

Lower Base Line Wastewater Pumping Station and **Associated Forcemains Class EA Study - Online PIC** Script

Slide 1(Welcome Slide)

Hello and welcome to the Public Information Centre for Halton Region's Lower Base Line Wastewater Pumping Station and Associated Forcemains Municipal Class Environmental Assessment or "Class EA", which is open from November 13 to December 15, 2025.

Slide 2 (Public Information Centre (PIC) Objectives)

The purpose of this Public Information Centre or 'PIC' is to provide the public and interested parties with an understanding of the study and its preliminary recommendations. Specifically, we will review the Class EA process, background and existing conditions, objectives of the study, and the development and evaluation of alternatives. Finally, we will discuss the preliminary preferred location for the wastewater pumping station and the associated pipe alignment.

This PIC offers an opportunity for you to ask questions and provide feedback that will help guide the preferred alternative. You can get involved by watching this PIC video and by providing your feedback through our online survey which can be found on halton.ca from November 13 to December 15, 2025.

For more information, please visit the project webpage or email the Region's project manager, Graham Giles, to join the study mailing list or provide feedback in an alternate format.

Thank you for taking the time to watch this presentation and learning more about the study. We encourage you to share your input as it will help shape the direction of critical wastewater infrastructure to support growth in Halton Region. Your feedback is valuable to us.

Slide 3 (Study Process and Schedule)

This study follows the province of Ontario's Municipal Class Environmental Assessment process. Specifically, it has been identified as a Schedule 'B' project and will satisfy Phases 1, 2 and 5 of the process.

Phase 1 identifies the problem and opportunity and considers existing conditions in the study area. Phase 2 identifies and evaluates alternative solutions and through consultation with the public and other stakeholders, selects a preferred solution. Phase 2 will conclude with issuing a Notice of Completion and Project File Report, which will be available for a 30-day public review period. Once the study is complete, the project will proceed to Phase 5 which includes detailed design and construction, incorporating measures to reduce potential impacts to the community and environment as identified through this Class EA.

Slide 4 (Problem and Opportunity)

The problem and opportunity statement provides the key objectives of the study. Halton Region is undertaking this Class EA to evaluate sanitary servicing options to support future growth in Milton and Halton Hills. This project was identified in the 2011 Sustainable Halton Water and Wastewater Master Plan and will help provide wastewater services for new homes and businesses.

The study will identify the preferred location for the Lower Base Line Wastewater Pumping Station and alignment for the associated pipes. It will also consider a range of factors including technical feasibility, environmental impacts, social and cultural impacts, property and regulatory requirements, and financial implications.

Slide 5 (Sanitary Servicing)

Every time someone in Halton Region flushes a toilet, runs a washing machine, or uses a sink, the used water, also known as wastewater, needs to be safely managed.

From homes and businesses, wastewater flows into the Region-owned sanitary sewer system, which is made up of a network of underground pipes. In most areas, wastewater can flow downhill through the pipes by gravity. However, when the land rises, gravity alone isn't enough. That's where pumping stations come in. These stations pump the wastewater uphill through pressurized pipes called forcemains.

Once the wastewater reaches a higher elevation, gravity takes over again, allowing it to flow downhill towards its final destination at the wastewater treatment plant, where it is cleaned and returned to the environment.

Slide 6: (Background and Considerations)

To understand the needs of the proposed Lower Base Line wastewater pumping station, it is helpful to see the areas it will service, as shown in green and orange in the figure. Several key considerations were accounted for in this project. They include:

- Providing wastewater servicing to allow for future growth.
- Optimizing operation of the wastewater system by balancing flows between the new Lower Base Line station and existing stations.
- Protection of the environment and community, particularly considering the proposed linear infrastructure crossing Sixteen Mile Creek, and;
- Minimizing impacts on private property and prime agricultural lands.

Slide 7 (Background Studies)

As part of this Class EA, several background studies were undertaken to understand constraints within the study area and support the evaluation of alternatives.

These studies included:

- A Natural Environment Study to identify environmentally sensitive areas and potential species at risk;
- A Stage 1 Archaeological Assessment (AA) to screen for areas of potential archaeological significance;
- A Cultural Heritage Screening to confirm any known cultural heritage features that could be impacted;
- An Agricultural Screening and Impact Assessment to identify potential impacts on prime agricultural land; and,
- A Desktop Hydrogeological and Geotechnical Review to understand groundwater and soil conditions that could impact construction.

Slide 8 (Evaluation Process)

This class EA study follows a structured four-step process:

- The first step develops and evaluates a list of servicing concepts based on the study objectives and technical feasibility along with other social and environmental factors.
- The second step develops a list of potential station sites and pipe alignments based on the preferred concept. These alternatives are evaluated considering technical analyses, background studies and feedback from stakeholders.
- **The third step** focuses on public consultation presenting the study and the preferred alternative at a Public Information Centre, where we are today!
- Finally, the fourth **step** will use the feedback gained through public and stakeholder consultation, including engagement with Indigenous communities to confirm the preferred alternative and identify any required mitigation measures before moving forward into design.

Slide 9 (Concept Development 1)

For step 1, we developed and evaluated two concepts for the pumping station.

Concept one proposes a pump station east of Sixteen Mile Creek that pumps wastewater under the creek through a forcemain that discharges into the wastewater system to the west as shown in the map on the left.

In contrast, concept two proposes a deep gravity sewer under Sixteen Mile Creek, with a pump station to the west of the creek that will lift wastewater into the existing wastewater system, seen in the map to the right.

Slide 10 (Concept Development 2)

The two concepts are illustrated by the figures presented. The figures show cross-sections of how the pipe would cross Sixteen Mile Creek based on the two concepts.

Concept 1 involves constructing a pump station on the east side of the creek, which will pump wastewater through a forcemain under the creek until it can discharge to another gravity sewer at a higher elevation.

Concept 2 proposes a deep gravity sewer to be built under the creek, which will convey wastewater by gravity to a pumping station on the west side of the creek. The pumping station will then pump the wastewater into the higher elevated existing gravity sewer. This second approach results in a nonpressurized pipe under the creek that provides a lower risk to the environment and easier operation.

It is estimated that the Pump Station will be between 35 to 50 m deep depending on the selected concept. The depth of the infrastructure will be confirmed during detailed design.

Slide 11 (Concept Evaluation)

Each of the two concepts were evaluated using a range of criteria. These included factors such as the ability for the system to perform under high wastewater flow conditions, access to utilities, energy consumption, operations and maintenance complexity, environmental impacts, cost and more.

For each criterion, the concepts were rated with a red X to indicate a negative impact or greater risk, a yellow dash to indicate a moderate impact, or a black check mark to indicate a positive or minimal impact, meaning the concept either performed well or presented no significant concerns.

Through this evaluation, Concept 2 was identified as the preferred option since it will be easier to construct and operate, will have a lower cost, and lower potential environmental impacts.

Slide 12 (Pumping Station Location and Alternative **Gravity Sewer Alignments)**

As part of step 2, a list of three potential pipe alignment alternatives were developed based on technical feasibility, land availability, environmental considerations, cost, and social impact.

For all three alternatives the Pumping Station is located on Region owned land, the Halton Region Biosolids property. This was chosen to minimize the impacts on the environment and private properties.

- Alternative A begins at the northeast corner of Fourth Line and Lower Base Line. From there, it follows the Lower Base Line right-of-way, crossing Sixteen Mile Creek, and then tuns south towards the Region-owned biosolids property.
- Alternative B also starts at the northeast corner of Fourth Line and Lower Base Line but then moves southwest through private properties to the biosolids property.
- Alternative C starts at the same northeast corner, moves west along Lower Base Line before turning south and then following the Hydro One corridor to the biosolids property.

Please note that the total number of shafts will be confirmed through detailed design.

Slide 13 (Detailed Evaluation Criteria)

Each of the three alternatives was evaluated against five main categories: technical feasibility, environmental impacts, social impacts, regulatory considerations, and financial feasibility.

Within each category, several factors were considered. For example, technical feasibility reviewed the number and depth of shafts, tunneling length and operations and maintenance. Environmental factors included impacts to surface water and species at risk. Social impacts considered impacts to First Nations inherent and treaty rights, agricultural lands and construction noise and dust impacts. Regulatory considerations included property acquisitions and approvals. Finally, financial criteria considered property, capital, and operating costs.

All evaluation criteria can be seen on the slide.

Slide 14 (Detailed Evaluation of Alternatives)

The table on this slide shows how each alternative was graded against the evaluation criteria. For each criterion, the concepts were rated with a red X to indicate a negative impact or greater risk, a yellow dash to indicate a moderate impact, or a black check mark to indicate a positive or minimal impact, meaning the concept either performed well or presented no significant concerns.

Through this evaluation, Alternative A emerged as the preferred option, as it minimizes environmental and social impacts, is easier to construct and operate, and efficiently uses Region-owned land.

Slide 15 (Preliminary Preferred Alternative)

The map on the left shows the preliminary preferred alternative sewer alignment and pump station site.

This alternative was selected as the preferred option because it minimizes potential impacts to the surrounding communities and the environment by constructing the majority of the gravity sewer along the existing road right of way. The pump station is also located away from nearby properties which will reduce impacts on area residents. Overall, this alternative is a cost-effective solution that will minimize environmental and social impacts while utilizing Region owned land.

The total number of shafts and their required depths will be confirmed through detailed design. The pump station will be located on the Region-owned Biosolids property; the precise location of the station on this site will be refined through detailed design.

Slide 16 (Next Steps in the MCEA Study)

Following this PIC, the project team will:

- Review and consider feedback from agencies, stakeholders and the public.
- Continue engagement with Indigenous Communities and ensure inherent and treaty rights are respected.

- Confirm the preliminary preferred alternative, and associated mitigation measures and additional studies required for implementation.
- Conclude the study and prepare the final Project File Report that will be available for public review and comment.

All comments and feedback received through the course of this study will be taken into consideration as we move to finalize the Class EA. The final Project File Report is anticipated to be completed and available for public review in Winter 2026.

Slide 17 (We Want to Hear From You)

Halton Region values consultation and engagement with stakeholders and will review and consider all feedback, comments and questions received as part of the PIC.

Your feedback is important and will inform the evaluation of alternatives and final preferred solution. We appreciate any comments or questions you provide.

If you have any questions or comments at any time during the study, please email the Region's Project Manager Graham Giles. You can also learn more about the project by visiting the study's webpage on halton.ca.

Thank you for your time. We look forward to your feedback on this exciting study.