residential/commercial building within the West Don River subwatershed.

Distrikt Bat Roost Exit Surveys, Distrikt Development, Oakville, ON. Project Manager overseeing passive bat exit surveys of a restaurant building removal for a proposed residential development plan.

Kaitlin Lands Environmental Impact Study (EIS), Kaitlin Corporation, Bath, ON. Project Manager and lead Terrestrial Ecologist overseeing ecological investigations and environmental impact assessment of a proposed residential development.

Golfview Park Estates Screening Letter, Amico Properties, Amhertburg, ON. Project Manager overseeing ecological investigations and potential Species at Risk (SAR) constraints in support of a resubmission of a draft plan approval application.

Upper Chedoke Waterfalls Environmental Impact Study, City of Hamilton, Hamilton, ON. Project coordinator investigating and analyzing ecological data collected in support of a feasibility study for a proposed public viewing platform of the Upper Chedoke Waterfall within the Niagara Escarpment.

EDUCATION

B.Sc. Env., Natural Resource Management, University of Guelph Environmental Technician Diploma, Seneca College

EXPERIENCE IN THE INDUSTRY 8 Years

EXPERIENCE WITH SAVANTA 6 Years

REGISTRATIONS/CERTIFICATIONS

UAV Basic Operator License (Ministry of Transport) Restricted Operator Certificate -Aeronautical (ROC-A) UAV Ground School - Aerobotika Aerial Intelligence Ltd. WHMIS & TDG First Aid ATV and ARGO Operator Pipeline Construction and Safety Training Wildlife Awareness Infrastructure Health and Safety Association (HAS) Basic Pleasure Craft Operator Card (PCOC) Possession and Acquisition License (PAL) Petroleum Safety Training (PST 2.0)

PREVIOUS PROJECT EXPERIENCE

Trans Mountain Expansion Project (TMEP), Kinder Morgan Energy Partners, Edmonton, Alberta (AB). Crew Lead overseeing post-construction reclamation assessments, environmental monitoring, and weed surveys along the pipeline right-of-way through privately owned lands.

Alberta Clipper Pipeline, Enbridge Pipelines Inc., Hardisty, AB. Crew Lead overseeing pre-construction monitoring and weed surveys along the proposed expansion pipeline right-of-way through privately owned lands.

Edmonton to Hardisty Pipeline Project, Enbridge Pipelines Inc., Edmonton, AB. Crew Lead overseeing pre-construction monitoring and weed surveys along the proposed pipeline right-of-way through privately owned lands.

Eastern and Western Alberta Transmission Line (EATL and WATL), ATCO Electric, Calgary, AB. Crew Lead overseeing pre-construction monitoring and weed surveys along the proposed transmission line right-of-way through privately owned lands.

PROFESSIONAL AFFILIATIONS

Eco Canada, Member

Ontario Association of Certified Engineering Technicians and Technologists (OACETT), Member

Canadian Section of The Wildlife Society (CSTWS), Member

Rava Lee, M.Sc. Intermediate Ecologist

Rava is an Intermediate Ecologist who specializes in terrestrial ecology, environmental restoration and conservation biology. During the past eight years, she has directed and managed Species at Risk (SAR) projects including snake distribution and impact mitigation, turtle reintroduction, population modelling and habitat restoration, as well as conducted a variety of wildlife inventories.

Rava has experience reviewing, assessing and applying academic research to natural heritage planning and ecological mitigation. She has a sound understanding of various conservation biology frameworks and population modelling tools. Through Rava's terrestrial ecology work and research regarding reintroduction of species and habitat restoration in Canada, she has developed a detailed knowledge base of current habitat and development challenges and solutions.

PROJECT EXPERIENCE

1855 Rosebank Road Environmental Impact Study, Marshall Homes, Pickering, ON. Project Coordinator conducting an environmental impact assessment on a proposed residential development designated as Significant Woodland by the City of Pickering.

3064 Trafalgar Road Natural Heritage and Tree Preservation, Distrikt Developments, Oakville, ON. Project Manager overseeing ecological investigations and environmental impact assessment of a proposed add-on development in association with the North Oakville Environmental Implementation Report.

2500 Royal Windsor Drive Environmental Impact Study, Carttera Management, Mississauga, ON. Project Manager overseeing ecological investigations and the environmental impact assessment of a proposed industrial development constrained by Avonhead Creek.

Block 51-1 Natural Heritage System Monitoring Plan, Mount Pleasant Block 51-1 Landowner's Group, Brampton, ON. Project Coordinator overseeing Year 5 ecological monitoring and assessment of restoration success within the created Natural Heritage System.

Henvey Inlet Wind Energy Centre Environmental Commissioner, Henvey Inlet, Reserve #2. Abatement Supervisor and Community Liaison overseeing pre-construction, construction, and operation works to ensure compliance with Henvey Inlet's Land Permit and Environmental Laws.

Milton Phase 4 Lands, Milton Phase 4 Landowners Group Inc., Milton, ON. Terrestrial Ecologist investigating and analyzing observation data and habitat use of birds, bats, reptiles and amphibians across the Milton Phase 4 Lands to support the Landowners input to the Subwatershed Study and Master Environmental Servicing Plans. Responsibilities have also included apply for wildlife collection permits under the *Endangered Species*

EDUCATION

M.Sc. Env, Environmental Science, University of Toronto B.Sc. Env., Natural Resources Management, University of Guelph

EXPERIENCE IN THE INDUSTRY 8 Years

EXPERIENCE WITH SAVANTA 7 Years

Act, 2007 and the Fish and Wildlife Conservation Act and preparing collection reports to address permit conditions.

Burnt Log Management and Environmental Impact Study, DG Group, Brampton, ON. Project Coordinator providing reptile habitat restoration advice, and assessment of impacts to wildlife crossing Heart Lake Road.

East Boundary Road, Town of Cambridge, Cambridge, ON. Terrestrial Ecologist responsible for trapping and investigating habitat use by Jefferson Salamander and Blue Spotted Salamander in relation to the proposed East Boundary Road routes.

PREVIOUS PROJECT EXPERIENCE

Rouge Park Blanding's Turtle Headstart Initiative, Toronto Zoo, Scarborough, ON. Lead Biologist preparing a 20-year plan for Blanding's Turtle reintroduction in Rouge Park, involving Population Viability Analysis, collection of eggs, incubation and release.

Rouge Park Eastern Milksnake Long-term Monitoring Study, Toronto Zoo, Scarborough, ON. Lead Biologist overseeing the implementation of the population distribution and analysis of an artificial coverboard study targeting Eastern Milksnake populations within Rouge Park.

PROFESSIONAL AFFILIATIONS

Canadian Herpetological Society

James Leslie, B.E.S. Senior Vegetation Ecologist

James Leslie is a project manager and field ecologist with expertise in vegetation ecology, botany and remote sensing. He has worked extensively in most regions of Ontario, as well as parts of southeastern Québec, northern Alberta, and the Great Lakes shorelines of Michigan. He frequently conducts comprehensive plant inventories, species at risk surveys, Ecological Land Classification (ELC), wetland assessments, and vegetation monitoring. He has also led or assisted with numerous types of wildlife surveys and habitat assessments.

James is proficient with imagery analysis software (e.g. ArcGIS, HyperCube) for remote sensing and mapping. This includes preparation and analysis of multispectral and orthographic imagery, LiDAR, and digital elevation models for efficient interpretation of landscape features.

James has had significant involvement in aggregate, mining, highway infrastructure, renewable energy, and oil and gas, and has managed urban development and ecological restoration projects.

PROJECT EXPERIENCE

Renaissance Wetland Restoration, Mattamy Homes, Milton, ON. Project Manager for ecology component of a 2.5-hectare wetland/upland restoration. Collaborated with Fluvial Geomorphologists, Engineers, and agencies during design and construction of marsh wetlands and upland meadows. Designed to create suitable habitat for Western Chorus Frog and other breeding amphibians with consideration to natural heritage systems and local connectivity of adjacent woodlands through strategic planting of woody species. Preparation of multi-year post-construction monitoring plan.

Point Pelee National Park Invasive Species Management Plan, Parks Canada, Leamington, ON. Project Manager for contract to prepare an Invasive Species Management Plan and adaptive modelling tool. Ensured thorough and timely compilation of invasive species background data, species at risk and sensitive vegetation communities mapping to determine best management approach for each invasive species. A weighted ranking system was developed, and analysis was completed by creating an ArcGIS model. Collaborated with local and provincial experts, local State Botanists, and regulatory agencies during development of invasive species ranking and prioritization.

Kirtland's Warbler Habitat Restoration Site Selection, Environment Canada, Southern Ontario. Vegetation Ecologist and GIS Specialist tasked with identifying and mapping current and potential breeding habitat for Kirtland's Warbler across Central, Northeastern, Eastern Ontario, and into Northern Ontario. The GIS analysis used provincial datasets for soil texture, drainage, and existing land cover by overlaying and weighting all variables then running an analysis to locate all large, contiguous areas of potentially suitable habitat (i.e., currently suitable or potentially

EDUCATION

Certificate Program, University of Toronto, Geographic Information Systems (GIS) for Environmental Management (Ongoing) Bachelor of Environmental Studies,

University of Waterloo, Waterloo, ON

EXPERIENCE IN THE INDUSTRY 14 years

EXPERIENCE WITH GEI 6 years

REGISTRATIONS/CERTIFICATIONS

- Advanced Hydric Soils, Wetland Training Institute, Portage, WI;
- Applied Field Identification of Grasses and Sedges, Humboldt Field Research Institute, Steuben, ME;

Butternut Health Assessor, Ontario Ministry of Natural Resources & Forestry;

- Ontario Wetland Evaluation System, Ontario Ministry of Natural Resources & Forestry;
- Ecological Monitoring and Assessment Network, Environment Canada;

Ecological Land Classification, Ontario Ministry of Natural Resources & Forestry;

- Registry, Appraisal & Qualification System (RAQS), Ontario Ministry of Transportation;
- Standard First Aid & CPR/AED Level C

suitable through restoration efforts). In total, 56 suitable areas were identified and mapped for future consideration of Kirtland's Warbler habitat restoration efforts.

Line 5 Rare Wetland Survey, Enbridge, Great Lakes Shoreline, MI. Botanist assisting with targeted surveys of rare wetland communities along the western shoreline of Lake Huron and northern shoreline of Lake Michigan. Worked alongside other Botanists conducting plant inventories, rare species documentation, and wetland classification/mapping using the Michigan Natural Features Inventory protocol.

Milton Phase 4 Lands Development Process, MP4 Landowners Group, Milton, ON. Lead Vegetation Ecologist for a proposed urban development of a 5,260-hectare block of rural land. Responsibilities have included ELC, vascular plant inventories, wetland delineations, soil assessments, and woodland significance analysis. Provided technical input regarding significance of wetlands to client and agencies.

Riverfront Community, GR(CAN) Investments Inc., Niagara Falls, ON. Vegetation Ecologist for an Environmental Impact Study for urban development of a 77-hectare greenfield site. Responsible for ELC, wetland delineations, and plot-based woodland stem density surveys.

Lathrop Pond Decommissioning and Restoration Project, Nature Conservancy of Canada, Pelham, ON. Vegetation Ecologist for a restoration project to decommission and restore two anthropogenic ponds and associated access routes through a Carolinian forest. Completed refinements to ELC mapping, vascular plant surveys, population mapping of the nine rare plant species observed, and invasive plant species mapping.

Wylie Road Carden Plain Ecological Surveys, Premier Shooting Centre, Dalrymple Lake, ON. Vegetation Ecologist for a proposed shooting range. Completed ELC and vascular plant inventories of a 555hectare naturalized property consisting of alvar, forest, and wetlands. Assisted with bat habitat assessments and nocturnal avian surveys of Eastern Whip-poor-will and Common Nighthawk.

Kirby Road Extension Municipal Class EA, Rizmi Holdings Limited and City of Vaughan, Vaughan, ON. Vegetation Ecologist assisting multidisciplinary team to determine route options for a proposed extension of Kirby Road from Dufferin Street to Bathurst Street in the Oak Ridges Moraine physiographic region. Completed ELC, vascular plant inventories, Butternut health assessments, American Ginseng (*Panax quinquefolius*) surveys, and amphibian call-count and egg mass surveys.

Preston Road, Delpark Homes, Courtice, ON. Project Manager and Vegetation Ecologist for Environmental Impact Study of proposed urban development. Managed and assisted with technical surveys of vascular plants, bat habitat and ultrasonic call analysis, amphibians, fish, turtles, and birds. Correspondence with agencies and preparation of EIS.

Sunderland Pit, Vicdom Sand and Gravel, Sunderland, ON. Vegetation Ecologist for a proposed below water-table gravel pit application and accompanying Natural Environment Level 1 and Level 2 Technical Report. Study areas consisted of approximately 120 hectares and surveys completed included ELC, vascular plant inventories, and wetland delineations and significance analysis with the Ontario Ministry of Natural Resources & Forestry.

Ontario Place Live Nation VIP Deck, Somerville Construction, Toronto, ON. Project Manager of proposed VIP deck overhanging a channel of Lake Ontario at the Amphitheatre at Ontario Place. Objectives were to identify potential environmental constraints and prepare an Environmental Constraints Opinion Letter.

Ground Mounted Solar Project Environmental Assessment, Solar-Flow Through and Renesola Canada, Toronto, ON. Vegetation Ecologist for species at risk due diligence reviews to identify permitting triggers under Ontario's *Endangered Species Act*. Completed desktop ELC mapping and strategic groundtruthing surveys for numerous project properties across Ontario. Surveyed habitat included globally rare alvar vegetation communities.

Waterdown to Finch Pipeline Replacement Project, Imperial Oil Inc., Hamilton to Toronto, ON. Lead Vegetation Ecologist for a 63 km pipeline replacement project extending across urban and rural areas, as well as naturalized features associated with the Niagara Escarpment, Conservation Authorities, and privately owned lands. Conducted ELC, vascular plant inventories, Butternut health assessments, tree inventories, and targeted species at risk surveys.

Block 51-1 Terrestrial and Aquatic Performance Monitoring, North West Brampton Landowners' Group, Brampton, ON. Lead Vegetation Ecologist for the monitoring component of a 5 km Natural Heritage

System created in Northwest Brampton. Studies included multi-year monitoring of 60 permanent plots, most of which were 1 m² with analysis of species diversity, frequency, and prominence value. A year-5 survey consisted of ELC and vascular plant inventories to determine success of vegetation community establishment and floristic quality.

PREVIOUS PROJECT EXPERIENCE

Newman Todd Project, Confederation Minerals, Red Lake, ON. Lead Terrestrial Ecologist at prospective gold mine in remote northwest Ontario. Completed desktop background review of study area and GIS mapping of all vegetation communities. Field work consisted of strategic ELC ground-truthing of targeted community types and wildlife/wildlife habitat surveys. Prepared technical report.

Kami Iron Ore, Alderon Iron Ore Corp., Port of Sept Iles, QC. Lead Botanist for proposed rail reconfiguration at mineral shipping port. On-site surveys and preparation of vegetation community mapping and vascular plant inventory. Objective of survey was to confirm presence/absence of species at risk and document observations. Prepared and submitted Rare Plant Survey Report.

Bissett Creek Mine, Northern Graphite Corp., Mattawa, ON. Lead Vegetation Ecologist for proposed graphite mine having a study area of nearly 3,000 hectares. Completed desktop ELC of all vegetation communities using ArcGIS; data layers included digital elevation models, LiDAR, multiple orthographic images, and provincial datasets. Ground verification was completed using plot-based assessments in predetermined locations.

Acton Quarry, Dufferin Aggregates, Acton, ON. Project Ecologist for proposed quarry expansion. Assisted with seven years of amphibian surveys to identify and monitor significant wildlife habitat, species diversity, and presence/absence of Jefferson Salamander. Surveys included amphibian call-counts, egg mass surveys, pit and aquatic trapping, and tail clippings of potential Jefferson species (in conjunction with the Ontario Ministry of Natural Resources & Forestry).

Duntroon Quarry, Walker Aggregates, Duntroon, ON. Terrestrial Ecologist for proposed quarry expansion. Designed and conducted a multi-year research program to assess the habitat characteristics of American hart's-tongue fern (*Asplenium scolopendrium*) – a federal and provincial Special Concern species. Research objective was to identify suitable transplant locations by studying a naturally occurring population. Research included in-field studies of soil, ambient air, tree canopy cover, associate species, slope aspect, and snow depth. A preliminary transplant of over 500 ferns was conducted where post-transplant monitoring studies were completed over three years.

Energy East Project, TransCanada, ON and QC. Lead Vegetation Ecologist for Ontario segment of a national pipeline project proposed to transport crude oil from Alberta to New Brunswick and Québec. Ontario study area extended from the border of Manitoba to the border of Québec, assessing vegetation communities and vascular plants. Québec study area was near Cacouna and included surveys of inland vegetation as well as estuary marshes along the St. Lawrence River. Desktop assessment included GIS mapping of all vegetation communities; field surveys occurred over a two-year period, consisting of ELC data collection, vascular plant inventories, documentation of species at risk and significant wildlife habitat. Identified amphibian breeding habitat through air-photo interpretation and verified the data by helicopter surveys. Conducted amphibian call-counts and Blanding's Turtle surveys. Assisted the soils team with field data collection in organic wetland communities. Primary author of four reports – two technical data reports, and two Environmental Assessment reports, submitted by TransCanada to the National Energy Board.

Line 37 Spill Site, Enbridge, Fort McMurray, AB. Lead Botanist at a recently ruptured petroleum pipeline in northern Alberta. Conducted full botanical inventory and vegetation community mapping of contaminated wetlands; also conducted similar surveys of adjacent upland areas proposed for temporary use. Each survey required prompt submission of accompanying technical reports.

PCB Remediation, Georgia Pacific, Thorold, ON. Terrestrial Ecologist for vegetation component of PCB remediation project. Completed ELC, Butternut health assessments, developed and implemented multi-year vegetation monitoring plan to determine density, frequency, dominance, and importance value of restoration area plant species.

Yellow Falls Hydroelectric Project, Carlex Corporation Inc., Smooth Rock Falls, ON. Terrestrial Ecologist for proposed hydroelectric dam in remote northern Ontario. Assisted with ELC, vascular plant inventories and soil surveys.

Terrestrial Surveys for Wind and Solar Projects, various municipalities, ON. Conducted numerous preconstruction surveys under the Renewable Energy Approvals (REA) process for proposed wind and solar projects. Field work included wetland delineations and evaluations using the Ontario Wetland Evaluation System, ELC, plant and wildlife inventories, and identification of significant wildlife habitat. Completed data analysis and technical reports, which were integrated into their respective Natural Heritage Assessment Reports. Projects included but were not limited to:

- White Pines Wind Project, wpd Canada, Prince Edward County. 28 wind turbines. Lead Vegetation Ecologist.
- Amherst Island Wind Energy Project, Windlectric Inc., County of Lennox and Addington. 26 wind turbines. Lead Vegetation Ecologist.
- Bow Lake Wind Facility, BluEarth Renewables, District of Algoma. 36 wind turbines. Lead Vegetation Ecologist.
- Port Dover and Nanticoke Wind Project, Capital Power, Haldimand and Norfolk Counties. 58 wind turbines. Terrestrial Ecologist.
- Almonte Solar Project, Beckwith Solar Inc., Lanark County. 10 megawatt. Lead Vegetation Ecologist.

Highway 401 and Highway 8 Improvements, Preliminary Design, Ontario Ministry of Transportation. Terrestrial Ecologist for proposed interchange improvements in the cities of Kitchener and Cambridge along Highway 401 and Highway 8. Conducted ELC, inventories of vascular plants and wildlife, and mapping of significant wildlife habitat. The preliminary impact assessment included constraint rankings of each ELC unit affected by the Preferred Plan.

Highway 11/17 Route Planning Study, Preliminary Design, Ontario Ministry of Transportation, Kakabeka Falls to Shabaqua Corners. Terrestrial Ecologist for a proposed 40 km highway. Conducted ELC, inventories of vascular plants and wildlife, and mapping of significant wildlife habitat. Assisted with preparation and submission of a Terrestrial Ecosystems Report.

Highway 69, Patrol Yard Selection, Preliminary Design, Parry Sound to Sudbury, Ontario Ministry of Transportation. Terrestrial Ecologist for siting of suitable Patrol Yard locations based on ecological considerations along Highway 69 between Parry Sound and Sudbury. Conducted ELC, inventories of vascular plants and wildlife, and mapping of significant wildlife habitat. Assisted with preparation and submission of a Terrestrial Ecosystems Report.

Victoria Road North Class EA, City of Guelph, Guelph ON. Terrestrial Ecologist and Task Manager for a proposed road widening, parking area and boat launch. Completed background review of applicable legislation and guidelines, conducted or delegated appropriate field surveys and participated in agency consultation. Prepared Natural Environment Technical Report.

PROFESSIONAL AFFILIATIONS

Ontario Invasive Plant Council, Member

Field Botanists of Ontario, Member

PRESENTATIONS

Leslie, James 2019. The Ontario Wetland Evaluation System & Wetland Conservation Strategy. At Latornell Conservation Symposium, Orillia, Ontario. November 20, 2019.

Leslie, James, Melanie Randolph 2019. Mount Pleasant Sub-Area 51-1 Restoration: Year-5 Terrestrial Performance Monitoring. At Latornell Conservation Symposium, Orillia, Ontario. November 21, 2019.

PUBLICATIONS

Leslie, James (2018). Vascular Plants at Risk in Ontario. 103 pp. Available online: http://www.savanta.ca/idea/new-publication-vascular-plants-at-risk-in-ontario

Shelley Lohnes

Senior Ecologist

Shelley Lohnes is a wildlife and fisheries ecologist with 15 years of experience in biological inventory and environmental impact assessment of aquatic and terrestrial environments; 10 of those years have been spent in the consulting industry.

Her broad understanding of aquatic and terrestrial ecology allows her to effectively manage multi-disciplinary projects with an ecosystems-based approach. Shelley has facilitated regulatory approvals and screenings under the Endangered Species Act, including Section 17(2)(c) and Section 17(2)(b) permits. In addition, she has completed Mitigation and Habitat Management Plans under a variety of Regulations for both aquatic and terrestrial Species at Risk.

Shelley also has extensive professional experience with assessment and development of erosion protection and sediment control measures, as they pertain to Species at Risk protection. She is a Certified Inspector of Sediment and Erosion Control (CAN-CISEC 0145) in good standing.

PREVIOUS PROJECT EXPERIENCE

Highways and Bridges

Windsor Detroit Bridge Authority, Gordie Howe International Bridge, Windsor: Species at Risk lead for Early Works and Construction at the Canadian Port of Entry. Prepared the Bridge To Strengthen Trade Act Species At Risk Plan Amendment, and was responsible for preparing Species at Risk awareness training module for site personnel. Prepared and implemented the Environmental Management and Monitoring Plan for Wildlife and Species at Risk. Project is ongoing. (2018-present)

Ministry of Transportation Ontario Detail Design Highway 427 / 409 Structures, Culverts and Retaining Walls (2017-E-0029). Conducted background review and field investigations and prepared the Terrestrial Ecosystems Existing Conditions and Impact Assessment Report in support of the Class EA and Detail Design Study for the rehabilitation of 11 bridges, two structural culverts and nine retaining walls along Highway 427 and Highway 409. Field investigations included ELC, vascular plant inventory, identification

Ministry of Transportation Ontario Highway 410 Improvements between Eglinton Avenue and Mayfield Road, Contract 3 (G.W.P. 2381-15-00). Lead the terrestrial ecosystems component of this project including but not limited to oversight of field investigations and the senior review and coordination of the Terrestrial Ecosystems Existing Conditions and Assessment Report.

of SWH and SAR habitat. (2018-ongoing)

Ministry of Transportation Ontario Highway 401 Eastbound Collector Lanes from Avenue Road to Warden Avenue, City of Toronto (G.W.P. 2030-01-00). Senior review of deliverables describing results of field investigations in support of the Class EA and Detail Design Study for the rehabilitation of the Highway 401 eastbound collector lanes between Avenue Road and Warden

EDUCATION

B.Sc. with Honours, Wildlife Biology, University of Guelph, 2004 Diploma, Arctic and Boreal Entomology, University of the Arctic, 2004

EXPERIENCE IN THE INDUSTRY 16 years

EXPERIENCE WITH SAVANTA Less than 1 year

REGISTRATIONS/CERTIFICATIONS

- Bat Acoustic Data Analysis and Management
- DFO Species at Risk Mussel Identification Workshop
- MTO/MNR Endangered Species Act Training
- Natural Sciences, Fisheries Assessment and Fisheries Contracts Specialist (listed on RAQS)
- WHMIS/Transportation of Dangerous Goods
- Royal Ontario Museum Fish Identification Workshop
- Ontario Stream Assessment Protocol Pleasure Craft & Zodiac Operator's
- Certification
- Electrofishing Crew Lead Backpack Red Cross Level C First Aid & C.P.R, AED
- GO-Safe Railway Orientation Enbridge Contractor Safety and Environment Orientation

SAVANTA A GEI Company Avenue in the City of Toronto. Field investigations included ELC, vascular plant inventory, identification of Significant Wildlife Habitat (SWH), and identification of SAR habitat including inventory of suitable bat maternity roost trees relevant to the proposed works. Review of documents screening impacts under the Endangered Species Act was also undertaken (2018-ongoing)

Ministry of Transportation Ontario – Re-alignment of McGillivray Road. Senior technical review of terrestrial ecological field investigations and the Terrestrial Ecosystems Existing Conditions Report. Senior oversight for authorizations under the ESA (2007) in order to proceed with geotechnical investigations within confirmed SAR habitat. (2019)

Ministry of Transportation Ontario, Highway 400 – Highway 404 Link (Bradford Bypass). Provided senior oversight in the development of the Terrestrial Ecosystems Existing Conditions Report, which provides updated background information for the Study Area of the Bradford Bypass, as described in the 1997 approved Bradford By-Pass Recommended Plan. (2019-2020)

Ministry of Transportation Ontario, Highways 6 & 401 improvements from Hamilton North Limits to Guelph South Limits including the new alignment of a segment of Highway 6 (G.W.P 3042-14-00), in the Township of Puslinch. Senior ecological lead providing oversight for SAR and wildlife, including review of data collection methods and results. Technical Review of project deliverables including the Terrestrial Ecosystems Existing Conditions and Impact Assessment Report outlining background information, existing terrestrial conditions, potential impacts and recommended mitigation measures and next steps. In addition, deliverables and tasks include ongoing consultation and reporting to the Ministry of Natural Resources and Forestry on Endangered Species Act implications for the proposed project works. (2018 – Present) Years on the Project: 2.

Ministry of Transportation Ontario, Highway 427 Expansion, Toronto. Played an integral role in preparation of a Wildlife and Species at Risk Framework to guide detailed design, which included field investigations, reporting, identification of required Species at Risk permitting and draft restoration and compensation plans (MTO Agreement #2014-E-0056) (2015 – ongoing)

Ministry of Transportation Ontario, Highway 8 Improvements, Shakespeare, Ontario. Planned and implemented species presence/absence surveys prior to structure removal, provided senior oversight and quality control of bat acoustic data analysis and species confirmation. (2017)

City of Sudbury, Crean Hill Road and Fairbanks Road East Widening, Sudbury, Ontario. Ms. Lohnes prepared a Species at Risk habitat screening and coordinated targeted species surveys to address potential impacts to Whip-poor-will, Blanding's Turtle, and three bat species. (2014-2017).

YMCA of Greater Toronto, Cedar Glen Camp Bridge Replacement, Schomberg, Ontario. Coordinated environmental components of bridge designs and facilitated permitting with the Toronto and Region Conservation Authority and the Ministry of Natural Resources and Forestry (Endangered Species Act, Redside Dace) for 7 bridges over a coldwater stream through a residential camp. Provided construction monitoring and oversight to the client during bridge replacements to assist with compliance to permits. (2014-present).

Ministry of Transportation Ontario, Highway 11 New Interchange at South Entrance to Powassan From 5.7 km South of Highway 534, northerly 5.0 km Detail Design Study, G.W.P. 323-00-00. 2012. Completed aquatic species at risk screening, fisheries assessment fieldwork, and preparation of the risk management framework for HADD authorization and approvals from Department of Fisheries and Oceans on behalf of MTO. Also provided key input into the permitting process for the Overall Benefit Permit required for Bobolink habitat under the amended Endangered Species Act, 2007 (O.Reg. 176/13).

HCI. Highway 404 Extension from Green Lane to Queensville Sideroad, Environmental Monitor. 2010-2012. Working for the Contract Administrator, provided guidance on environmental issues and oversight of compliance with contract documents as well as federal and provincial permits and environmental assessment commitments. The site required removal of Butternut, a tree species at risk, and pre-clearing surveys for birds were also undertaken. Dewatering and stream diversion were problematic and acted as a critical part of the team to devise a solution that was suitable to fisheries protection, contractor efficiency and cost-sensitive for the client.

Bot Construction. Highway 8 Bridge Widening, Fisheries Contracts Specialist. 2009-2012. Oversaw construction activities within the Grand River and assisted contractor with compliance to the federal Fisheries Act authorization. Works involved the twinning of a 4-lane bridge over sensitive fish and mussel habitat. Mitigative activities included mussel and fish relocation, protection of fish habitat during in-water works through isolation of work and dewatering, construction of fish spawning habitat and monitoring of restoration activities. Site conditions required amendments to the compensation design, and a new design was created and submitted for approval to the Department of Fisheries and Oceans. An amendment to the Fisheries Act approval was granted.

City of London (with Delcan). Environmental Impact Assessment for the Dingman Creek Erosion Control Wetland. 2009-2012. Completed comprehensive inventories throughout the study area, including fish, mussels, birds, butterflies, dragonflies, amphibians and mammals in order to complete an impact analysis for the creation of an online erosion control wetland. Prepared the natural environment components of the impact assessment and consulted with agencies. Ms. Lohnes also completed the design of wildlife habitat features for the wetland, which included turtle nesting and basking sites, wildlife snags, and fish nursery habitat.

City of London (with Delcan). Environmental Impact Study for the Stoney Creek Erosion Control Wetland. 2009-2010. Completed a comprehensive inventory of aquatic and terrestrial species within the study area, including fish, mussels, birds, butterflies, dragonflies, amphibians and mammals in order to complete an impact analysis related to the creation of an online erosion control wetland. Assisted in preparing the natural environment components of the impact assessment and consulted directly with agencies. Ms. Lohnes completed the design of wildlife habitat structures for the wetland design.

Ministry of Transportation Ontario. Highway 401 and Wonderland Road Interchange, London. 2011-2012. Ecologist responsible for ecological fieldwork design, implementation and reporting, including wildlife and vegetation surveys as a part of the Terrestrial Assessment, including agency consultation. Also completed Fish and Fish Habitat Screening.

Delcan for the City of London. Environmental Impact Study for the Stoney Creek Trunk Sanitary Sewer and Watermain Crossing. 2009-2010. Ms. Lohnes completed a wildlife inventory that included avian, amphibian, mammal, butterfly and dragonfly surveys. An analysis of significance of species identified was also carried out in order to assess the sensitivity of the natural areas within the study zone.

Ministry of Transportation Ontario. Species at Risk Surveys for Rehabilitation of Highway 7 from Maberly to Wemyss, WP 4512-02-00. 2010. Developed the work plan and survey methodology in consultation with the MNR to carry out species-specific surveys for 20 species at risk along 13.5km of right-ofway. Recommended an avoidance and mitigation plan to protect species at risk and to prevent contravention of the Endangered Species Act by the proponent.

Ministry of Transportation Ontario. Avian and Wildlife Assessment for the Realignment of Italia Lane, Kingston, GWP 4330-04-01. 2008-2009. As an Ecologist on this assignment negotiated acquisition of a permit under the Endangered Species Act (2007) for the removal and retention of Butternut tree specimens on the property. As a part of this application, a compensation strategy was developed for the replacement of retainable Butternut at a location off-site.

Ministry of Transportation Ontario. Terrestrial Assessment for Highway 401 and Highway 6 South, Morriston – Speed Change Lane Extension, Assignment #3008-E-0023 (15). 2011. Carried out a Species at Risk screening in accordance with the Endangered Species Act. Led species-specific surveys and habitat inventories in order to identify site constraints related to proposed highway widening design.

Ministry of Transportation Ontario. Avian and Wildlife Assessment for the Rehabilitation of Highway 37 from the North Limits of Tweed Northerly to Highway 7, GWP 213-00-00. 2008-2009. Carried out species-specific surveys and habitat inventories in accordance with the Endangered Species Act along 13.5 km of rural highway within appropriate timing windows in order to identify site constraints related to proposed highway widening design.

Ministry of Transportation Ontario. Avian and Wildlife Assessment for the Old Gull River Bridge Removal – Highway 35, Rehabilitation of Sharpe's Creek Culverts – Highway 11, Replacement of Portage Creek Culvert – Highway 124, and Rehabilitation of Hurricane Creek Culvert – Highway 118

(2008-2010). Acted as Lead Ecologist for four structural assignments that involved complete assessments for Fish and Fish Habitat Existing Conditions & Impact Assessment; one HADD Authorization & Fisheries Compensation Design, extensive DFO and MNR agency consultation, and complete vegetation and wildlife inventories as a part of the Terrestrial Ecosystems Assessment. Also provided development of environmental components of contract documents and review of environmental commitments. Carried out species and habitat inventories in accordance with the Endangered Species Act at all study area locations within appropriate timing windows in order to identify site constraints related to structural replacement or rehabilitation.

USL Concrete. Avian Assessment for the Glen Miller Bridge, Trenton, 2010. Identified locations of and species of birds nesting within the construction zone in the bridge platform over the Trent River. Provided guidance on permitting and avoidance of the nesting birds to provide compliance with the Migratory Birds Convention Act, Fish and Wildlife Conservation Act and the Endangered Species Act.

Ministry of Transportation Ontario. Total Project Management/Detailed Design Services for Bridge and Hydrology Engineering for Local Road Board Structures; Replacement of Culverts along Nepewassi Lake Road at Highway 69 and Onaping Lake Road at Highway 144, Sudbury Area, G.W.P. 5022-10-00 & 5023-10-00 (2011-2012). As Lead Ecologist on the project, completed Species at Risk screenings for each location, developed terrestrial and aquatic field programs, and prepared fisheries impact assessments for each proposed structure replacement on behalf of the Ministry of Transportation (Ontario).

Ministry of Transportation Ontario. Fisheries assessment and impact assessment for rehabilitation of culverts crossing Highway 4 from Kippen to Clinton, W.P. 75-85-00. Assignment # 3008-E-0023 (7) (2010-2011). Completed fish and fish habitat assessments for all watercourses crossing Highway 4, including impact assessment and risk management framework in preparation of fisheries file for DFO submission. As a part of this assignment a Species at Risk screening was completed under both the Endangered Species Act (ESA) and the Species at Risk Act (SARA).

Ministry of Transportation Ontario. Detailed Design Services for the New Interchange and Extension of existing 4-laning, Highway 17 at the west junction of Sudbury Municipal Road 55, from 20.5 km west of Highway 144, easterly for 6.5km, G.W.P. 156-98-00. Ecologist responsible for species at risk screening, wildlife survey study design and existing conditions reporting. Acted on behalf of MTO to consult with regulatory agencies.

Ministry of Transportation Ontario. Highway 401 and Wonderland Road Interchange, Assignment #3008-E-0023 (14). 2011-2012. Ecologist responsible for ecological fieldwork design, implementation and reporting, including wildlife and vegetation surveys as a part of the Terrestrial Assessment, and agency consultation.

Ministry of Transportation Ontario. Highway 8 from Seaforth East Limits Easterly to Mitchell West Limits Excluding 0.94km in Dublin. 2008. Ecologist responsible for assessing aquatic and terrestrial ecosystems for the rehabilitation of Highway 8, which included structural rehabilitation of culverts crossing this alignment. Reporting included Fish and Fish Habitat Existing Conditions and Impact Assessment; Terrestrial Ecosystems Assessment, and input to and review of contract documents

Ministry of Transportation Ontario. Avian and Wildlife Assessment for the Realignment of Italia Lane, Kingston, GWP 4330-04-01. 2008-2009. As an Ecologist on this assignment negotiated acquisition of a permit under the Endangered Species Act (2007) for the removal and retention of Butternut tree specimens on the property. As a part of this application, a compensation strategy was developed for the replacement of retainable Butternut at a location off-site.

Olivia Park, B.Sc., CERP Intermediate Ecologist

Olivia is an Intermediate Ecologist with a deep understanding of aquatic and terrestrial ecosystems. She specializes in ecosystem restoration and ecological monitoring and holds her Certified Ecological Restoration Practitioner designation from Society for Ecological Restoration. Olivia has experience managing ecological studies, impact assessment and restoration projects related to greenfield development. Olivia performs a variety of terrestrial and aquatic ecological inventories focusing on evaluating the significance and sensitivity of natural heritage features and their associated functions across scales. She has extensive aquatic field knowledge related to headwater drainage feature assessments, aquatic habitat assessments and fish community sampling. Olivia leads both aquatic and terrestrial surveys and holds her Class 2 Electrofishing Backpack Crew Leader certification.

Olivia manages a comprehensive portfolio of ecological projects throughout Southern Ontario and is developing a track record of providing ecosystem-based solutions. She has coordinated and managed Environmental Impact Studies/Assessments, Subwatershed Impact Studies and Scoped Subwatershed Studies. Olivia has demonstrated a high degree of competency in assessing natural heritage features, including identifying Species at Risk (SAR) and associated habitats, significant wildlife habitat, significant woodlands, significant wetlands, significant valleylands and fish habitat. Olivia has worked collaboratively with stakeholders to identify restoration and enhancement opportunities, and a has experience applying for permitting under various regulatory agencies.

PROJECT EXPERIENCE

11333 Dufferin Street Environmental Impact Study (EIS), The Milani Group, Vaughan, ON. Project Coordinator and field lead – Completed baseline studies in support of residential development. Completed impact assessment including evaluation of natural heritage features (significant wildlife assessment, habitat for endangered and threatened species, significant woodlands, fish habitat) and identification of restoration and enhancement opportunities.

8175 Winston Churchill Blvd EIS, Maple Lodge Farms, Brampton, ON. Project Manager and field lead – Completed baseline studies in support of site redevelopment. Completed impact assessment to identify natural heritage features and identified enhancement opportunities through vegetated buffer plantings.

Bathurst Street Scoped EIS, Islamnic Shia Ithna Asheri Jamaat of Toronto, Vaughan, ON. Project Manager - Completed baseline studies within occupied Redside Dace habitat in support of redevelopment. Prepared project for successful Ontario Municipal Board (OMB) proceeding.

Block 51-1 Mount Pleasant, Block 51-1 Landowner Group, Brampton, ON. Aquatic field lead and technical contributor – Completed five years of aquatic monitoring within realigned watercourse within designated Redside Dace

EDUCATION

Masters of Environmental Science, University of Toronto (Ongoing) Post Graduate Certificate Hons. Ecosystem Restoration, Niagara

College

B.Sc. (Hons.) Geological Sciences, minor in Environmental Studies, Queen's University

EXPERIENCE IN THE INDUSTRY 5 Years

EXPERIENCE WITH GEI 5 Years

REGISTRATIONS/CERTIFICATIONS

Certified Ecological Restoration Practitioner (CERP)

Ontario Stream Assessment Protocol's Level 2 Fish Identification Ontario Benthos Biomonitoring Network

Class 2 Electrofishing Backpack Crew

Emergency First Aid with CPR "C" + AED Workplace Hazardous Materials Information System (WHMIS)

habitat. Prepared formal monitoring reports and adaptive management plans for Fisheries and Oceans Canada (DFO), Ministry of Natural Resources and Forestry (MNRF) and Credit Valley Conservation (CVC).

Derry Green 3A Subwatershed Impact Study (SIS), Broccolini Construction, Milton, ON. Project Coordinator – Completed baseline aquatic and terrestrial studies within a site proposed for industrial development. Prepared SIS, which identified natural heritage features and worked to identify mitigative and net gain opportunities were impacts were proposed.

Derry Green 5A SIS, Broccolini Construction, Milton, ON. Project Coordinator and field lead – Completed baseline studies and assessed impacts for proposed industrial development. Prepared SIS and identified restoration opportunities, including watercourse realignment and wetland compensation and enhancement.

Eagle Heights Environmental Impact Assessment, Penta Properties Inc., Waterdown, ON. Project coordinator and field lead – Completed baseline studies which informed impact assessment for proposed residential development. Reviewed natural heritage features present on the property based on municipal and provincial criteria. Identified restoration opportunities including woodland, wetland and Species at Risk (SAR) habitat compensation.

Eighth Line Halton Scoped Subwatershed Study (SWS), Hodero Holding Ltd., Halton Hills, ON. Project Manager – Completed aquatic and terrestrial studies to inform Scoped SWS and Characterization Report and identify wetland compensation opportunities. Olivia acted as the lead ecologist in a Subwatershed Technical Advisory Committee where she provided an ecological characterization of the study area.

Kirby Road Class Environmental Assessment (EA), The Milani Group, Vaughan, ON. Project Coordinator and field lead – Completed baseline studies to inform municipal Class EA for a proposed municipal road extension project. Progressing restoration and enhancement plan to provide ecological net gain to the surrounding ecosystem.

Milton North EIS, Orlando Corporation, Milton, ON. Project Manager and field lead – Completed baseline studies and prepared EIS in support of industrial business park. Identified and provided compensation habitat for removal of SAR through a Notice of Activity under the MNRF. Progressing detailed design phase, including natural heritage design brief outlining net benefits of watercourse realignment and wetland compensation.

Patterson Creek Riparian Restoration Plan, Lawrence Thomas (Private Landowner), Richmond Hill, ON. Project coordinator and restoration advisor – Prepared and implemented riparian restoration plan within contributing Redside Dace habitat, including use of bioengineering opportunities.

Port Credit West Village EIS, Imperial Oil, Mississauga, ON. Field lead – Completed baseline aquatic and terrestrial studies in support of EIS.

Salem EIS, Penta Properties Inc., Hamilton, ON. Project coordinator and field lead – Completed baseline terrestrial surveys in support of residential development. Completed constraints analysis to understand extents of natural heritage features (significant wildlife habitat, significant woodlands, significant wetlands, fish habitat, habitat for endangered and threatened species).

Solmar Bolton Comprehensive Environmental Impact Study and Management Plan, Solmar Development Corp., Bolton, ON. Project Coordinator and field lead – Completed baseline studies in support of site development.

PREVIOUS PROJECT EXPERIENCE

Twelve Mile Creek Aquatic Assessment and Gap Analysis, Trout Unlimited Canada – Niagara Chapter, St. Catharines, ON. Team member and field technician – Completed baseline studies and assessed restoration opportunities through a detailed gap analysis related to Brook Trout habitat availability.

PROFESSIONAL AFFILIATIONS

American Fisheries Society, Ontario Chapter

Society for Ecological Restoration

Laura Williamson, B.E.S., CERPIT

Intermediate Ecologist

Laura is an Intermediate Ecologist with a thorough understanding of ecological systems and their functions on the landscape. She specializes in ecosystem restoration, resource management, and ecological monitoring. Laura has experience leading a wide variety of ecological studies, environmental impact studies and restoration projects related to compensation and species at risk (SAR) habitat creation efforts. Laura has earned her Certified Ecological Restoration Practitioner (in training) designation from Society for Ecological Restoration.

Laura conducts a wide range of terrestrial and aquatic ecological surveys that evaluate the significance of natural heritage features and their associated functions. She specializes in terrestrial surveys and inventories related to herptiles, bats and insects. She has developed her knowledge of Significant Wildlife Habitat (SWH) evaluation criteria, and SAR habitat identification and protocols for confirming presence or absence. She also has experience with invasive species management and amphibian habitat rehabilitation. Laura has begun to manage ecological projects focused on providing ecosystem-based solutions to urban expansion.

PROJECT EXPERIENCE

Milton Phase 4, Milton Phase 4 Landowner Groups, Milton ON, Environmental Impact Study (EIS). Project Coordinator and field lead – Completed baseline studies across all properties as part of a large-scale block plan for a proposed multi-development residential expansion. Reviewed natural heritage features present on the properties based on municipal and provincial criteria. Identified restoration opportunities including woodland, wetland and SAR habitat compensation.

Riverfront Residential, GR (CAN) Investments LTD, Niagara ON, Environmental Impact Study (EIS). Project Coordinator and field lead – Completed baseline studies and assessed impacts for proposed residential development. Identified restoration opportunities including woodland, wetland and SAR habitat compensation.

Nelson Burlington Quarry Expansion, Nelson Aggregate, Burlington, ON, Natural Environment Technical Report (NETR). Project Coordinator and field lead – Completed baseline studies and assessed impacts for a proposed aggregate quarry. Prepared the Level 1 and Level 2 NETR, including evaluation of occurrence of significant natural heritage features on and adjacent to the proposed expansion area.

Bram East 47-3, Orlando Corporation, Brampton, ON, Environmental Impact Study (EIS). Project Coordinator – Completed baseline studies to inform the EIS Progressing restoration and enhancement plan to provide ecological net gain to the surrounding ecosystem.

EDUCATION

Post Graduate Certificate Hons. Ecosystem Restoration, Niagara College

BES Hons. Environmental Studies, Con. Resource Management, York University

EXPERIENCE IN THE INDUSTRY

3.5 Years

EXPERIENCE WITH SAVANTA

3.5 Years

REGISTRATIONS/CERTIFICATIONS

Certified Ecological Restoration Practitioner in Training (CERPIT) Class 2 Electrofishing Backpack Crew Leader

Ontario Benthos Biomonitoring Network Standard First Aid with CPR "C' + AED PADI Open Water Scuba Diving Workplace Hazardous Materials Information System (WHMIS)

Boblo Island, Boblo Developments Inc, Windsor ON, Overall Benefit Permit (OBP). Project Coordinator and field lead – Completed baseline studies for Eastern Foxsnake, assessed impacts of a proposed residential development on identified SAR and their habitat, assisted in the preparation of the Information Gathering Form and OBP application to further engagement with the Ministry of Natural Resources and Forestry, and recommended restoration opportunities for Eastern Foxsnake.

Bahá'i Temple, Bahá'i Community of Canada, Markham, Environmental Impact Study (EIS). Project Manager - Completed baseline studies within significant woodland habitat in support of a forest temple placement. Creation of restoration conceptual plan to provide invasive species management and an overall net increase in forest cover.

Re-establishment of Kirtland's Warbler Habitat in Southern Ontario, Simcoe County, Simcoe County, Restoration Initiative. Project and Volunteer Coordinator – Co-organized seed collection and planting efforts for the restoration of habitat for a provincially and federally endangered species. Assisted in the monitoring of the planting and planning efforts.

Monarch Stop Over Area Settlement Support, Central Lake Ontario Conservation Authority (CLOCA) and City of Oshawa, Oshawa ON, Local Planning Appeal Tribunal (LPAT) Hearing. Project Coordinator – Completed technical peer review on behalf of CLOCA and the City of Oshawa of an EIS prepared in support of a proposed residential development along the shore of Lake Ontario. Presented the results of the peer review during a settlement meeting under the LPAT process. Provided technical support for witness statements and hearing preparation for the LPAT along with CLOCA and the City of Oshawa.

PROFESSIONAL AFFILIATIONS

Society for Ecological Restoration

PRESENTATIONS

Re-establishing a Lost Ecosystem in Southern Ontario – Recovery of Kirtland's Warbler – Latornell Conservation Symposium, 2018

Shared perspectives and approaches to effectively restore habitat for an endangered song bird and ecosystem in Southern Ontario – Society for Ecological Restoration, 2019 Annual General Meeting

Endangered Species Site Walk (Fieldtrip) – Recovery of Kirtland's Warbler – Latornell Conservation Symposium, 2019

Christopher Zoladeski, Ph.D.

Botanist, Senior Ecologist

Chris has over 30 years of environmental consulting experience on projects ranging from biological surveys to comprehensive natural heritage strategies and sustainable forestry audits. He has extensive knowledge of forest, wetland and applied plant ecology, Ecological Land Classification and flora of southern, central and northern Ontario.

Chris implements conservation biology principles in the development of biodiversity, watershed and natural heritage policy planning. He has numerous ecological surveys and Environmental Impact Assessments including habitat restoration, species at risk management and wetland delineation for projects ranging from housing and golf course developments to comprehensive assessments of aggregate sites.

PROJECT EXPERIENCE

Heritage Heights Secondary Plan Area, Mattamy Homes, Northwest Brampton, Ontario. Lead botanist in the comprehensive survey of the area. Conducted botanical and vegetation surveys of all terrestrial and wetland habitat types using the Ecological Land Classification system for Ontario. Developed the major components of the Natural Heritage System.

Subwatershed Study and Impact Assessment, Block 51-1 Mount Pleasant Community, Mattamy Homes, Northwest Brampton, Ontario. Lead botanist and vegetation ecologist in the multidisciplinary survey and analysis of proposed development lands. Conducted multi-year monitoring surveys of restored Natural Heritage System components, including exotic and invasive species, habitat changes and impacts and vegetation mapping.

Boyne Secondary Plan Area, various developers and landowners, South Milton, Ontario. Completed comprehensive botanical and vegetation surveys and assessments to create foundations of a Natural Heritage System design for the area. Proposed monitoring programs for the areas adjoining new development. Completed mapping surveys of major exotic and invasive plant species.

Britannia West and Trafalgar Corridor Development Areas, various landowners, Milton, Ontario. Completed large scale vegetation mapping surveys to identify constraints and opportunities for development. Conducted delineations of upland and wetland areas, including multi-year vernal pool mapping and dynamics analysis.

Wetland Monitoring, Hunt Club Inc., Cambridge, Ontario.

Conducted multi-year monitoring of wetland vegetation and plants at strategically selected locations using permanent plots and transects. The purpose was to detect any adverse changes in wetland ecosystems due to ongoing construction in the vicinity. The project is an element of a suite of monitoring initiatives to assess the health of ecosystems and hydrological components.

EDUCATION

Ph.D., Botany, University of Toronto M.Sc., Forest Ecology and Soil Science, Laval University

EXPERIENCE IN THE INDUSTRY 30 years

EXPERIENCE WITH SAVANTA 12 years

REGISTRATIONS/CERTIFICATIONS

Butternut Health Assessment Certificate Environmental Impact Study Training Session, Ontario Ministry of Natural Resources

Ecological Land Classification Training Course

Ontario Wetland Evaluation System Training Course

Waterdown to Finch Pipeline, Imperial Oil, Ontario. Part of a multi-disciplinary team to map the natural heritage system components within the proposed corridor, including species at risk. Completed extensive arborist surveys of potentially impacted areas to identify compensation needs.

Environmental Impact Studies, various clients, throughout the Greater Toronto Area. Conducted numerous botanical and vegetation surveys for projects ranging from housing and industrial developments to golf courses and strategic natural heritage systems designs, incorporating ELC mapping, wetland delineations and constraints analyses.

Pilot Grassland Restoration Project, Ontario Aggregate Resources Corporation and Ontario Ministry of Natural Resources, Ontario. Conducted surveys and assessments of potential sites for establishing or restoring tall grass prairie in southern Ontario. Developed revegetation plans for the donor sites including the types of potential plant communities, species mixes, site preparation and management recommendations.

Lake Erie Sand Spit Savannas and Species at Risk: Invasive Species Inventory and Vegetation Restoration Strategy, Ontario Ministry of Natural Resources, Canadian Wildlife Service, Walker Industries, and LESSS Recovery Team. Conducted extensive surveys of invasive plant species at selected Lake Erie shoreline sites, which included detailed mapping of species presence and abundance. Based on this information, an invasive species management strategy was proposed, including species threat and invasiveness rankings and prioritization of sites for targeted species control. Invasive plant species factsheets were developed to assist the park's and natural areas managers and public with identification of species and strategies for their control.

Cherry Birch Recovery Strategy, Ontario Ministry of Natural Resources. Analyzed the current status of Cherry Birch extant populations in Ontario and developed a comprehensive strategy for recovery of the species in the province.

State of Aggregate Resources in Ontario Study: Paper 6 – Rehabilitation, Field Assessments, Ontario Ministry of Natural Resources. Completed extensive surveys of aggregate (sand, gravel, stone) sites in southern Ontario with the objective to identify opportunities for ecological rehabilitation using native vegetation.

PREVIOUS PROJECT EXPERIENCE

Sustainable Forest License Audits, Ontario Ministry of Natural Resources. As part of multi-disciplinary teams of biologists, foresters and economists, conducted audits of forest license operators in northern Ontario to assess the operations from the economic and ecological sustainability perspectives and regulatory requirements.

Pipeline expansion developments, TransCanada Pipelines, Ontario. Conducted assessments of pipeline sites to ensure regulatory compliance for vegetation, species and fisheries and stream crossings, based on available information and surveys.

Ecosystem Classification for the southeast Yukon, Yukon Government and Environment Canada. Based on extensive field surveys developed a system to classify and map terrestrial, forest and wetland vegetation types to be used by natural resource managers and forestry practitioners in the Territory.

Forest Ecosystem Classification for Manitoba, Environment Canada and Manitoba Ministry of Natural Resources. Was the lead author of forest ecosystem classification specific to the province. The system was based on information available from literature, government sources and collected during targeted surveys of forest and soil sites.

PUBLICATIONS

Books:

Zoladeski, C.A., Delorme, R.J., Wickware, G.M., Corns, I.G.W. and Allan, D.T. 1998. Forest ecosystem toposequences in Manitoba. Special Report 12, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, 63p.

Zoladeski, C.A., Cowell, D.W. and Ecosystem Classification Advisory Committee. 1996. Ecosystem classification for the southeast Yukon: field guide, first approximation; Yukon Renewable Resources,

Canadian Forest Service, Department of Indian and Northern Affairs and Northern Development, Whitehorse, Yukon, 409p.

Zoladeski, C.A., Wickware, G.M., Delorme, R.J., Sims, R.A. and Corns, I.G.W. 1995. Forest ecosystem classification for Manitoba: field guide, special report 2; UBC Press, Vancouver, B.C., 205p.

Articles in Periodicals:

Zoladeski, C.A. 1991. Vegetation zonation in dune slacks on the Leba Bar, Polish Baltic Sea coast; Journal of Vegetation Science, v.2, p.255-258.

Zoladeski, C.A. and Maycock, P.F. 1990. Dynamics of the boreal forest in northwestern Ontario; American Midland Naturalist, v.124, p.289-300.

Zoladeski, C.A. 1989. Current status of rare vascular plants on Cape Enragé (Bic), Quebec; Le Naturaliste canadien, v.116, p.113-116.

Zoladeski, C.A. 1988. New station for Malaxis paludosa, bog adder's-mouth orchid, in northwestern Ontario; The Canadian Field-Naturalist, v.102, p.548-549.

Zoladeski, C.A. 1988. Classification and gradient analysis of forest vegetation of Cape Enragé, Bic Park, Quebec; Le Naturaliste canadien, v.115, p.9-11.

Appendix B6 - Conservation Halton Regulated Wetland Memo

May 18, 2021

Conservation Halton 2596 Britannia Road West Burlington, ON L7P 0G3 Halton Region 1151 Bronte Road Oakville, ON L6M 3L1

Attention: Jessica Bester (Conservation Halton) and Leilani Lee-Yates (Halton Region)

Dear Ms. Bester and Ms. Lee-Yates:

RE: Milton North Conservation Halton Regulation Mapping Wetland Review

GEI Consultants Inc., Savanta Division (GEI) completed a site visit on May 4, 2021 to assess the vegetation communities of three potential wetland features within Parcel 4 of the Milton North lands identified by Conservation Halton during the pre-consultation meeting on April 28, 2021 (**Figure 1**). It is recognized that the site visit was completed outside of the ideal timing window for identification of wetland vegetation; however, based on the vegetation that was present and could be identified at the time of the site visit, none of the three identified features are identified as wetlands within the Subject Lands. GEI did not assess Feature 3 within non-participating lands due to site access restrictions, and therefore, is proposing a precautionary approach assuming the wetland is present within the adjacent offsite property.

Additional detail on each of the three features is provided below. A photolog is provided as an attachment to this memorandum.

Feature 1: Ponding Water in Agricultural Field

An area of ponding water was identified through aerial imagery. Vegetation within the ponded area consists of rows of corn. The ponding water is connected to an existing drainage ditch, which was full of water at the time of the site visit. Periodically soaked or wet land that is used for agricultural purposes and no longer exhibits a wetland characteristic does not meet the definition of "wetland" under the *Conservation Authorities Act* (1990).

Feature 2: Cultural Meadow

A potential meadow marsh community was identified through aerial imagery located between two intersecting hedgerows. This vegetation community is located adjacent to an existing drainage

ditch (HDF R3S1h), which was full of water at the time of the site visit. Cattails (*Typha* sp.) were growing within the drainage ditch, however no cattails were observed within the adjacent riparian zone. The vegetation community in question contained included upland species such as Goldenrod (*Solidago* sp.), Common Teasel (*Dipsacus fullonum*), and Queen Anne's Lace (*Daucus carota*), and was topographically higher than the dug drainage ditch. As such, the community would be classified as a Cultural Meadow (CUM1-1), and is not expected to meet the definition of "wetland" under the *Conservation Authorities Act* (1990).

Feature 3: Cultural Meadow

A potential meadow marsh community was identified through aerial imagery along the edge of the wooded community on the north side of Parcel 4. This vegetation community is located adjacent to an existing drainage feature (R3S1), which contained water at the time of the site visit. Cattails were growing within the drainage feature, however no cattails were observed within the adjacent riparian zone. Vegetation within the meadow community that was present and identifiable at the time of the site visit included upland species such as Goldenrod, Queen Anne's Lace, and Red Clover (*Trifolium pratense*). As such, the community would be classified as a Cultural Meadow (CUM1-1) and is not expected to meet the definition of "wetland" under the *Conservation Authorities Act* (1990). This community is also located adjacent to an existing swamp community, as identified through Conservation Halton mapping. The limit of this swamp community may be a few meters further out than is currently mapped, up to the edge of the tree dripline, but not including the meadow community. We were unable to confirm the extent of the swamp community as this is found within adjacent, non-participating lands.

It is GEI's opinion that no further site visits are required to assess the three potential wetland features, as the plants that could be identified at the time of the site visit are characteristic of upland vegetation communities. These features were not previously mapped by GEI in our Ecological Land Classification (ELC) mapping as these units were too small to warrant classification. For clarity, GEI will update our ELC mapping to indicate that Features 2 and 3 are cultural meadow communities (CUM1-1). The characterization of Feature 1 supports the current mapping of the feature as agricultural.

Feature 1 does not meet the definition of "wetland" under the Conservation Authorities Act (1990) and Features 2 and 3 are not expected to meet this definition. As previously discussed with Conservation Halton and Halton Region, we welcome your teams to review these features during the feature staking exercises, which will occur in June at the beginning of the optimal timing window for wetland vegetation.

Kindest regards,

GEI Consultants Savanta Division

Agneta Szabo Botanist 647-242-6492 aszabo@savanta.ca

Olive Robinson

Olivia Robinson Project Manager 647-988-2849 orobinson@savanta.ca

MBander

Noel Boucher Project Director 289-929-6951 nboucher@savanta.ca

Attachments (2)

- Figure 1 Site Map
- Photolog

References:

Province of Ontario, 1990. Conservation Authorities Act, R.S.O. 1990, c. C.27. April 19, 2021 Consolidation.

1:7,500

100 n

٦

nsultant

Savanta Division

Photo 1: View facing north of Feature 1 (ponding water in agricultural field).

Photo 3: View facing southeast of connection between Feature 1 and existing drainage ditch.

Photo 5: View facing south of Feature 2 (cultural meadow) adjacent to existing drainage ditch. A clump of cattails is growing within the drainage ditch.

Photo 2: View of corn stalks within Feature 1 (ponding water in agricultural field).

Photo 4: View facing west of Feature 2 (cultural meadow).

Milton North

May 2021

PHOTOGRAPHIC RECORD

PAGE 1 of 2

Photo 6: View facing north of Feature 3 (cultural meadow). Note that the dried grass between the cultural meadow and the corn field consists of upland species including *Panicum* sp. and *Setaria* sp.

Photo 7: View facing west of Feature 3 (cultural meadow) adjacent to existing drainage ditch. A clump of cattails is growing within the drainage ditch.

Photo 8: View facing south of transition between Feature 3 (cultural meadow) and swamp identified per Conservation Halton mapping.

Milton North

May 2021

PHOTOGRAPHIC RECORD

PAGE 2 of 2

Appendix B7 – Aquatic Habitat Assessment Photolog

Photographic Record

Photo 1 - Upstream extent of AHS1 looking downstream.

Photo 3 - Downstream extent of AHS1 looking upstream

Photo 4 – Photo of damaged old culvert immediately downstream of AHS1.

APPENDIX B7 AQUATIC HABITAT ASSESSMENT MILTON NORTH CEISS JUNE 2021 PHOTOGRAPHIC RECORD

